Bioinformatics - Lecture 7

Size: px
Start display at page:

Download "Bioinformatics - Lecture 7"

Transcription

1 Bioinformatics - Lecture 7 Louis Wehenkel Department of Electrical Engineering and Computer Science University of Liège Montefiore - Liège - November 20, 2007 Find slides: lwh/ibioinfo/ Louis Wehenkel GBIO Bioinformatique (1/16)

2 Chapter 7. Phylogenetic analysis Louis Wehenkel GBIO Bioinformatique (2/16)

3 Phylogenetic analysis Objective: From a set of DNA sequences which have been obtained from a certain individuals in a population, derive the parent-child relationship among these individuals. Derive time since divergence from common ancestor. Derive a tree, highlighting successive points of divergence in time. Applications: Understand virus evolution (short time intervals). Understand human population migrations (intermediate time intervals). Understand evolution among species (long time intervals). Louis Wehenkel GBIO Bioinformatique (3/16)

4 Mathematical notion of graph General notion of (finite, unweighted) graph: Finite set of nodes N and of branches B N N. Self-loop: arc of type (i, i). In this chapter we consider graphs without self-loops: B {(i, i) : i N } =. We say that the graph is undirected, if (i, j) B : (j, i) B. We say that the graph is directed, if (i, j) B : (j, i) B. Path (of length k > 0): sequence of nodes n1,...,n k+1 suchthat i = 1,...,k : (n i, n i+1 ) B. Cycle: a path n1,...,n k+1 suchthat n 1 = n k+1. Connected graph: path from any node to any other node. Acyclic graph: no path is a cycle. NB: we can direct an undirected graph, and we can undirect a directed graph... Louis Wehenkel GBIO Bioinformatique (4/16)

5 Mathematical notion of tree General definition of a tree: A tree is a connected, acyclic, undirected graph. Terminology: N: number of nodes, vertices (noeuds, sommets) B: number of undirected branches, edges (arcs, arêtes) d(n): degree of node n (number of branches which are connected to n). General properties: B = N 1, n d(n) = 2B. Trivial tree: 1 node, 0 branches. Particular types of trees: Unrooted tree. Rooted tree: one of the nodes is chosen as the root; this allows to orient arcs starting with the root. Bifurcating tree Binary (rooted tree): each node has either 2 or 0 successors. Louis Wehenkel GBIO Bioinformatique (5/16)

6 Bifurcating trees Trees have two types of nodes: The external (or terminal) nodes: they have degree 1 The internal nodes (i.e. non terminal nodes): they all have degree > 1. By definition, a tree is a bifurcating tree whose internal nodes all have a degree of 3. Relation among numbers of external (E) and internal (I) nodes and branches I = E 2 ( E 3) B = 2E 3 ( E 3) Louis Wehenkel GBIO Bioinformatique (6/16)

7 Binary rooted trees Binary rooted trees have two types of nodes: The terminal (or external) nodes: they have degree 1 The internal nodes (i.e. non terminal nodes): they all have degree 3, except for the root which has degree 2. Relation among the number of teminal and internal nodes: We have: n d(n) = 2 + 3(I 1) + T for binary trees We also have: N = T + I for binary trees In general, for trees we have: B = (N 1) and n d(n) = 2B. I = T 1 and B = 2T 2 for binary trees. Louis Wehenkel GBIO Bioinformatique (7/16)

8 Illustration: undirected graphs and trees Louis Wehenkel GBIO Bioinformatique (8/16)

9 Phylogenetic trees Representation of a set of species by a binary rooted tree, where each living species corresponds to a terminal node, internal nodes correspond to ancestral species, the root node corresponds to the common ancestor, arc lengths are proportional to time that has elapsed since father. Representation of a set of genomic sequences of mutants of a virus by a binary rooted tree, each node corresponds to a homogenous population of viruses, root node corresponds to the ancestral population, the terminal nodes correspond to the currently living variants, or those that have been observed at some time spot, arc length is proportional to number of mutations (or time). NB: in some cases, we actually would need to consider non-binary trees, or even graphs that are not trees. Louis Wehenkel GBIO Bioinformatique (9/16)

10 Illustration: mitochondrial DNA of humans etc. Louis Wehenkel GBIO Bioinformatique (10/16)

11 Illustration: tree of life (from Wikipedia). Louis Wehenkel GBIO Bioinformatique (11/16)

12 We will describe the neighbor joing algorithm for inferring a binary phylogenetic tree from a distance matrix. Given a set of taxa T = {τ1,..., τ n }, and matrix of pairwise distances D i,j = d(τ i, τ j ), first build an unrooted bifurcating tree, then choose a branch and insert root node into the branch. Bifurcating tree (properties) each external node corresponds to one of the given taxa (there are T = n external nodes) each internal node has three neighbors (there are I = n 2 internal nodes) each branch has a certain length (there are B = I + T 1 = 2n 3 branches) arc lengths Li,j are computed such that d(τ i, τ j ) is well approximated by the length of (the single path) from external node i to external node j. Louis Wehenkel GBIO Bioinformatique (12/16)

13 Examples (base cases) Suppose n = 2, i.e. T = {τ 1,τ 2 }: There exists only one unrooted bifurcating tree: τ1 τ 2 Arc length = Lτ1,τ 2 = d(τ 1, τ 2 ) Root will be placed somewhere on this arc, yeilding the binary rooted tree τ 1 R τ 2. Branch lengths of rooted tree such that : L R,τ1 + L R,τ2 = d(τ 1, τ 2 ). Distances are exactly represented by the tree. Suppose n = 3, i.e. T = {τ 1,τ 2,τ 3 }: There exists only one unrooted bifurcating tree: τi A τ j τ k If branch lengths satisfy LA,τi + L A,τj = d(τ i, τ j ) the tree represents the distance matrix exactly. They can be computed by LA,τk = d(τi,τ k)+d(τ j,τ k ) d(τ i,τ j) 2, where τ k T, {τ i, τ j } = T \ {τ k }. The root is chosen arbitrarilly to split one of the three branches, A τ k. Louis Wehenkel GBIO Bioinformatique (13/16)

14 Generic greedy bottom up merging algorithm (for n 4) Initialize: N = {τ1,...,τ n }, a list of nodes to be inserted in the tree. B =, a list of branches representing the tree (a branch i j is described by a tuple (i, j, L i,j )). Node count: k = n. Iteratively shrink N and grow B, until N = : 1. If there are only two nodes i, j left in N, remove them and insert a branch (i, j, d(i, j)) into B. 2. Set node count k = k Identify nodes i, j N, and create an internal node k that will join them in the final tree. 4. Remove i and j from N; insert k in N. 5. Compute arc lengths L k,i and L k,j ; store branches (k, i, L k,i ) and (k, j, L k,j ) in B. 6. Compute distances d(k, i), i N. Choose root on one of the branches of the bifurcating tree. Louis Wehenkel GBIO Bioinformatique (14/16)

15 Neighbor joining algorithm (NJ) NJ: particular case of the above greedy algorithm: Steps 3 and 4: choice of nodes of N to merge: Compute for each node i N the number R i = P j N d(i,j) (the sum of distances to all other nodes (NB: d(i,i) = 0, i)). Compute for each pair of nodes i j N the neighborliness M i,j = ( N 2)d(i, j) R i R j. Replace pair of nodes i,j arg max i j M i,j by node k in N. Step 5: Compute arc lengths between node k and nodes i and j by (NB: N has just been decremented by 1): L(i,k) = d(i,j ) + R i R j ; L(j,k) = d(i,j ) + R j R i. 2 2( N 1) 2 2( N 1) Step 6: compute distances of new node k created by merging i, j by: d(k,l) = d(i,l)+d(j,l) d(i,j), l N \ {i,j }; d(k,k) = 0. 2 Properties of NJ: If B that represents the original distances exactly, NBJ will find one. Read article Naruya Saitou and Masatoshi Nei, 1987 for explanations and illustrations. Louis Wehenkel GBIO Bioinformatique (15/16)

16 Deadline November 27. Read chapter 7 and reference paper Naruya Saitou and Masatoshi Nei, Apply NJ for a case of 3 taxa only. Show that it indeed yields results consistent with the second basecase of slide 12. Apply NJ to the case with 5 taxa with their distances derived from the tree of Fig. 7.5 as in the table of page 117. Redo this exercise, after incrementing by 3 the distance between the taxa 1 and 2. In both cases, check whether the arc lengths of any path between two taxa sum up to the distance among these taxa. Discuss the results. Louis Wehenkel GBIO Bioinformatique (16/16)

Phylogenetic reconstruction 2

Phylogenetic reconstruction 2 Phylogenetic reconstruction The neighbor-joining algorithm Please sit in row K or forward RF: what s the worst epidemic of the last 100 years? amp Funston, Kansas Left: US rmy photographer/public domain

More information

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS November 17, 2016. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question.

More information

CSE 21 Winter 2016 Homework 6 Due: Wednesday, May 11, 2016 at 11:59pm. Instructions

CSE 21 Winter 2016 Homework 6 Due: Wednesday, May 11, 2016 at 11:59pm. Instructions CSE 1 Winter 016 Homework 6 Due: Wednesday, May 11, 016 at 11:59pm Instructions Homework should be done in groups of one to three people. You are free to change group members at any time throughout the

More information

IEOR E4004: Introduction to OR: Deterministic Models

IEOR E4004: Introduction to OR: Deterministic Models IEOR E4004: Introduction to OR: Deterministic Models 1 Dynamic Programming Following is a summary of the problems we discussed in class. (We do not include the discussion on the container problem or the

More information

What is Greedy Approach? Control abstraction for Greedy Method. Three important activities

What is Greedy Approach? Control abstraction for Greedy Method. Three important activities 0-0-07 What is Greedy Approach? Suppose that a problem can be solved by a sequence of decisions. The greedy method has that each decision is locally optimal. These locally optimal solutions will finally

More information

UNIT 2. Greedy Method GENERAL METHOD

UNIT 2. Greedy Method GENERAL METHOD UNIT 2 GENERAL METHOD Greedy Method Greedy is the most straight forward design technique. Most of the problems have n inputs and require us to obtain a subset that satisfies some constraints. Any subset

More information

Sublinear Time Algorithms Oct 19, Lecture 1

Sublinear Time Algorithms Oct 19, Lecture 1 0368.416701 Sublinear Time Algorithms Oct 19, 2009 Lecturer: Ronitt Rubinfeld Lecture 1 Scribe: Daniel Shahaf 1 Sublinear-time algorithms: motivation Twenty years ago, there was practically no investigation

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 All single-node marginals If we need the

More information

UNIT VI TREES. Marks - 14

UNIT VI TREES. Marks - 14 UNIT VI TREES Marks - 14 SYLLABUS 6.1 Non-linear data structures 6.2 Binary trees : Complete Binary Tree, Basic Terms: level number, degree, in-degree and out-degree, leaf node, directed edge, path, depth,

More information

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class Homework #4 CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class o Grades depend on neatness and clarity. o Write your answers with enough detail about your approach and concepts

More information

Node betweenness centrality: the definition.

Node betweenness centrality: the definition. Brandes algorithm These notes supplement the notes and slides for Task 11. They do not add any new material, but may be helpful in understanding the Brandes algorithm for calculating node betweenness centrality.

More information

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming Dynamic Programming: An overview These notes summarize some key properties of the Dynamic Programming principle to optimize a function or cost that depends on an interval or stages. This plays a key role

More information

Essays on Some Combinatorial Optimization Problems with Interval Data

Essays on Some Combinatorial Optimization Problems with Interval Data Essays on Some Combinatorial Optimization Problems with Interval Data a thesis submitted to the department of industrial engineering and the institute of engineering and sciences of bilkent university

More information

Ch 10 Trees. Introduction to Trees. Tree Representations. Binary Tree Nodes. Tree Traversals. Binary Search Trees

Ch 10 Trees. Introduction to Trees. Tree Representations. Binary Tree Nodes. Tree Traversals. Binary Search Trees Ch 10 Trees Introduction to Trees Tree Representations Binary Tree Nodes Tree Traversals Binary Search Trees 1 Binary Trees A binary tree is a finite set of elements called nodes. The set is either empty

More information

UGM Crash Course: Conditional Inference and Cutset Conditioning

UGM Crash Course: Conditional Inference and Cutset Conditioning UGM Crash Course: Conditional Inference and Cutset Conditioning Julie Nutini August 19 th, 2015 1 / 25 Conditional UGM 2 / 25 We know the value of one or more random variables i.e., we have observations,

More information

Molecular Phylogenetics

Molecular Phylogenetics Mole_Oce Lecture # 16: Molecular Phylogenetics Maximum Likelihood & Bahesian Statistics Optimality criterion: a rule used to decide which of two trees is best. Four optimality criteria are currently widely

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani All single-node marginals If we need the full set of marginals, repeating

More information

0/1 knapsack problem knapsack problem

0/1 knapsack problem knapsack problem 1 (1) 0/1 knapsack problem. A thief robbing a safe finds it filled with N types of items of varying size and value, but has only a small knapsack of capacity M to use to carry the goods. More precisely,

More information

Introduction to Greedy Algorithms: Huffman Codes

Introduction to Greedy Algorithms: Huffman Codes Introduction to Greedy Algorithms: Huffman Codes Yufei Tao ITEE University of Queensland In computer science, one interesting method to design algorithms is to go greedy, namely, keep doing the thing that

More information

Mathematical Flaws in Suzuki and Gojobori s test for selection. Rick Durrett, Cornell University

Mathematical Flaws in Suzuki and Gojobori s test for selection. Rick Durrett, Cornell University Mathematical Flaws in Suzuki and Gojobori s test for selection Rick Durrett, Cornell University Abstract. Suzuki and Gojobori introduced a method for detecting positive selection at single amino acid sites.

More information

1) S = {s}; 2) for each u V {s} do 3) dist[u] = cost(s, u); 4) Insert u into a 2-3 tree Q with dist[u] as the key; 5) for i = 1 to n 1 do 6) Identify

1) S = {s}; 2) for each u V {s} do 3) dist[u] = cost(s, u); 4) Insert u into a 2-3 tree Q with dist[u] as the key; 5) for i = 1 to n 1 do 6) Identify CSE 3500 Algorithms and Complexity Fall 2016 Lecture 17: October 25, 2016 Dijkstra s Algorithm Dijkstra s algorithm for the SSSP problem generates the shortest paths in nondecreasing order of the shortest

More information

Heaps. Heap/Priority queue. Binomial heaps: Advanced Algorithmics (4AP) Heaps Binary heap. Binomial heap. Jaak Vilo 2009 Spring

Heaps. Heap/Priority queue. Binomial heaps: Advanced Algorithmics (4AP) Heaps Binary heap. Binomial heap. Jaak Vilo 2009 Spring .0.00 Heaps http://en.wikipedia.org/wiki/category:heaps_(structure) Advanced Algorithmics (4AP) Heaps Jaak Vilo 00 Spring Binary heap http://en.wikipedia.org/wiki/binary_heap Binomial heap http://en.wikipedia.org/wiki/binomial_heap

More information

CSE 100: TREAPS AND RANDOMIZED SEARCH TREES

CSE 100: TREAPS AND RANDOMIZED SEARCH TREES CSE 100: TREAPS AND RANDOMIZED SEARCH TREES Midterm Review Practice Midterm covered during Sunday discussion Today Run time analysis of building the Huffman tree AVL rotations and treaps Huffman s algorithm

More information

Heaps

Heaps AdvancedAlgorithmics (4AP) Heaps Jaak Vilo 2009 Spring Jaak Vilo MTAT.03.190 Text Algorithms 1 Heaps http://en.wikipedia.org/wiki/category:heaps_(structure) Binary heap http://en.wikipedia.org/wiki/binary_heap

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

Phylogenetic Reconstruction: Parsimony

Phylogenetic Reconstruction: Parsimony Phylogenetic Reconstruction: Parsimony nders Gorm Pedersen gorm@cbs.dtu.dk Trees: terminology Trees: terminology Trees: terminology Reptiles is a non-monophyletic group (unless you include birds) Trees:

More information

Course Information and Introduction

Course Information and Introduction August 20, 2015 Course Information 1 Instructor : Email : arash.rafiey@indstate.edu Office : Root Hall A-127 Office Hours : Tuesdays 12:00 pm to 1:00 pm in my office (A-127) 2 Course Webpage : http://cs.indstate.edu/

More information

Lecture 6. 1 Polynomial-time algorithms for the global min-cut problem

Lecture 6. 1 Polynomial-time algorithms for the global min-cut problem ORIE 633 Network Flows September 20, 2007 Lecturer: David P. Williamson Lecture 6 Scribe: Animashree Anandkumar 1 Polynomial-time algorithms for the global min-cut problem 1.1 The global min-cut problem

More information

TABLEAU-BASED DECISION PROCEDURES FOR HYBRID LOGIC

TABLEAU-BASED DECISION PROCEDURES FOR HYBRID LOGIC TABLEAU-BASED DECISION PROCEDURES FOR HYBRID LOGIC THOMAS BOLANDER AND TORBEN BRAÜNER Abstract. Hybrid logics are a principled generalization of both modal logics and description logics. It is well-known

More information

A relation on 132-avoiding permutation patterns

A relation on 132-avoiding permutation patterns Discrete Mathematics and Theoretical Computer Science DMTCS vol. VOL, 205, 285 302 A relation on 32-avoiding permutation patterns Natalie Aisbett School of Mathematics and Statistics, University of Sydney,

More information

Advanced Algorithmics (4AP) Heaps

Advanced Algorithmics (4AP) Heaps Advanced Algorithmics (4AP) Heaps Jaak Vilo 2009 Spring Jaak Vilo MTAT.03.190 Text Algorithms 1 Heaps http://en.wikipedia.org/wiki/category:heaps_(structure) Binary heap http://en.wikipedia.org/wiki/binary

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Recall: Data Flow Analysis. Data Flow Analysis Recall: Data Flow Equations. Forward Data Flow, Again

Recall: Data Flow Analysis. Data Flow Analysis Recall: Data Flow Equations. Forward Data Flow, Again Data Flow Analysis 15-745 3/24/09 Recall: Data Flow Analysis A framework for proving facts about program Reasons about lots of little facts Little or no interaction between facts Works best on properties

More information

Term Structure Lattice Models

Term Structure Lattice Models IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh Term Structure Lattice Models These lecture notes introduce fixed income derivative securities and the modeling philosophy used to

More information

The exam is closed book, closed calculator, and closed notes except your three crib sheets.

The exam is closed book, closed calculator, and closed notes except your three crib sheets. CS 188 Spring 2016 Introduction to Artificial Intelligence Final V2 You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your three crib sheets.

More information

1 Solutions to Tute09

1 Solutions to Tute09 s to Tute0 Questions 4. - 4. are straight forward. Q. 4.4 Show that in a binary tree of N nodes, there are N + NULL pointers. Every node has outgoing pointers. Therefore there are N pointers. Each node,

More information

SET 1C Binary Trees. 2. (i) Define the height of a binary tree or subtree and also define a height balanced (AVL) tree. (2)

SET 1C Binary Trees. 2. (i) Define the height of a binary tree or subtree and also define a height balanced (AVL) tree. (2) SET 1C Binary Trees 1. Construct a binary tree whose preorder traversal is K L N M P R Q S T and inorder traversal is N L K P R M S Q T 2. (i) Define the height of a binary tree or subtree and also define

More information

2 all subsequent nodes. 252 all subsequent nodes. 401 all subsequent nodes. 398 all subsequent nodes. 330 all subsequent nodes

2 all subsequent nodes. 252 all subsequent nodes. 401 all subsequent nodes. 398 all subsequent nodes. 330 all subsequent nodes ¼ À ÈÌ Ê ½¾ ÈÊÇ Ä ÅË ½µ ½¾º¾¹½ ¾µ ½¾º¾¹ µ ½¾º¾¹ µ ½¾º¾¹ µ ½¾º ¹ µ ½¾º ¹ µ ½¾º ¹¾ µ ½¾º ¹ µ ½¾¹¾ ½¼µ ½¾¹ ½ (1) CLR 12.2-1 Based on the structure of the binary tree, and the procedure of Tree-Search, any

More information

Lecture l(x) 1. (1) x X

Lecture l(x) 1. (1) x X Lecture 14 Agenda for the lecture Kraft s inequality Shannon codes The relation H(X) L u (X) = L p (X) H(X) + 1 14.1 Kraft s inequality While the definition of prefix-free codes is intuitively clear, we

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Q1. [?? pts] Search Traces

Q1. [?? pts] Search Traces CS 188 Spring 2010 Introduction to Artificial Intelligence Midterm Exam Solutions Q1. [?? pts] Search Traces Each of the trees (G1 through G5) was generated by searching the graph (below, left) with a

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

Phylogenetic comparative biology

Phylogenetic comparative biology Phylogenetic comparative biology In phylogenetic comparative biology we use the comparative data of species & a phylogeny to make inferences about evolutionary process and history. Reconstructing the ancestral

More information

PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES

PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES WIKTOR JAKUBIUK, KESHAV PURANMALKA 1. Introduction Dijkstra s algorithm solves the single-sourced shorest path problem on a

More information

is a path in the graph from node i to node i k provided that each of(i i), (i i) through (i k; i k )isan arc in the graph. This path has k ; arcs in i

is a path in the graph from node i to node i k provided that each of(i i), (i i) through (i k; i k )isan arc in the graph. This path has k ; arcs in i ENG Engineering Applications of OR Fall 998 Handout The shortest path problem Consider the following problem. You are given a map of the city in which you live, and you wish to gure out the fastest route

More information

Lecture 10: The knapsack problem

Lecture 10: The knapsack problem Optimization Methods in Finance (EPFL, Fall 2010) Lecture 10: The knapsack problem 24.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Anu Harjula The knapsack problem The Knapsack problem is a problem

More information

Game Theory: Normal Form Games

Game Theory: Normal Form Games Game Theory: Normal Form Games Michael Levet June 23, 2016 1 Introduction Game Theory is a mathematical field that studies how rational agents make decisions in both competitive and cooperative situations.

More information

Finding Equilibria in Games of No Chance

Finding Equilibria in Games of No Chance Finding Equilibria in Games of No Chance Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and Troels Bjerre Sørensen Department of Computer Science, University of Aarhus, Denmark {arnsfelt,bromille,trold}@daimi.au.dk

More information

useful than solving these yourself, writing up your solution and then either comparing your

useful than solving these yourself, writing up your solution and then either comparing your CSE 441T/541T: Advanced Algorithms Fall Semester, 2003 September 9, 2004 Practice Problems Solutions Here are the solutions for the practice problems. However, reading these is far less useful than solving

More information

Notes on Natural Logic

Notes on Natural Logic Notes on Natural Logic Notes for PHIL370 Eric Pacuit November 16, 2012 1 Preliminaries: Trees A tree is a structure T = (T, E), where T is a nonempty set whose elements are called nodes and E is a relation

More information

Notes on the EM Algorithm Michael Collins, September 24th 2005

Notes on the EM Algorithm Michael Collins, September 24th 2005 Notes on the EM Algorithm Michael Collins, September 24th 2005 1 Hidden Markov Models A hidden Markov model (N, Σ, Θ) consists of the following elements: N is a positive integer specifying the number of

More information

3/7/13. Binomial Tree. Binomial Tree. Binomial Tree. Binomial Tree. Number of nodes with respect to k? N(B o ) = 1 N(B k ) = 2 N(B k-1 ) = 2 k

3/7/13. Binomial Tree. Binomial Tree. Binomial Tree. Binomial Tree. Number of nodes with respect to k? N(B o ) = 1 N(B k ) = 2 N(B k-1 ) = 2 k //1 Adapted from: Kevin Wayne B k B k B k : a binomial tree with the addition of a left child with another binomial tree Number of nodes with respect to k? N(B o ) = 1 N(B k ) = 2 N( ) = 2 k B 1 B 2 B

More information

On the Optimality of a Family of Binary Trees Techical Report TR

On the Optimality of a Family of Binary Trees Techical Report TR On the Optimality of a Family of Binary Trees Techical Report TR-011101-1 Dana Vrajitoru and William Knight Indiana University South Bend Department of Computer and Information Sciences Abstract In this

More information

Decision Trees An Early Classifier

Decision Trees An Early Classifier An Early Classifier Jason Corso SUNY at Buffalo January 19, 2012 J. Corso (SUNY at Buffalo) Trees January 19, 2012 1 / 33 Introduction to Non-Metric Methods Introduction to Non-Metric Methods We cover

More information

Decision Theory: Sequential Decisions

Decision Theory: Sequential Decisions Decision Theory: CPSC 322 Decision Theory 2 Textbook 9.3 Decision Theory: CPSC 322 Decision Theory 2, Slide 1 Lecture Overview 1 Recap 2 Decision Theory: CPSC 322 Decision Theory 2, Slide 2 Decision Variables

More information

Equity Importance Modeling With Financial Network and Betweenness Centrality

Equity Importance Modeling With Financial Network and Betweenness Centrality Equity Importance Modeling With Financial Network and Betweenness Centrality Zhao Zhao 1 Guanhong Pei 1 Fei Huang 1 Xiaomo Liu 2 1 NDSSL,Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA,

More information

CS4311 Design and Analysis of Algorithms. Lecture 14: Amortized Analysis I

CS4311 Design and Analysis of Algorithms. Lecture 14: Amortized Analysis I CS43 Design and Analysis of Algorithms Lecture 4: Amortized Analysis I About this lecture Given a data structure, amortized analysis studies in a sequence of operations, the average time to perform an

More information

Optimization Methods. Lecture 16: Dynamic Programming

Optimization Methods. Lecture 16: Dynamic Programming 15.093 Optimization Methods Lecture 16: Dynamic Programming 1 Outline 1. The knapsack problem Slide 1. The traveling salesman problem 3. The general DP framework 4. Bellman equation 5. Optimal inventory

More information

2 Comparison Between Truthful and Nash Auction Games

2 Comparison Between Truthful and Nash Auction Games CS 684 Algorithmic Game Theory December 5, 2005 Instructor: Éva Tardos Scribe: Sameer Pai 1 Current Class Events Problem Set 3 solutions are available on CMS as of today. The class is almost completely

More information

Minor Monotone Floors and Ceilings of Graph Parameters

Minor Monotone Floors and Ceilings of Graph Parameters Minor Monotone Floors and Ceilings of Graph Parameters Thomas Milligan Department of Mathematics and Statistics University of Central Oklahoma tmilligan1@uco.edu 13 July, 2012 2012 SIAM Annual Meeting

More information

Outline Introduction Game Representations Reductions Solution Concepts. Game Theory. Enrico Franchi. May 19, 2010

Outline Introduction Game Representations Reductions Solution Concepts. Game Theory. Enrico Franchi. May 19, 2010 May 19, 2010 1 Introduction Scope of Agent preferences Utility Functions 2 Game Representations Example: Game-1 Extended Form Strategic Form Equivalences 3 Reductions Best Response Domination 4 Solution

More information

Computing Unsatisfiable k-sat Instances with Few Occurrences per Variable

Computing Unsatisfiable k-sat Instances with Few Occurrences per Variable Computing Unsatisfiable k-sat Instances with Few Occurrences per Variable Shlomo Hoory and Stefan Szeider Abstract (k, s)-sat is the propositional satisfiability problem restricted to instances where each

More information

An effective perfect-set theorem

An effective perfect-set theorem An effective perfect-set theorem David Belanger, joint with Keng Meng (Selwyn) Ng CTFM 2016 at Waseda University, Tokyo Institute for Mathematical Sciences National University of Singapore The perfect

More information

Computing Unsatisfiable k-sat Instances with Few Occurrences per Variable

Computing Unsatisfiable k-sat Instances with Few Occurrences per Variable Computing Unsatisfiable k-sat Instances with Few Occurrences per Variable Shlomo Hoory and Stefan Szeider Department of Computer Science, University of Toronto, shlomoh,szeider@cs.toronto.edu Abstract.

More information

Design and Analysis of Algorithms 演算法設計與分析. Lecture 9 November 19, 2014 洪國寶

Design and Analysis of Algorithms 演算法設計與分析. Lecture 9 November 19, 2014 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 9 November 19, 2014 洪國寶 1 Outline Advanced data structures Binary heaps(review) Binomial heaps Fibonacci heaps Data structures for disjoint sets 2 Mergeable

More information

Multirate Multicast Service Provisioning I: An Algorithm for Optimal Price Splitting Along Multicast Trees

Multirate Multicast Service Provisioning I: An Algorithm for Optimal Price Splitting Along Multicast Trees Mathematical Methods of Operations Research manuscript No. (will be inserted by the editor) Multirate Multicast Service Provisioning I: An Algorithm for Optimal Price Splitting Along Multicast Trees Tudor

More information

Search Space and Average Proof Length of Resolution. H. Kleine Buning T. Lettmann. Universitat { GH { Paderborn. Postfach 16 21

Search Space and Average Proof Length of Resolution. H. Kleine Buning T. Lettmann. Universitat { GH { Paderborn. Postfach 16 21 Search Space and Average roof Length of Resolution H. Kleine Buning T. Lettmann FB 7 { Mathematik/Informatik Universitat { GH { aderborn ostfach 6 2 D{4790 aderborn (Germany) E{mail: kbcsl@uni-paderborn.de

More information

Chapter wise Question bank

Chapter wise Question bank GOVERNMENT ENGINEERING COLLEGE - MODASA Chapter wise Question bank Subject Name Analysis and Design of Algorithm Semester Department 5 th Term ODD 2015 Information Technology / Computer Engineering Chapter

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Finite-length analysis of the TEP decoder for LDPC ensembles over the BEC

Finite-length analysis of the TEP decoder for LDPC ensembles over the BEC Finite-length analysis of the TEP decoder for LDPC ensembles over the BEC Pablo M. Olmos, Fernando Pérez-Cruz Departamento de Teoría de la Señal y Comunicaciones. Universidad Carlos III in Madrid. email:

More information

Algorithms and Networking for Computer Games

Algorithms and Networking for Computer Games Algorithms and Networking for Computer Games Chapter 4: Game Trees http://www.wiley.com/go/smed Game types perfect information games no hidden information two-player, perfect information games Noughts

More information

Homework solutions, Chapter 8

Homework solutions, Chapter 8 Homework solutions, Chapter 8 NOTE: We might think of 8.1 as being a section devoted to setting up the networks and 8.2 as solving them, but only 8.2 has a homework section. Section 8.2 2. Use Dijkstra

More information

Another Variant of 3sat. 3sat. 3sat Is NP-Complete. The Proof (concluded)

Another Variant of 3sat. 3sat. 3sat Is NP-Complete. The Proof (concluded) 3sat k-sat, where k Z +, is the special case of sat. The formula is in CNF and all clauses have exactly k literals (repetition of literals is allowed). For example, (x 1 x 2 x 3 ) (x 1 x 1 x 2 ) (x 1 x

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms Instructor: Sharma Thankachan Lecture 9: Binomial Heap Slides modified from Dr. Hon, with permission 1 About this lecture Binary heap supports various operations quickly:

More information

Chapter 16. Binary Search Trees (BSTs)

Chapter 16. Binary Search Trees (BSTs) Chapter 16 Binary Search Trees (BSTs) Search trees are tree-based data structures that can be used to store and search for items that satisfy a total order. There are many types of search trees designed

More information

Chapter 8: Fitting models of discrete character evolution

Chapter 8: Fitting models of discrete character evolution Chapter 8: Fitting models of discrete character evolution Section 8.1: The evolution of limbs and limblessness In the introduction to Chapter 7, I mentioned that squamates had lost their limbs repeatedly

More information

A Branch-and-Price method for the Multiple-depot Vehicle and Crew Scheduling Problem

A Branch-and-Price method for the Multiple-depot Vehicle and Crew Scheduling Problem A Branch-and-Price method for the Multiple-depot Vehicle and Crew Scheduling Problem SCIP Workshop 2018, Aachen Markó Horváth Tamás Kis Institute for Computer Science and Control Hungarian Academy of Sciences

More information

Decision Theory: Value Iteration

Decision Theory: Value Iteration Decision Theory: Value Iteration CPSC 322 Decision Theory 4 Textbook 9.5 Decision Theory: Value Iteration CPSC 322 Decision Theory 4, Slide 1 Lecture Overview 1 Recap 2 Policies 3 Value Iteration Decision

More information

Priority Queues 9/10. Binary heaps Leftist heaps Binomial heaps Fibonacci heaps

Priority Queues 9/10. Binary heaps Leftist heaps Binomial heaps Fibonacci heaps Priority Queues 9/10 Binary heaps Leftist heaps Binomial heaps Fibonacci heaps Priority queues are important in, among other things, operating systems (process control in multitasking systems), search

More information

Maximum Contiguous Subsequences

Maximum Contiguous Subsequences Chapter 8 Maximum Contiguous Subsequences In this chapter, we consider a well-know problem and apply the algorithm-design techniques that we have learned thus far to this problem. While applying these

More information

AN ALGORITHM FOR FINDING SHORTEST ROUTES FROM ALL SOURCE NODES TO A GIVEN DESTINATION IN GENERAL NETWORKS*

AN ALGORITHM FOR FINDING SHORTEST ROUTES FROM ALL SOURCE NODES TO A GIVEN DESTINATION IN GENERAL NETWORKS* 526 AN ALGORITHM FOR FINDING SHORTEST ROUTES FROM ALL SOURCE NODES TO A GIVEN DESTINATION IN GENERAL NETWORKS* By JIN Y. YEN (University of California, Berkeley) Summary. This paper presents an algorithm

More information

CEC login. Student Details Name SOLUTIONS

CEC login. Student Details Name SOLUTIONS Student Details Name SOLUTIONS CEC login Instructions You have roughly 1 minute per point, so schedule your time accordingly. There is only one correct answer per question. Good luck! Question 1. Searching

More information

Multidimensional Time Series Analysis of Financial Markets Based on the Complex Network Approach

Multidimensional Time Series Analysis of Financial Markets Based on the Complex Network Approach Journal of Mathematical Finance, 2017, 7, 734-750 http://www.scirp.org/journal/jmf ISSN Online: 2162-2442 ISSN Print: 2162-2434 Multidimensional Time Series Analysis of Financial Markets Based on the Complex

More information

Design and Analysis of Algorithms. Lecture 9 November 20, 2013 洪國寶

Design and Analysis of Algorithms. Lecture 9 November 20, 2013 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 9 November 20, 2013 洪國寶 1 Outline Advanced data structures Binary heaps (review) Binomial heaps Fibonacci heaps Dt Data structures t for disjoint dijitsets

More information

Optimal Satisficing Tree Searches

Optimal Satisficing Tree Searches Optimal Satisficing Tree Searches Dan Geiger and Jeffrey A. Barnett Northrop Research and Technology Center One Research Park Palos Verdes, CA 90274 Abstract We provide an algorithm that finds optimal

More information

A Deterministic Algorithm for Online Steiner Tree Leasing

A Deterministic Algorithm for Online Steiner Tree Leasing A Deterministic Algorithm for Online Steiner Tree Leasing Marcin Bienkowski 1, Artur Kraska 1, and Pawe l Schmidt 1 Institute of Computer Science, University of Wroc law, Poland Abstract. We study the

More information

Dynamic Programming cont. We repeat: The Dynamic Programming Template has three parts.

Dynamic Programming cont. We repeat: The Dynamic Programming Template has three parts. Page 1 Dynamic Programming cont. We repeat: The Dynamic Programming Template has three parts. Subproblems Sometimes this is enough if the algorithm and its complexity is obvious. Recursion Algorithm Must

More information

CS221 / Spring 2018 / Sadigh. Lecture 9: Games I

CS221 / Spring 2018 / Sadigh. Lecture 9: Games I CS221 / Spring 2018 / Sadigh Lecture 9: Games I Course plan Search problems Markov decision processes Adversarial games Constraint satisfaction problems Bayesian networks Reflex States Variables Logic

More information

Shorthand Universal Cycles for Permutations

Shorthand Universal Cycles for Permutations Algorithmica manuscript No. (will be inserted by the editor) Shorthand Universal Cycles for Permutations Alexander Holroyd Frank Ruskey Aaron Williams Received: date / Accepted: date Abstract The set of

More information

1 Binomial Tree. Structural Properties:

1 Binomial Tree. Structural Properties: Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 0 Advanced Data Structures

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 15 Adaptive Huffman Coding Part I Huffman code are optimal for a

More information

Extending MCTS

Extending MCTS Extending MCTS 2-17-16 Reading Quiz (from Monday) What is the relationship between Monte Carlo tree search and upper confidence bound applied to trees? a) MCTS is a type of UCT b) UCT is a type of MCTS

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532L Lecture 10 Stochastic Games and Bayesian Games CPSC 532L Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games Stochastic Games

More information

On the Optimality of a Family of Binary Trees

On the Optimality of a Family of Binary Trees On the Optimality of a Family of Binary Trees Dana Vrajitoru Computer and Information Sciences Department Indiana University South Bend South Bend, IN 46645 Email: danav@cs.iusb.edu William Knight Computer

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Chapter 5: Algorithms

Chapter 5: Algorithms Chapter 5: Algorithms Computer Science: An Overview Tenth Edition by J. Glenn Brookshear Presentation files modified by Farn Wang Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

More information

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018 Lecture 2: Making Good Sequences of Decisions Given a Model of World CS234: RL Emma Brunskill Winter 218 Human in the loop exoskeleton work from Steve Collins lab Class Structure Last Time: Introduction

More information

Advanced Sequence Alignment. Problem Set #4 is posted.

Advanced Sequence Alignment. Problem Set #4 is posted. Advanced Sequence Alignment Problem Set #4 is posted. 1 Recall Local Alignment The zero is our free ride that allows the node to restart with a score of 0 at any point What does this imply? After solving

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Spring 2015 Introduction to Artificial Intelligence Midterm 1 You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib

More information

Levin Reduction and Parsimonious Reductions

Levin Reduction and Parsimonious Reductions Levin Reduction and Parsimonious Reductions The reduction R in Cook s theorem (p. 266) is such that Each satisfying truth assignment for circuit R(x) corresponds to an accepting computation path for M(x).

More information