Calculus Review with Matlab

Size: px
Start display at page:

Download "Calculus Review with Matlab"

Transcription

1 Calculus Review with Matlab While Matlab is capable of doing symbolic math (i.e. algebra) for us, the real power of Matlab comes out when we use it to implement numerical methods for solving problems, especially problems that cannot be solved symbolically. Let's look at some of the concepts from calculus that will be important in this course through this lens. You should create your own Matlab Live Editor file to do the exercises below. Include explanations for all of your work, and then export to PDF to submit. Differential Calculus In a typical calculus 1 course, we want to answer the question, "How do we find the instantaneous rate of change of a given function at a specified point?" We start by looking at average rate of change. The average rate of change for a function interval is given by the expression over the For example, for the function, the average rate of change over is In addition to interpreting this as average rate of change, we can think of it as the slope of the secant line to f from to. Let's plot the graph of f and its secant line. Here's one way to do so symbolically: syms x m = (1/3)*log(4); f = log(x); secant = m*(x - 1); fplot(f,[0,6]) hold on fplot(secant, [0,6]) title('graph of ln(x) and its secant line') hold off 1

2 Alternatively, we could do so numerically by plotting 100 points and letting Matlab connect the dots: xs = linspace(0,6,100); fx = log(xs); secline = m*(xs-1); plot(xs,fx,'b-') hold on plot(xs,secline,'g-') hold off 2

3 If any of the above commands are unfamiliar, take on of the Matlab tutorials on Mathworks' homepage. To get from secant lines to tangent lines, or from average rate of change to instantaneous rate of change, we just let the length of the interval approach zero using limits. So, the instantaneous rate of change of f at is given by More generally, we define a function's derivative,, to be the function For example, for, Since,, we know the slope of the tangent line to f at is 1. Matlab can find derivatives for us symbolically: f1 = diff(f); tanslope = subs(f1,1); tanline = tanslope*(x-1); 3

4 fplot(f) hold on fplot(tanline) title('tangent line to ln(x) at x=1') hold off Since the derivative is giving us, we can approximate the derivative numerically by taking differences in successive y-values and dividing them by differences in successive x-values over small intervals. We'll make a new vector of x-values here to be a little more precise. dx = 0:0.01:4; fxs = log(dx); dy = diff(fxs); derivf = dy./0.01; plot(dx(1:end-1),derivf) 4

5 Note: The diff function creates an array that's one element shorter than its input. So, in order to plot, I had to take away one element of dx. This graph looks a lot like the graph of! Let's see how close the approximated value of the derivative is at : c = dx==1; approxtanslope = derivf(c) approxtanslope = slopeerror = double(abs(approxtanslope - tanslope)) slopeerror = This is pretty good! If we changed the step-size for dx from 0.01 to 0.001, we'd get an even better answer. Integration In Calculus 2 we ask a very different question whose answer turns out to be very closely related to the work we did in Calc 1: Given a continuous function f, how do we find the net signed area bounded between the graph of f and the x-axis over? 5

6 One way to do this is to split the region up into a bunch of rectangles, whose areas are easy to compute, and then let the number of rectangles increase - i.e. take the limit as the number of rectangles goes to infinity. The fundamental theorem of calculus says that where F is an antiderivative of f. But what if we can't find an antiderivative? For example, the function doesn't have an antiderivative - try doing substitution or integration by parts on it and see what happens. Say we wanted to find the area bounded between f and the x-axis over. That is, we want to know what is. Since we can't take an antiderivative, we have to do so numerically. Let's try it with 100 rectangles: n = 100 ; deltax = 1/n ; xs = 0:deltax:1-deltax ; % I'm only using the left-hand endpoints % If I go up to 1, then I'll have 101 x values fs = sin(xs.^2); plot(xs, fs) 6

7 area = sum(fs*deltax) area = This is an okay approximation. If we up the number of rectangles to 1000 or 10000, we'll get a much better approximation. Exercises You should create a Live Editor file, much like this one, to do the following exercises. Your file should include text, clearly explaining all of your work, in between your code. Export your work to PDF and it to me by Monday, July 2nd. Pre-exercise Get setup with Matlab. Much of what we'll do in this course can be done in Matlab Online. Familiarize your self with Live Editor, specifically, how to use Latex to insert mathematical expressions and how to insert and run code. Play around with this a bit before you start the assignment. Let me know if you have any questions. Exercise 1 This you can do on paper: Take the final exam from Math 122 (posted on our homepage). 7

8 This is intended to be a diagnostic for your benefit, so do it unaided and grade yourself based on the rubric. You'll be graded for completeness, not correctness here (I promise). Submit your original work by scanning it and ing it to me along with your Live Editor PDF. Exercise 2 Pick any function (something not to simple and not too complicated). Take it's derivative by hand. Then, take the derivative symbolically in Matlab. After confirming that your answers are the same, use the derivative to compute the slope of the tangent line to your function at some x-value. Plot the tangent line along with the original graph Repeat these steps using the numerical method described above Exercise 3 Consider the function. Like, this has no antiderivative. Following the method described above in the integration section, approximate the area under f over using 100 rectangles. Repeat for 1000 rectangles and rectangles. See what WolframAlpha gives you when you type in "integral from x=0 to x=2 of e^(x^2) dx." How do your answers stack up? 8

4.2 Rolle's Theorem and Mean Value Theorem

4.2 Rolle's Theorem and Mean Value Theorem 4.2 Rolle's Theorem and Mean Value Theorem Rolle's Theorem: Let f be continuous on the closed interval [a,b] and differentiable on the open interval (a,b). If f (a) = f (b), then there is at least one

More information

Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well!

Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well! Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well! x 2 1 1. Calculate lim x 1 x + 1. (a) 2 (b) 1 (c) (d) 2 (e) the limit

More information

Using derivatives to find the shape of a graph

Using derivatives to find the shape of a graph Using derivatives to find the shape of a graph Example 1 The graph of y = x 2 is decreasing for x < 0 and increasing for x > 0. Notice that where the graph is decreasing the slope of the tangent line,

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

BARUCH COLLEGE MATH 2205 SPRING MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski

BARUCH COLLEGE MATH 2205 SPRING MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski BARUCH COLLEGE MATH 05 SPRING 006 MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski The final examination for Math 05 will consist of two parts.

More information

In a moment, we will look at a simple example involving the function f(x) = 100 x

In a moment, we will look at a simple example involving the function f(x) = 100 x Rates of Change Calculus is the study of the way that functions change. There are two types of rates of change: 1. Average rate of change. Instantaneous rate of change In a moment, we will look at a simple

More information

Math 1526 Summer 2000 Session 1

Math 1526 Summer 2000 Session 1 Math 1526 Summer 2 Session 1 Lab #2 Part #1 Rate of Change This lab will investigate the relationship between the average rate of change, the slope of a secant line, the instantaneous rate change and the

More information

Final Exam Sample Problems

Final Exam Sample Problems MATH 00 Sec. Final Exam Sample Problems Please READ this! We will have the final exam on Monday, May rd from 0:0 a.m. to 2:0 p.m.. Here are sample problems for the new materials and the problems from the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) y = - 39x - 80 D) y = x + 8 5

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) y = - 39x - 80 D) y = x + 8 5 Assn 3.4-3.7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the equation of the tangent line to the curve when x has the given value. 1)

More information

Mathematics (Project Maths Phase 2)

Mathematics (Project Maths Phase 2) L.17 NAME SCHOOL TEACHER Pre-Leaving Certificate Examination, 2013 Mathematics (Project Maths Phase 2) Paper 1 Higher Level Time: 2 hours, 30 minutes 300 marks For examiner Question 1 Centre stamp 2 3

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION. MATH 110 FINAL EXAM **Test** December 14, 2009 TEST VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number

More information

6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 Transcript Lecture 23

6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 Transcript Lecture 23 6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 Transcript Lecture 23 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare

More information

Real Estate Private Equity Case Study 3 Opportunistic Pre-Sold Apartment Development: Waterfall Returns Schedule, Part 1: Tier 1 IRRs and Cash Flows

Real Estate Private Equity Case Study 3 Opportunistic Pre-Sold Apartment Development: Waterfall Returns Schedule, Part 1: Tier 1 IRRs and Cash Flows Real Estate Private Equity Case Study 3 Opportunistic Pre-Sold Apartment Development: Waterfall Returns Schedule, Part 1: Tier 1 IRRs and Cash Flows Welcome to the next lesson in this Real Estate Private

More information

Math 234 Spring 2013 Exam 1 Version 1 Solutions

Math 234 Spring 2013 Exam 1 Version 1 Solutions Math 234 Spring 203 Exam Version Solutions Monday, February, 203 () Find (a) lim(x 2 3x 4)/(x 2 6) x 4 (b) lim x 3 5x 2 + 4 x (c) lim x + (x2 3x + 2)/(4 3x 2 ) (a) Observe first that if we simply plug

More information

Name: Math 10250, Final Exam - Version A May 8, 2007

Name: Math 10250, Final Exam - Version A May 8, 2007 Math 050, Final Exam - Version A May 8, 007 Be sure that you have all 6 pages of the test. Calculators are allowed for this examination. The exam lasts for two hours. The Honor Code is in effect for this

More information

Test # 4 Review Math MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Test # 4 Review Math MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test # 4 Review Math 25 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the integral. ) 4(2x + 5) A) 4 (2x + 5) 4 + C B) 4 (2x + 5) 4 +

More information

Calculus for Business Economics Life Sciences and Social Sciences 13th Edition Barnett SOLUTIONS MANUAL Full download at:

Calculus for Business Economics Life Sciences and Social Sciences 13th Edition Barnett SOLUTIONS MANUAL Full download at: Calculus for Business Economics Life Sciences and Social Sciences 1th Edition Barnett TEST BANK Full download at: https://testbankreal.com/download/calculus-for-business-economics-life-sciencesand-social-sciences-1th-edition-barnett-test-bank/

More information

MLC at Boise State Polynomials Activity 2 Week #3

MLC at Boise State Polynomials Activity 2 Week #3 Polynomials Activity 2 Week #3 This activity will discuss rate of change from a graphical prespective. We will be building a t-chart from a function first by hand and then by using Excel. Getting Started

More information

CS227-Scientific Computing. Lecture 6: Nonlinear Equations

CS227-Scientific Computing. Lecture 6: Nonlinear Equations CS227-Scientific Computing Lecture 6: Nonlinear Equations A Financial Problem You invest $100 a month in an interest-bearing account. You make 60 deposits, and one month after the last deposit (5 years

More information

MATLAB - DIFFERENTIAL

MATLAB - DIFFERENTIAL MATLAB - DIFFERENTIAL http://www.tutorialspoint.com/matlab/matlab_differential.htm Copyright tutorialspoint.com MATLAB provides the diff command for computing symbolic derivatives. In its simplest form,

More information

Math Released Item Grade 8. Slope Intercept Form VH049778

Math Released Item Grade 8. Slope Intercept Form VH049778 Math Released Item 2018 Grade 8 Slope Intercept Form VH049778 Anchor Set A1 A8 With Annotations Prompt Score Description VH049778 Rubric 3 Student response includes the following 3 elements. Computation

More information

MLC at Boise State Logarithms Activity 6 Week #8

MLC at Boise State Logarithms Activity 6 Week #8 Logarithms Activity 6 Week #8 In this week s activity, you will continue to look at the relationship between logarithmic functions, exponential functions and rates of return. Today you will use investing

More information

American Journal of Business Education December 2009 Volume 2, Number 9

American Journal of Business Education December 2009 Volume 2, Number 9 A MATLAB-Aided Method For Teaching Calculus-Based Business Mathematics Jiajuan Liang, University of New Haven, USA William S. Y. Pan, University of New Haven, USA ABSTRACT MATLAB is a powerful package

More information

Chapter 6 Analyzing Accumulated Change: Integrals in Action

Chapter 6 Analyzing Accumulated Change: Integrals in Action Chapter 6 Analyzing Accumulated Change: Integrals in Action 6. Streams in Business and Biology You will find Excel very helpful when dealing with streams that are accumulated over finite intervals. Finding

More information

Please make sure you bubble in your answers carefully on the bubble sheet and circle your answers on your test booklet.

Please make sure you bubble in your answers carefully on the bubble sheet and circle your answers on your test booklet. Math 128 Exam #1 Fall 2017 SPECIAL CODE: 101701 Name Signature: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Academic Honesty Statement: By signing my name above, I acknowledge

More information

Lecture : The Definite Integral & Fundamental Theorem of Calculus MTH 124. We begin with a theorem which is of fundamental importance.

Lecture : The Definite Integral & Fundamental Theorem of Calculus MTH 124. We begin with a theorem which is of fundamental importance. We begin with a theorem which is of fundamental importance. The Fundamental Theorem of Calculus (FTC) If F (t) is continuous for a t b, then b a F (t) dt = F (b) F (a). Moreover the antiderivative F is

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

February 2 Math 2335 sec 51 Spring 2016

February 2 Math 2335 sec 51 Spring 2016 February 2 Math 2335 sec 51 Spring 2016 Section 3.1: Root Finding, Bisection Method Many problems in the sciences, business, manufacturing, etc. can be framed in the form: Given a function f (x), find

More information

This method uses not only values of a function f(x), but also values of its derivative f'(x). If you don't know the derivative, you can't use it.

This method uses not only values of a function f(x), but also values of its derivative f'(x). If you don't know the derivative, you can't use it. Finding Roots by "Open" Methods The differences between "open" and "closed" methods The differences between "open" and "closed" methods are closed open ----------------- --------------------- uses a bounded

More information

Feb. 4 Math 2335 sec 001 Spring 2014

Feb. 4 Math 2335 sec 001 Spring 2014 Feb. 4 Math 2335 sec 001 Spring 2014 Propagated Error in Function Evaluation Let f (x) be some differentiable function. Suppose x A is an approximation to x T, and we wish to determine the function value

More information

Notation for the Derivative:

Notation for the Derivative: Notation for the Derivative: MA 15910 Lesson 13 Notes Section 4.1 (calculus part of textbook, page 196) Techniques for Finding Derivatives The derivative of a function y f ( x) may be written in any of

More information

Asymptotes, Limits at Infinity, and Continuity in Maple (Classic Version for Windows)

Asymptotes, Limits at Infinity, and Continuity in Maple (Classic Version for Windows) Asymptotes, Limits at Infinity, and Continuity in Maple (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version. Contents Objectives for

More information

Solutions for practice questions: Chapter 15, Probability Distributions If you find any errors, please let me know at

Solutions for practice questions: Chapter 15, Probability Distributions If you find any errors, please let me know at Solutions for practice questions: Chapter 15, Probability Distributions If you find any errors, please let me know at mailto:msfrisbie@pfrisbie.com. 1. Let X represent the savings of a resident; X ~ N(3000,

More information

Problem Set 1 Due in class, week 1

Problem Set 1 Due in class, week 1 Business 35150 John H. Cochrane Problem Set 1 Due in class, week 1 Do the readings, as specified in the syllabus. Answer the following problems. Note: in this and following problem sets, make sure to answer

More information

Analysing and computing cash flow streams

Analysing and computing cash flow streams Analysing and computing cash flow streams Responsible teacher: Anatoliy Malyarenko November 16, 2003 Contents of the lecture: Present value. Rate of return. Newton s method. Examples and problems. Abstract

More information

Math 229 FINAL EXAM Review: Fall Final Exam Monday December 11 ALL Projects Due By Monday December 11

Math 229 FINAL EXAM Review: Fall Final Exam Monday December 11 ALL Projects Due By Monday December 11 Math 229 FINAL EXAM Review: Fall 2018 1 Final Exam Monday December 11 ALL Projects Due By Monday December 11 1. Problem 1: (a) Write a MatLab function m-file to evaluate the following function: f(x) =

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Spring 2017 Exam2 2017-03-08 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may

More information

ECO LECTURE TWENTY-FOUR 1 OKAY. WELL, WE WANT TO CONTINUE OUR DISCUSSION THAT WE HAD

ECO LECTURE TWENTY-FOUR 1 OKAY. WELL, WE WANT TO CONTINUE OUR DISCUSSION THAT WE HAD ECO 155 750 LECTURE TWENTY-FOUR 1 OKAY. WELL, WE WANT TO CONTINUE OUR DISCUSSION THAT WE HAD STARTED LAST TIME. WE SHOULD FINISH THAT UP TODAY. WE WANT TO TALK ABOUT THE ECONOMY'S LONG-RUN EQUILIBRIUM

More information

MATH 105 CHAPTER 2 page 1

MATH 105 CHAPTER 2 page 1 MATH 105 CHAPTER 2 page 1 RATE OF CHANGE EXAMPLE: A company determines that the cost in dollars to manufacture x cases ofcdʼs Imitations of the Rich and Famous by Kevin Connors is given by C(x) =100 +15x

More information

Chapter 5 Integration

Chapter 5 Integration Chapter 5 Integration Integration Anti differentiation: The Indefinite Integral Integration by Substitution The Definite Integral The Fundamental Theorem of Calculus 5.1 Anti differentiation: The Indefinite

More information

3/1/2016. Intermediate Microeconomics W3211. Lecture 4: Solving the Consumer s Problem. The Story So Far. Today s Aims. Solving the Consumer s Problem

3/1/2016. Intermediate Microeconomics W3211. Lecture 4: Solving the Consumer s Problem. The Story So Far. Today s Aims. Solving the Consumer s Problem 1 Intermediate Microeconomics W3211 Lecture 4: Introduction Columbia University, Spring 2016 Mark Dean: mark.dean@columbia.edu 2 The Story So Far. 3 Today s Aims 4 We have now (exhaustively) described

More information

Math Camp: Day 2. School of Public Policy George Mason University August 19, :00 to 8:00 pm.

Math Camp: Day 2. School of Public Policy George Mason University August 19, :00 to 8:00 pm. Math Camp: Day 2 School of Public Policy George Mason University August 19, 2013 6:00 to 8:00 pm http://www.youtube.com/watch?v=bbx44yssq2i Amit Patel, PhD apatelh@gmu.edu 718-866-5757 Teaching Associates

More information

Frequency Distributions

Frequency Distributions Frequency Distributions January 8, 2018 Contents Frequency histograms Relative Frequency Histograms Cumulative Frequency Graph Frequency Histograms in R Using the Cumulative Frequency Graph to Estimate

More information

Optimization Models one variable optimization and multivariable optimization

Optimization Models one variable optimization and multivariable optimization Georg-August-Universität Göttingen Optimization Models one variable optimization and multivariable optimization Wenzhong Li lwz@nju.edu.cn Feb 2011 Mathematical Optimization Problems in optimization are

More information

The Mathematics Of Financial Derivatives: A Student Introduction Free Ebooks PDF

The Mathematics Of Financial Derivatives: A Student Introduction Free Ebooks PDF The Mathematics Of Financial Derivatives: A Student Introduction Free Ebooks PDF Finance is one of the fastest growing areas in the modern banking and corporate world. This, together with the sophistication

More information

TN 2 - Basic Calculus with Financial Applications

TN 2 - Basic Calculus with Financial Applications G.S. Questa, 016 TN Basic Calculus with Finance [016-09-03] Page 1 of 16 TN - Basic Calculus with Financial Applications 1 Functions and Limits Derivatives 3 Taylor Series 4 Maxima and Minima 5 The Logarithmic

More information

BOSTON UNIVERSITY SCHOOL OF MANAGEMENT. Math Notes

BOSTON UNIVERSITY SCHOOL OF MANAGEMENT. Math Notes BOSTON UNIVERSITY SCHOOL OF MANAGEMENT Math Notes BU Note # 222-1 This note was prepared by Professor Michael Salinger and revised by Professor Shulamit Kahn. 1 I. Introduction This note discusses the

More information

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Applications of Exponential Functions Group Activity 7 Business Project Week #10 Applications of Exponential Functions Group Activity 7 Business Project Week #10 In the last activity we looked at exponential functions. This week we will look at exponential functions as related to interest

More information

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) =

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = Partial Fractions A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = 3 x 2 x + 5, and h( x) = x + 26 x 2 are rational functions.

More information

Analyzing Accumulated Change: More Applications of Integrals & 7.1 Differences of Accumulated Changes

Analyzing Accumulated Change: More Applications of Integrals & 7.1 Differences of Accumulated Changes Chapter 7 Analyzing Accumulated Change: More Applications of Integrals & 7.1 Differences of Accumulated Changes This chapter helps you effectively use your calculatorõs numerical integrator with various

More information

Algebra with Calculus for Business: Review (Summer of 07)

Algebra with Calculus for Business: Review (Summer of 07) Algebra with Calculus for Business: Review (Summer of 07) 1. Simplify (5 1 m 2 ) 3 (5m 2 ) 4. 2. Simplify (cd) 3 2 (c 3 ) 1 4 (d 1 4 ) 3. 3. Simplify (x 1 2 + y 1 2 )(x 1 2 y 1 2 ) 4. Solve the equation

More information

Calculus Chapter 3 Smartboard Review with Navigator.notebook. November 04, What is the slope of the line segment?

Calculus Chapter 3 Smartboard Review with Navigator.notebook. November 04, What is the slope of the line segment? 1 What are the endpoints of the red curve segment? alculus: The Mean Value Theorem ( 3, 3), (0, 0) ( 1.5, 0), (1.5, 0) ( 3, 3), (3, 3) ( 1, 0.5), (1, 0.5) Grade: 9 12 Subject: ate: Mathematics «date» 2

More information

Equivalent Expressions & Combining Expressions

Equivalent Expressions & Combining Expressions Unit 6: Say It with Symbols//Investigations 1 & //Connections Name Class Date Equivalent Expressions & Combining Expressions Connecting Your Knowledge I can determine when algebraic expressions are equivalent

More information

Math Winter 2014 Exam 1 January 30, PAGE 1 13 PAGE 2 11 PAGE 3 12 PAGE 4 14 Total 50

Math Winter 2014 Exam 1 January 30, PAGE 1 13 PAGE 2 11 PAGE 3 12 PAGE 4 14 Total 50 Name: Math 112 - Winter 2014 Exam 1 January 30, 2014 Section: Student ID Number: PAGE 1 13 PAGE 2 11 PAGE 3 12 PAGE 4 14 Total 50 After this cover page, there are 5 problems spanning 4 pages. Please make

More information

The probability of having a very tall person in our sample. We look to see how this random variable is distributed.

The probability of having a very tall person in our sample. We look to see how this random variable is distributed. Distributions We're doing things a bit differently than in the text (it's very similar to BIOL 214/312 if you've had either of those courses). 1. What are distributions? When we look at a random variable,

More information

Valuation Public Comps and Precedent Transactions: Historical Metrics and Multiples for Public Comps

Valuation Public Comps and Precedent Transactions: Historical Metrics and Multiples for Public Comps Valuation Public Comps and Precedent Transactions: Historical Metrics and Multiples for Public Comps Welcome to our next lesson in this set of tutorials on comparable public companies and precedent transactions.

More information

The following content is provided under a Creative Commons license. Your support

The following content is provided under a Creative Commons license. Your support MITOCW Recitation 6 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make

More information

25 Increasing and Decreasing Functions

25 Increasing and Decreasing Functions - 25 Increasing and Decreasing Functions It is useful in mathematics to define whether a function is increasing or decreasing. In this section we will use the differential of a function to determine this

More information

Laboratory I.9 Applications of the Derivative

Laboratory I.9 Applications of the Derivative Laboratory I.9 Applications of the Derivative Goals The student will determine intervals where a function is increasing or decreasing using the first derivative. The student will find local minima and

More information

Note: I gave a few examples of nearly each of these. eg. #17 and #18 are the same type of problem.

Note: I gave a few examples of nearly each of these. eg. #17 and #18 are the same type of problem. Study Guide for Exam 3 Sections covered: 3.6, Ch 5 and Ch 7 Exam highlights 1 implicit differentiation 3 plain derivatives 3 plain antiderivatives (1 with substitution) 1 Find and interpret Partial Derivatives

More information

Mathematics Success Grade 8

Mathematics Success Grade 8 Mathematics Success Grade 8 T379 [OBJECTIVE] The student will derive the equation of a line and use this form to identify the slope and y-intercept of an equation. [PREREQUISITE SKILLS] Slope [MATERIALS]

More information

Interest Formulas. Simple Interest

Interest Formulas. Simple Interest Interest Formulas You have $1000 that you wish to invest in a bank. You are curious how much you will have in your account after 3 years since banks typically give you back some interest. You have several

More information

t g(t) h(t) k(t)

t g(t) h(t) k(t) Problem 1. Determine whether g(t), h(t), and k(t) could correspond to a linear function or an exponential function, or neither. If it is linear or exponential find the formula for the function, and then

More information

Scenic Video Transcript Dividends, Closing Entries, and Record-Keeping and Reporting Map Topics. Entries: o Dividends entries- Declaring and paying

Scenic Video Transcript Dividends, Closing Entries, and Record-Keeping and Reporting Map Topics. Entries: o Dividends entries- Declaring and paying Income Statements» What s Behind?» Statements of Changes in Owners Equity» Scenic Video www.navigatingaccounting.com/video/scenic-dividends-closing-entries-and-record-keeping-and-reporting-map Scenic Video

More information

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include: 4.1 Exponential Functions Hartfield MATH 2040 Unit 4 Page 1 Recall from algebra the formulas for Compound Interest: Formula 1 For Discretely Compounded Interest A t P 1 r n nt Formula 2 Continuously Compounded

More information

p 1 _ x 1 (p 1 _, p 2, I ) x 1 X 1 X 2

p 1 _ x 1 (p 1 _, p 2, I ) x 1 X 1 X 2 Today we will cover some basic concepts that we touched on last week in a more quantitative manner. will start with the basic concepts then give specific mathematical examples of the concepts. f time permits

More information

IB Interview Guide: Case Study Exercises Three-Statement Modeling Case (30 Minutes)

IB Interview Guide: Case Study Exercises Three-Statement Modeling Case (30 Minutes) IB Interview Guide: Case Study Exercises Three-Statement Modeling Case (30 Minutes) Hello, and welcome to our first sample case study. This is a three-statement modeling case study and we're using this

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Fall 017 Exam 017-10-18 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may use

More information

Equations. Krista Hauri I2T2 Project

Equations. Krista Hauri I2T2 Project Applied Linear Equations Krista Hauri I2T2 Project Grade Level: 9 th Intergraded Algebra 1 Time Span : 5 (40 minute) days Tools: Calculator Base Ranger (CBR) at least 4 TI-84 Graphing Calculator for each

More information

When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution?

When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution? Distributions 1. What are distributions? When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution? In other words, if we have a large number of

More information

Name: Practice B Exam 2. October 8, 2014

Name: Practice B Exam 2. October 8, 2014 Department of Mathematics University of Notre Dame Math 10250 Elem. of Calc. I Name: Instructor: Practice B Exam 2 October 8, 2014 This exam is in 2 parts on 10 pages and contains 14 problems worth a total

More information

Mathematics for Business and Economics - Fall 2015

Mathematics for Business and Economics - Fall 2015 NAME: Mathematics for Business and Economics - Fall 2015 Final Exam, December 14, 2015 In all non-multiple choice problems you are required to show all your work and provide the necessary explanations

More information

UNIT 4 MATHEMATICAL METHODS

UNIT 4 MATHEMATICAL METHODS UNIT 4 MATHEMATICAL METHODS PROBABILITY Section 1: Introductory Probability Basic Probability Facts Probabilities of Simple Events Overview of Set Language Venn Diagrams Probabilities of Compound Events

More information

Name Date

Name Date NEW DORP HIGH SCHOOL Deirdre A. DeAngelis, Principal MATHEMATICS DEPARTMENT Li Pan, Assistant Principal Name Date Summer Math Assignment for a Student whose Official Class starts with 7, 8, and 9 Directions:

More information

When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution?

When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution? Distributions 1. What are distributions? When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution? In other words, if we have a large number of

More information

The following content is provided under a Creative Commons license. Your support will help

The following content is provided under a Creative Commons license. Your support will help MITOCW Lecture 5 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To make a donation

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 207 Homework 5 Drew Armstrong Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Section 3., Exercises 3, 0. Section 3.3, Exercises 2, 3, 0,.

More information

Economics 101 Fall 2016 Answers to Homework #1 Due Thursday, September 29, 2016

Economics 101 Fall 2016 Answers to Homework #1 Due Thursday, September 29, 2016 Economics 101 Fall 2016 Answers to Homework #1 Due Thursday, September 29, 2016 Directions: The homework will be collected in a box before the lecture. Please place your name, TA name and section number

More information

MATH 142 Business Mathematics II

MATH 142 Business Mathematics II MATH 142 Business Mathematics II Summer, 2016, WEEK 2 JoungDong Kim Week 2: 4.1, 4.2, 4.3, 4.4, 4.5 Chapter 4 Rules for the Derivative Section 4.1 Derivatives of Powers, Exponents, and Sums Differentiation

More information

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25 Math 101 Final Exam Review Revised FA17 (through section 5.6) The following problems are provided for additional practice in preparation for the Final Exam. You should not, however, rely solely upon these

More information

[01:02] [02:07]

[01:02] [02:07] Real State Financial Modeling Introduction and Overview: 90-Minute Industrial Development Modeling Test, Part 3 Waterfall Returns and Case Study Answers Welcome to the final part of this 90-minute industrial

More information

MLC at Boise State Lines and Rates Activity 1 Week #2

MLC at Boise State Lines and Rates Activity 1 Week #2 Lines and Rates Activity 1 Week #2 This activity will use slopes to calculate marginal profit, revenue and cost of functions. What is Marginal? Marginal cost is the cost added by producing one additional

More information

BARUCH COLLEGE MATH 2003 SPRING 2006 MANUAL FOR THE UNIFORM FINAL EXAMINATION

BARUCH COLLEGE MATH 2003 SPRING 2006 MANUAL FOR THE UNIFORM FINAL EXAMINATION BARUCH COLLEGE MATH 003 SPRING 006 MANUAL FOR THE UNIFORM FINAL EXAMINATION The final examination for Math 003 will consist of two parts. Part I: Part II: This part will consist of 5 questions similar

More information

Method of Characteristics

Method of Characteristics The Ryan C. Trinity University Partial Differential Equations January 22, 2015 Linear and Quasi-Linear (first order) PDEs A PDE of the form A(x,y) u x +B(x,y) u y +C 1(x,y)u = C 0 (x,y) is called a (first

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 2b 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 10 pages (including this cover page) and 9 problems. Check to see if any

More information

(Refer Slide Time: 01:17)

(Refer Slide Time: 01:17) Computational Electromagnetics and Applications Professor Krish Sankaran Indian Institute of Technology Bombay Lecture 06/Exercise 03 Finite Difference Methods 1 The Example which we are going to look

More information

2. Find the marginal profit if a profit function is (2x 2 4x + 4)e 4x and simplify.

2. Find the marginal profit if a profit function is (2x 2 4x + 4)e 4x and simplify. Additional Review Exam 2 MATH 2053 The only formula that will be provided is for economic lot size (section 12.3) as announced in class, no WebWork questions were given on this. km q = 2a Please note not

More information

Chapter 18: The Correlational Procedures

Chapter 18: The Correlational Procedures Introduction: In this chapter we are going to tackle about two kinds of relationship, positive relationship and negative relationship. Positive Relationship Let's say we have two values, votes and campaign

More information

Symmetric Game. In animal behaviour a typical realization involves two parents balancing their individual investment in the common

Symmetric Game. In animal behaviour a typical realization involves two parents balancing their individual investment in the common Symmetric Game Consider the following -person game. Each player has a strategy which is a number x (0 x 1), thought of as the player s contribution to the common good. The net payoff to a player playing

More information

Chapter 6: Supply and Demand with Income in the Form of Endowments

Chapter 6: Supply and Demand with Income in the Form of Endowments Chapter 6: Supply and Demand with Income in the Form of Endowments 6.1: Introduction This chapter and the next contain almost identical analyses concerning the supply and demand implied by different kinds

More information

3: Balance Equations

3: Balance Equations 3.1 Balance Equations Accounts with Constant Interest Rates 15 3: Balance Equations Investments typically consist of giving up something today in the hope of greater benefits in the future, resulting in

More information

Pre-Algebra, Unit 7: Percents Notes

Pre-Algebra, Unit 7: Percents Notes Pre-Algebra, Unit 7: Percents Notes Percents are special fractions whose denominators are 100. The number in front of the percent symbol (%) is the numerator. The denominator is not written, but understood

More information

Business Calculus Chapter Zero

Business Calculus Chapter Zero Business Calculus Chapter Zero Are you a little rusty since coming back from your semi-long math break? Even worst have you forgotten all you learned from your previous Algebra course? If so, you are so

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Autumn 2018 Sample Midterm 2c 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 8 pages (including this cover page) and 6 problems. Check to see if any

More information

MATH THAT MAKES ENTS

MATH THAT MAKES ENTS On December 31, 2012, Curtis and Bill each had $1000 to start saving for retirement. The two men had different ideas about the best way to save, though. Curtis, who doesn t trust banks, put his money in

More information

The Normal Distribution

The Normal Distribution 5.1 Introduction to Normal Distributions and the Standard Normal Distribution Section Learning objectives: 1. How to interpret graphs of normal probability distributions 2. How to find areas under the

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

List the quadrant(s) in which the given point is located. 1) (-10, 0) A) On an axis B) II C) IV D) III

List the quadrant(s) in which the given point is located. 1) (-10, 0) A) On an axis B) II C) IV D) III MTH 55 Chapter 2 HW List the quadrant(s) in which the given point is located. 1) (-10, 0) 1) A) On an axis B) II C) IV D) III 2) The first coordinate is positive. 2) A) I, IV B) I, II C) III, IV D) II,

More information

x f(x) D.N.E

x f(x) D.N.E Limits Consider the function f(x) x2 x. This function is not defined for x, but if we examine the value of f for numbers close to, we can observe something interesting: x 0 0.5 0.9 0.999.00..5 2 f(x).5.9.999

More information