joint work with K. Antonio 1 and E.W. Frees 2 44th Actuarial Research Conference Madison, Wisconsin 30 Jul - 1 Aug 2009

Size: px
Start display at page:

Download "joint work with K. Antonio 1 and E.W. Frees 2 44th Actuarial Research Conference Madison, Wisconsin 30 Jul - 1 Aug 2009"

Transcription

1 joint work with K. Antonio 1 and E.W. Frees 2 44th Actuarial Research Conference Madison, Wisconsin 30 Jul - 1 Aug 2009 University of Connecticut Storrs, Connecticut 1 U. of Amsterdam 2 U. of Wisconsin Madison page 1

2 Dynamics of claims Development present occurrence declaration payment settlement RBNS IBNR Calendar Time page 2

3 Synopsis Put focus on RBNS claims: Reported But Not Settled. Use micro-level data to predict future development of open claims. Develop a hierarchical model. for micro level. page 3

4 The data are from the General Insurance Association of Singapore. Observations are from one company over 10-year period: Jan 1993 Jul present moment in this case study is 25 Jul Policy file: characteristics of policyholder and vehicle insured age, gender, vehicle type, vehicle age,... Claims file: keeps track of each accident claim filed with the insurer linked to policy file, contains accident date. file: reports each payment made during observation period. linked to claims file, with payment date, size and type. page 4

5 The data A claim will have multiple payments during its run off. s may be: own damage (O) (including injury, property, fire, theft); injury (I) to a party other than the insured; property damage (P). Combinations of these types may also occur. Frees and Valdez (2008, JASA) summarized the many payments per claim into one single claim amount. page 5

6 The data Development of claim 7 Development of claim own injury property closed open Acc. Date 12/14/1999 Acc. Date 08/18/2001 Development of claim Development of claim Acc. Date 04/25/1995 Acc. Date 01/04/1996 page 6

7 The data Arrival Year 1993 Arrival Year 1998 own injury property own injury property Months since occurrence Arrival Year Months since occurrence own injury property Months since occurrence page 7

8 A traditional actuarial display Run off triangle: aggregate claims per arrival year (AY) and development year (DY) combination. Run off triangle for property (P) payments: (in 000s, non cumulative) Arrival Development Year Year , , , , , , , , , , , , , , , Common statistical techniques: chain ladder, distributional, Bayesian, GLMs,... Modeling individual claims run-off is less developed in the literature. page 8

9 Micro level data: literature Suggestions from actuarial literature: England and Verrall (2002), Taylor and Campbell (2002), Taylor, McGuire, and Sullivan (2006). Some actuarial papers: Arjas (1989, ASTIN), Norberg (1993, ASTIN), Norberg (1999, ASTIN); Haastrup and Arjas (1996, ASTIN); Larsen (2007, ASTIN); Zhao, Zhou, and Wang (2009, IME). Statistical resource: Cook and Lawless (2007), Statistical analysis of recurrent events. page 9

10 Observable data structure total number of claims in the data set is n = 43, 729; N i, number of events in development period of claim i; T ij, time of event j, in months since the accident date (T i0 = 0 is accident date and T ini is settlement date); C i time of censoring; E ij type of event j. We distinguish: - event type 1: direct settlement without any payments; - event type 2: payment with settlement; - event type 3: payment without settlement. M ij type of payment for event j of claim i. P ijk size of payment of type k (k being own damage (O), injury (I) or property (P)) for event j of claim i. page 10

11 Timing of events, per event type Event 1: direct settlement Event 2: payment with settlement Months since occurrence Min=0; Max=87.56 Months since occurrence Min=0; Max=103 Event 3: payment no settlement Months since occurrence Min=0; Max=111 page 11

12 Time of settlement, number of payments, times between payments Time of settlement Number of payments Months since occurrence Min=0; Max=103 Min=1; Max=8 Time between payments (in months) page 12

13 s Number of payments per type: Claim Type (I) (O) (P) Number 1,417 (1.95%) 45,950 (63.3%) 21,775 (30%) (I,O) (I,P) (O,P) (O,I,P) Number 107 (0.147%) 319 (0.439%) 3017 (4.16%) 9 (0.012%) page 13

14 Distribution of payments 0 3 Pay_vI (<0) 0 80 Ln_Pay_vI Pay_vINeg log(pay_vipos) Pay_vP (<0) Ln_Pay_vP Pay_vPNeg log(pay_vppos) Pay_vO (<0) Ln_Pay_vO (Claim amount) Pay_vONeg log(pay_vopos) Ln_Pay_vO (Loss amount) log(pay_vonoexpos) page 14

15 Model formulation A claim i (i = 1,..., n c ) is a combination of accident date ( AD i ); set of covariates C i ; development process X i : X i = ({E i (v), M i (v), P i (v)}) v [0,TiNi ]; Development process X i is a jump process. 3 building blocks are used: E i (t ij ) := E ij is the type of the jth event in the development of claim i, occurring at time t ij ; If this event includes a payment, its payment is given by M i (t ij ) := M ij ; Corresponding payment vector is P ij. page 15

16 Intensity modeling with single type of events at times t ij : N i ( τi ) L i = λ i (t ij ) exp λ i (u)du. 0 j=1 [0, τ i ] is the period of observation of subject i with τ i = min (T ini, C i ). λ i (t) is the event intensity (or hazard rate) at time t for subject i. For multitype events: each subject is at risk of m different types of recurrent events. Specify intensity function for each type of event (k = 1,..., m) with λ ik (t). page 16

17 How to specify the intensity functions λ 1 (t) (for event 1), λ 2 (t) (for event 2) and λ 3 (t) (for event 3)? Techniques from survival analysis: (k = 1, 2, 3) exponential: λ k (t) := λ k ; Weibull: λ k (t) := α k γ k t α k 1 e γ k t αk ; Cox model: λ k (t) := λ 0k (t) exp (z kβ k ); piecewise constant: λ k (t) = λ k1 for 0 t < t k1 λ k2 for t k1 t < t k2. λ kd for t kd 1 t < t kd. page 17

18 Hazard rates per event type Hazard Rate Type 1 Hazard Rate Type 2 h.gridw const. Weibull piec. const. (12m) piec. const. (3m) h.gridw const. Weibull piec. const. (12m) piec. const. (3m) t.grid t.grid Hazard Rate Type 3 h.gridw const. Weibull piec. const. (12m) piec. const. (3m) t.grid page 18

19 M ij represents the combination of payments observed at t ij. 7 combinations are possible: I, O, P, (I, O), (I, P), (O, P) and (O, I, P). Claim type is modeled with multinomial logit model: Pr(M ij = m ij ) = with V ij,m = x ij β M,m. exp V ij,m 7 s=1 exp (V ij,s), Covariate information used in multinomial model: Type of vehicle, vehicle age, age of driver; Arrival Year, Development Year. page 19

20 Given M ij for the event at time t ij, P ij gives corresponding severities. For the sign of a payment, use: { 1 if P ijk > 0 I ijk = 0 if P ijk < 0, and s ijk = Pr(I ijk = 1). Use logistic regression to model the sign of P ijk : logit(s ijk ) = x ijβ S,k. Covariate information used in logistic models: Development year; Number of previous injury/own damage/property payments. page 20

21 Negative part of payments Burr regression: f P (p) = λβλ τp τ 1 (β + p τ ) λ+1, with τ ijk = exp (x ijk β P,k) with k for payment type. used for Property and Own Damage payments GB2 regression: f P (p) = α p αγ 1 1 β αγ 2 B(γ 1, γ 2 )(β α + p α ) γ 1+γ 2, with α 0, β, γ 1, γ 2 > 0, B(α 1, α 2 ) the usual beta function and β ijk = exp (x ij β P,k). used for Injury payments page 21

22 Positive part of payments Inspired by the histograms of the positive payments, we used a mixture of lognormal regression models: log (P) w 1 N 1 (µ 1, σ 2 1) + w 2 N 2 (µ 2, σ 2 2) + w 3 N 3 (µ 3, σ 2 3), where w 1, w 2 and w 3 are weights, specified as w 1 = w 2 = w 3 = exp (a) exp (a) + exp (b) + exp (c), exp (b) exp (a) + exp (b) + exp (c), exp (c) exp (a) + exp (b) + exp (c), and N i (µ i, σ 2 i ) is a normal distribution with mean µ i and variance σ 2 i. Covariate information is incorporated in the weights and parameters µ i and σ 2 i (i = 1, 2, 3). page 22

23 QQ plots on the negative payments empirical quantile empirical quantile Own damage theoretical quantile Injury theoretical quantile empirical quantile Property theoretical quantile page 23

24 y y y Histograms of the positive payments - own damage Positive Own Damage (log scale) Positive Own Damage (log scale) x Sample: DY=1 x Sample: DY=2 Positive Own Damage (log scale) x Sample: DY>2 page 24

25 of RBNS claim reserves Step 1: simulate the next event s time interval Step 2: simulate the exact time of the next event Step 3: simulate the event type Step 4: simulate payment type Step 5: simulate payments Step 6: stop or continue, if necessary - depending on whether settled or not page 25

26 Resulting predictive distributions of reserves - by type Reserve Own Damage Reserve Injury e e e e+06 4e+06 6e+06 8e+06 1e+07 Reserve Property e e e e e+07 page 26

27 Concluding remarks Main idea: claims using statistics for recurrent events. The hope is to improve the prediction of reserves using detailed micro-level recorded information. the cost is the additional complexity in the modeling involved. Additional work to be done: comparing the results with traditional methods. Similar methodology to other areas of actuarial statistics e.g. recurrent episodes in workers compensation. page 27

28 Thank you! page 28

Modeling. joint work with Jed Frees, U of Wisconsin - Madison. Travelers PASG (Predictive Analytics Study Group) Seminar Tuesday, 12 April 2016

Modeling. joint work with Jed Frees, U of Wisconsin - Madison. Travelers PASG (Predictive Analytics Study Group) Seminar Tuesday, 12 April 2016 joint work with Jed Frees, U of Wisconsin - Madison Travelers PASG (Predictive Analytics Study Group) Seminar Tuesday, 12 April 2016 claim Department of Mathematics University of Connecticut Storrs, Connecticut

More information

Xiaoli Jin and Edward W. (Jed) Frees. August 6, 2013

Xiaoli Jin and Edward W. (Jed) Frees. August 6, 2013 Xiaoli and Edward W. (Jed) Frees Department of Actuarial Science, Risk Management, and Insurance University of Wisconsin Madison August 6, 2013 1 / 20 Outline 1 2 3 4 5 6 2 / 20 for P&C Insurance Occurrence

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

Using micro-level automobile insurance data for macro-effects inference

Using micro-level automobile insurance data for macro-effects inference Using micro-level automobile insurance data for macro-effects inference Emiliano A. Valdez, Ph.D., F.S.A. University of Connecticut Storrs, Connecticut, USA joint work with E.W. Frees*, P. Shi*, K. Antonio**

More information

Double Chain Ladder and Bornhutter-Ferguson

Double Chain Ladder and Bornhutter-Ferguson Double Chain Ladder and Bornhutter-Ferguson María Dolores Martínez Miranda University of Granada, Spain mmiranda@ugr.es Jens Perch Nielsen Cass Business School, City University, London, U.K. Jens.Nielsen.1@city.ac.uk,

More information

A Multivariate Analysis of Intercompany Loss Triangles

A Multivariate Analysis of Intercompany Loss Triangles A Multivariate Analysis of Intercompany Loss Triangles Peng Shi School of Business University of Wisconsin-Madison ASTIN Colloquium May 21-24, 2013 Peng Shi (Wisconsin School of Business) Intercompany

More information

A Comprehensive, Non-Aggregated, Stochastic Approach to. Loss Development

A Comprehensive, Non-Aggregated, Stochastic Approach to. Loss Development A Comprehensive, Non-Aggregated, Stochastic Approach to Loss Development By Uri Korn Abstract In this paper, we present a stochastic loss development approach that models all the core components of the

More information

Using micro-level automobile insurance data for macro-effects inference

Using micro-level automobile insurance data for macro-effects inference Using micro-level automobile insurance data for macro-effects inference Emiliano A. Valdez, Ph.D., F.S.A. University of Connecticut Storrs, Connecticut, USA joint work with E.W. Frees*, P. Shi*, K. Antonio**

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

Statistical Analysis of Life Insurance Policy Termination and Survivorship

Statistical Analysis of Life Insurance Policy Termination and Survivorship Statistical Analysis of Life Insurance Policy Termination and Survivorship Emiliano A. Valdez, PhD, FSA Michigan State University joint work with J. Vadiveloo and U. Dias Sunway University, Malaysia Kuala

More information

A multi-state approach and flexible payment distributions for microlevel reserving in general insurance

A multi-state approach and flexible payment distributions for microlevel reserving in general insurance A multi-state approach and flexible payment distributions for microlevel reserving in general insurance Katrien Antonio, Els Godecharle, and Robin Van Oirbeek AFI_16106 Electronic copy available at: http://ssrn.com/abstract=2777467

More information

A Comprehensive, Non-Aggregated, Stochastic Approach to Loss Development

A Comprehensive, Non-Aggregated, Stochastic Approach to Loss Development A Comprehensive, Non-Aggregated, Stochastic Approach to Loss Development by Uri Korn ABSTRACT In this paper, we present a stochastic loss development approach that models all the core components of the

More information

Risk Classification In Non-Life Insurance

Risk Classification In Non-Life Insurance Risk Classification In Non-Life Insurance Katrien Antonio Jan Beirlant November 28, 2006 Abstract Within the actuarial profession a major challenge can be found in the construction of a fair tariff structure.

More information

APPROACHES TO VALIDATING METHODOLOGIES AND MODELS WITH INSURANCE APPLICATIONS

APPROACHES TO VALIDATING METHODOLOGIES AND MODELS WITH INSURANCE APPLICATIONS APPROACHES TO VALIDATING METHODOLOGIES AND MODELS WITH INSURANCE APPLICATIONS LIN A XU, VICTOR DE LA PAN A, SHAUN WANG 2017 Advances in Predictive Analytics December 1 2, 2017 AGENDA QCRM to Certify VaR

More information

Dependent Loss Reserving Using Copulas

Dependent Loss Reserving Using Copulas Dependent Loss Reserving Using Copulas Peng Shi Northern Illinois University Edward W. Frees University of Wisconsin - Madison July 29, 2010 Abstract Modeling the dependence among multiple loss triangles

More information

Individual Loss Reserving with the Multivariate Skew Normal Distribution

Individual Loss Reserving with the Multivariate Skew Normal Distribution Faculty of Business and Economics Individual Loss Reserving with the Multivariate Skew Normal Distribution Mathieu Pigeon, Katrien Antonio, Michel Denuit DEPARTMENT OF ACCOUNTANCY, FINANCE AND INSURANCE

More information

arxiv: v1 [q-fin.rm] 13 Dec 2016

arxiv: v1 [q-fin.rm] 13 Dec 2016 arxiv:1612.04126v1 [q-fin.rm] 13 Dec 2016 The hierarchical generalized linear model and the bootstrap estimator of the error of prediction of loss reserves in a non-life insurance company Alicja Wolny-Dominiak

More information

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5]

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] 1 High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] High-frequency data have some unique characteristics that do not appear in lower frequencies. At this class we have: Nonsynchronous

More information

From Double Chain Ladder To Double GLM

From Double Chain Ladder To Double GLM University of Amsterdam MSc Stochastics and Financial Mathematics Master Thesis From Double Chain Ladder To Double GLM Author: Robert T. Steur Examiner: dr. A.J. Bert van Es Supervisors: drs. N.R. Valkenburg

More information

Validating the Double Chain Ladder Stochastic Claims Reserving Model

Validating the Double Chain Ladder Stochastic Claims Reserving Model Validating the Double Chain Ladder Stochastic Claims Reserving Model Abstract Double Chain Ladder introduced by Martínez-Miranda et al. (2012) is a statistical model to predict outstanding claim reserve.

More information

Actuarial Society of India EXAMINATIONS

Actuarial Society of India EXAMINATIONS Actuarial Society of India EXAMINATIONS 7 th June 005 Subject CT6 Statistical Models Time allowed: Three Hours (0.30 am 3.30 pm) INSTRUCTIONS TO THE CANDIDATES. Do not write your name anywhere on the answer

More information

PASS Sample Size Software

PASS Sample Size Software Chapter 850 Introduction Cox proportional hazards regression models the relationship between the hazard function λ( t X ) time and k covariates using the following formula λ log λ ( t X ) ( t) 0 = β1 X1

More information

Estimation Procedure for Parametric Survival Distribution Without Covariates

Estimation Procedure for Parametric Survival Distribution Without Covariates Estimation Procedure for Parametric Survival Distribution Without Covariates The maximum likelihood estimates of the parameters of commonly used survival distribution can be found by SAS. The following

More information

Modelling Environmental Extremes

Modelling Environmental Extremes 19th TIES Conference, Kelowna, British Columbia 8th June 2008 Topics for the day 1. Classical models and threshold models 2. Dependence and non stationarity 3. R session: weather extremes 4. Multivariate

More information

Stochastic Loss Reserving with Bayesian MCMC Models Revised March 31

Stochastic Loss Reserving with Bayesian MCMC Models Revised March 31 w w w. I C A 2 0 1 4. o r g Stochastic Loss Reserving with Bayesian MCMC Models Revised March 31 Glenn Meyers FCAS, MAAA, CERA, Ph.D. April 2, 2014 The CAS Loss Reserve Database Created by Meyers and Shi

More information

Modelling Environmental Extremes

Modelling Environmental Extremes 19th TIES Conference, Kelowna, British Columbia 8th June 2008 Topics for the day 1. Classical models and threshold models 2. Dependence and non stationarity 3. R session: weather extremes 4. Multivariate

More information

Loss reserving for individual claim-by-claim data

Loss reserving for individual claim-by-claim data MASTER THESIS Vojtěch Bednárik Loss reserving for individual claim-by-claim data Department of Probability and Mathematical Statistics Supervisor of the master thesis: Study programme: Study branch: RNDr.

More information

Dynamic Corporate Default Predictions Spot and Forward-Intensity Approaches

Dynamic Corporate Default Predictions Spot and Forward-Intensity Approaches Dynamic Corporate Default Predictions Spot and Forward-Intensity Approaches Jin-Chuan Duan Risk Management Institute and Business School National University of Singapore (June 2012) JC Duan (NUS) Dynamic

More information

Longitudinal Modeling of Insurance Company Expenses

Longitudinal Modeling of Insurance Company Expenses Longitudinal of Insurance Company Expenses Peng Shi University of Wisconsin-Madison joint work with Edward W. (Jed) Frees - University of Wisconsin-Madison July 31, 1 / 20 I. : Motivation and Objective

More information

Analysis of truncated data with application to the operational risk estimation

Analysis of truncated data with application to the operational risk estimation Analysis of truncated data with application to the operational risk estimation Petr Volf 1 Abstract. Researchers interested in the estimation of operational risk often face problems arising from the structure

More information

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS Questions 1-307 have been taken from the previous set of Exam C sample questions. Questions no longer relevant

More information

RISK ADJUSTMENT FOR LOSS RESERVING BY A COST OF CAPITAL TECHNIQUE

RISK ADJUSTMENT FOR LOSS RESERVING BY A COST OF CAPITAL TECHNIQUE RISK ADJUSTMENT FOR LOSS RESERVING BY A COST OF CAPITAL TECHNIQUE B. POSTHUMA 1, E.A. CATOR, V. LOUS, AND E.W. VAN ZWET Abstract. Primarily, Solvency II concerns the amount of capital that EU insurance

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 10 91. * A random sample, X1, X2,, Xn, is drawn from a distribution with a mean of 2/3 and a variance of 1/18. ˆ = (X1 + X2 + + Xn)/(n-1) is the estimator of the distribution mean θ. Find MSE(

More information

Can we use kernel smoothing to estimate Value at Risk and Tail Value at Risk?

Can we use kernel smoothing to estimate Value at Risk and Tail Value at Risk? Can we use kernel smoothing to estimate Value at Risk and Tail Value at Risk? Ramon Alemany, Catalina Bolancé and Montserrat Guillén Riskcenter - IREA Universitat de Barcelona http://www.ub.edu/riskcenter

More information

UPDATED IAA EDUCATION SYLLABUS

UPDATED IAA EDUCATION SYLLABUS II. UPDATED IAA EDUCATION SYLLABUS A. Supporting Learning Areas 1. STATISTICS Aim: To enable students to apply core statistical techniques to actuarial applications in insurance, pensions and emerging

More information

SOCIETY OF ACTUARIES Advanced Topics in General Insurance. Exam GIADV. Date: Thursday, May 1, 2014 Time: 2:00 p.m. 4:15 p.m.

SOCIETY OF ACTUARIES Advanced Topics in General Insurance. Exam GIADV. Date: Thursday, May 1, 2014 Time: 2:00 p.m. 4:15 p.m. SOCIETY OF ACTUARIES Exam GIADV Date: Thursday, May 1, 014 Time: :00 p.m. 4:15 p.m. INSTRUCTIONS TO CANDIDATES General Instructions 1. This examination has a total of 40 points. This exam consists of 8

More information

A Comparison of Stochastic Loss Reserving Methods

A Comparison of Stochastic Loss Reserving Methods A Comparison of Stochastic Loss Reserving Methods Ezgi Nevruz, Yasemin Gençtürk Department of Actuarial Sciences Hacettepe University Ankara/TURKEY 02.04.2014 Ezgi Nevruz (Hacettepe University) Stochastic

More information

[D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright

[D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright Faculty and Institute of Actuaries Claims Reserving Manual v.2 (09/1997) Section D7 [D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright 1. Introduction

More information

Risky Loss Distributions And Modeling the Loss Reserve Pay-out Tail

Risky Loss Distributions And Modeling the Loss Reserve Pay-out Tail Risky Loss Distributions And Modeling the Loss Reserve Pay-out Tail J. David Cummins* University of Pennsylvania 3303 Steinberg Hall-Dietrich Hall 3620 Locust Walk Philadelphia, PA 19104-6302 cummins@wharton.upenn.edu

More information

Motivation. Method. Results. Conclusions. Keywords.

Motivation. Method. Results. Conclusions. Keywords. Title: A Simple Multi-State Reserving Model Topic: 3: Liability Risk Reserve Models Name: Orr, James Organisation: Towers Perrin Tillinghast Address: 71 High Holborn, London WC1V 6TH Telephone: +44 (0)20

More information

The long road to enlightenment

The long road to enlightenment Business School The long road to enlightenment Loss reserving models from the past, with some speculation on the future Greg Taylor School of Risk and Actuarial Studies University of New South Wales Sydney,

More information

Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives

Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives Simon Man Chung Fung, Katja Ignatieva and Michael Sherris School of Risk & Actuarial Studies University of

More information

Obtaining Predictive Distributions for Reserves Which Incorporate Expert Opinions R. Verrall A. Estimation of Policy Liabilities

Obtaining Predictive Distributions for Reserves Which Incorporate Expert Opinions R. Verrall A. Estimation of Policy Liabilities Obtaining Predictive Distributions for Reserves Which Incorporate Expert Opinions R. Verrall A. Estimation of Policy Liabilities LEARNING OBJECTIVES 5. Describe the various sources of risk and uncertainty

More information

Midterm Exam. b. What are the continuously compounded returns for the two stocks?

Midterm Exam. b. What are the continuously compounded returns for the two stocks? University of Washington Fall 004 Department of Economics Eric Zivot Economics 483 Midterm Exam This is a closed book and closed note exam. However, you are allowed one page of notes (double-sided). Answer

More information

Log-Robust Portfolio Management

Log-Robust Portfolio Management Log-Robust Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Elcin Cetinkaya and Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983 Dr.

More information

Estimating a Life Cycle Model with Unemployment and Human Capital Depreciation

Estimating a Life Cycle Model with Unemployment and Human Capital Depreciation Estimating a Life Cycle Model with Unemployment and Human Capital Depreciation Andreas Pollak 26 2 min presentation for Sargent s RG // Estimating a Life Cycle Model with Unemployment and Human Capital

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 2 1. Model 1 in the table handed out in class is a uniform distribution from 0 to 100. Determine what the table entries would be for a generalized uniform distribution covering the range from a

More information

Hierarchical Generalized Linear Models. Measurement Incorporated Hierarchical Linear Models Workshop

Hierarchical Generalized Linear Models. Measurement Incorporated Hierarchical Linear Models Workshop Hierarchical Generalized Linear Models Measurement Incorporated Hierarchical Linear Models Workshop Hierarchical Generalized Linear Models So now we are moving on to the more advanced type topics. To begin

More information

Multidimensional credibility: a Bayesian analysis. of policyholders holding multiple contracts

Multidimensional credibility: a Bayesian analysis. of policyholders holding multiple contracts Multidimensional credibility: a Bayesian analysis of policyholders holding multiple contracts Katrien Antonio Montserrat Guillén Ana Maria Pérez Marín May 19, 211 Abstract Property and casualty actuaries

More information

Practice Exam 1. Loss Amount Number of Losses

Practice Exam 1. Loss Amount Number of Losses Practice Exam 1 1. You are given the following data on loss sizes: An ogive is used as a model for loss sizes. Determine the fitted median. Loss Amount Number of Losses 0 1000 5 1000 5000 4 5000 10000

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

DRAFT. Half-Mack Stochastic Reserving. Frank Cuypers, Simone Dalessi. July 2013

DRAFT. Half-Mack Stochastic Reserving. Frank Cuypers, Simone Dalessi. July 2013 Abstract Half-Mack Stochastic Reserving Frank Cuypers, Simone Dalessi July 2013 We suggest a stochastic reserving method, which uses the information gained from statistical reserving methods (such as the

More information

Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression

Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression Alice X.D. Dong 1 Jennifer S.K. Chan 1 Gareth W. Peters 2 Working paper, version from February 12, 2014 arxiv:1402.2492v1

More information

Simulation based claims reserving in general insurance

Simulation based claims reserving in general insurance Mathematical Statistics Stockholm University Simulation based claims reserving in general insurance Elinore Gustafsson, Andreas N. Lagerås, Mathias Lindholm Research Report 2012:9 ISSN 1650-0377 Postal

More information

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS Copyright 2008 by the Society of Actuaries and the Casualty Actuarial Society

More information

Non parametric individual claims reserving

Non parametric individual claims reserving Non parametric individual claims reserving Maximilien BAUDRY& Christian Y. ROBERT DAMIChair&UniversitéLyon1-ISFA Workshopon«DatascienceinFinanceandInsurance» ISBA(UCL), Friday, September 15, 2017 Acknowledgements

More information

Multivariate Cox PH model with log-skew-normal frailties

Multivariate Cox PH model with log-skew-normal frailties Multivariate Cox PH model with log-skew-normal frailties Department of Statistical Sciences, University of Padua, 35121 Padua (IT) Multivariate Cox PH model A standard statistical approach to model clustered

More information

Modeling dynamic diurnal patterns in high frequency financial data

Modeling dynamic diurnal patterns in high frequency financial data Modeling dynamic diurnal patterns in high frequency financial data Ryoko Ito 1 Faculty of Economics, Cambridge University Email: ri239@cam.ac.uk Website: www.itoryoko.com This paper: Cambridge Working

More information

Reserve Risk Modelling: Theoretical and Practical Aspects

Reserve Risk Modelling: Theoretical and Practical Aspects Reserve Risk Modelling: Theoretical and Practical Aspects Peter England PhD ERM and Financial Modelling Seminar EMB and The Israeli Association of Actuaries Tel-Aviv Stock Exchange, December 2009 2008-2009

More information

Chapter 2 ( ) Fall 2012

Chapter 2 ( ) Fall 2012 Bios 323: Applied Survival Analysis Qingxia (Cindy) Chen Chapter 2 (2.1-2.6) Fall 2012 Definitions and Notation There are several equivalent ways to characterize the probability distribution of a survival

More information

Efficient Valuation of Large Variable Annuity Portfolios

Efficient Valuation of Large Variable Annuity Portfolios Efficient Valuation of Large Variable Annuity Portfolios Emiliano A. Valdez joint work with Guojun Gan University of Connecticut Seminar Talk at Wisconsin School of Business University of Wisconsin Madison,

More information

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions ELE 525: Random Processes in Information Systems Hisashi Kobayashi Department of Electrical Engineering

More information

Modelling, Estimation and Hedging of Longevity Risk

Modelling, Estimation and Hedging of Longevity Risk IA BE Summer School 2016, K. Antonio, UvA 1 / 50 Modelling, Estimation and Hedging of Longevity Risk Katrien Antonio KU Leuven and University of Amsterdam IA BE Summer School 2016, Leuven Module II: Fitting

More information

Describing Uncertain Variables

Describing Uncertain Variables Describing Uncertain Variables L7 Uncertainty in Variables Uncertainty in concepts and models Uncertainty in variables Lack of precision Lack of knowledge Variability in space/time Describing Uncertainty

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

Australian Journal of Basic and Applied Sciences. Conditional Maximum Likelihood Estimation For Survival Function Using Cox Model

Australian Journal of Basic and Applied Sciences. Conditional Maximum Likelihood Estimation For Survival Function Using Cox Model AENSI Journals Australian Journal of Basic and Applied Sciences Journal home page: wwwajbaswebcom Conditional Maximum Likelihood Estimation For Survival Function Using Cox Model Khawla Mustafa Sadiq University

More information

REINSURANCE RATE-MAKING WITH PARAMETRIC AND NON-PARAMETRIC MODELS

REINSURANCE RATE-MAKING WITH PARAMETRIC AND NON-PARAMETRIC MODELS REINSURANCE RATE-MAKING WITH PARAMETRIC AND NON-PARAMETRIC MODELS By Siqi Chen, Madeleine Min Jing Leong, Yuan Yuan University of Illinois at Urbana-Champaign 1. Introduction Reinsurance contract is an

More information

Comments on Asset Allocation Strategies Based on Penalized Quantile Regression (Bonaccolto, Caporin & Paterlini)

Comments on Asset Allocation Strategies Based on Penalized Quantile Regression (Bonaccolto, Caporin & Paterlini) Comments on Based on Penalized Quantile Regression (Bonaccolto, Caporin & Paterlini) Ensae-Crest 22 March 2016 Summary An asset allocation strategy, based on quantile regressions (Bassett et al. 2004),

More information

BAYESIAN CLAIMS RESERVING* Enrique de Alba Instituto Tecnológico Autónomo de México (ITAM) Río Hondo No. 1 México, D.F MÉXICO

BAYESIAN CLAIMS RESERVING* Enrique de Alba Instituto Tecnológico Autónomo de México (ITAM) Río Hondo No. 1 México, D.F MÉXICO BAYESIAN CLAIMS RESERVING* Enrique de Alba Instuto Tecnológico Autónomo de México (ITAM) Río Hondo No. México, D.F. 0000 MÉXICO dealba@am.mx and The Universy of Waterloo Departement of Statistics and Actuarial

More information

List of tables List of boxes List of screenshots Preface to the third edition Acknowledgements

List of tables List of boxes List of screenshots Preface to the third edition Acknowledgements Table of List of figures List of tables List of boxes List of screenshots Preface to the third edition Acknowledgements page xii xv xvii xix xxi xxv 1 Introduction 1 1.1 What is econometrics? 2 1.2 Is

More information

Process capability estimation for non normal quality characteristics: A comparison of Clements, Burr and Box Cox Methods

Process capability estimation for non normal quality characteristics: A comparison of Clements, Burr and Box Cox Methods ANZIAM J. 49 (EMAC2007) pp.c642 C665, 2008 C642 Process capability estimation for non normal quality characteristics: A comparison of Clements, Burr and Box Cox Methods S. Ahmad 1 M. Abdollahian 2 P. Zeephongsekul

More information

Portfolio Optimization. Prof. Daniel P. Palomar

Portfolio Optimization. Prof. Daniel P. Palomar Portfolio Optimization Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST, Hong

More information

2017 IAA EDUCATION SYLLABUS

2017 IAA EDUCATION SYLLABUS 2017 IAA EDUCATION SYLLABUS 1. STATISTICS Aim: To enable students to apply core statistical techniques to actuarial applications in insurance, pensions and emerging areas of actuarial practice. 1.1 RANDOM

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 2 1. Model 1 is a uniform distribution from 0 to 100. Determine the table entries for a generalized uniform distribution covering the range from a to b where a < b. 2. Let X be a discrete random

More information

Multivariate longitudinal data analysis for actuarial applications

Multivariate longitudinal data analysis for actuarial applications Multivariate longitudinal data analysis for actuarial applications Priyantha Kumara and Emiliano A. Valdez astin/afir/iaals Mexico Colloquia 2012 Mexico City, Mexico, 1-4 October 2012 P. Kumara and E.A.

More information

Logit with multiple alternatives

Logit with multiple alternatives Logit with multiple alternatives Matthieu de Lapparent matthieu.delapparent@epfl.ch Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale

More information

Contagion models with interacting default intensity processes

Contagion models with interacting default intensity processes Contagion models with interacting default intensity processes Yue Kuen KWOK Hong Kong University of Science and Technology This is a joint work with Kwai Sun Leung. 1 Empirical facts Default of one firm

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN EXAMINATION Subject CS1A Actuarial Statistics Time allowed: Three hours and fifteen minutes INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate

More information

Survival Analysis APTS 2016/17 Preliminary material

Survival Analysis APTS 2016/17 Preliminary material Survival Analysis APTS 2016/17 Preliminary material Ingrid Van Keilegom KU Leuven (ingrid.vankeilegom@kuleuven.be) August 2017 1 Introduction 2 Common functions in survival analysis 3 Parametric survival

More information

UNIVERSITY OF OSLO. The Poisson model is a common model for claim frequency.

UNIVERSITY OF OSLO. The Poisson model is a common model for claim frequency. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Candidate no Exam in: STK 4540 Non-Life Insurance Mathematics Day of examination: December, 9th, 2015 Examination hours: 09:00 13:00 This

More information

The Leveled Chain Ladder Model. for Stochastic Loss Reserving

The Leveled Chain Ladder Model. for Stochastic Loss Reserving The Leveled Chain Ladder Model for Stochastic Loss Reserving Glenn Meyers, FCAS, MAAA, CERA, Ph.D. Abstract The popular chain ladder model forms its estimate by applying age-to-age factors to the latest

More information

Dependence Structure and Extreme Comovements in International Equity and Bond Markets

Dependence Structure and Extreme Comovements in International Equity and Bond Markets Dependence Structure and Extreme Comovements in International Equity and Bond Markets René Garcia Edhec Business School, Université de Montréal, CIRANO and CIREQ Georges Tsafack Suffolk University Measuring

More information

Smart Beta: Managing Diversification of Minimum Variance Portfolios

Smart Beta: Managing Diversification of Minimum Variance Portfolios Smart Beta: Managing Diversification of Minimum Variance Portfolios Jean-Charles Richard and Thierry Roncalli Lyxor Asset Management 1, France University of Évry, France Risk Based and Factor Investing

More information

Exam STAM Practice Exam #1

Exam STAM Practice Exam #1 !!!! Exam STAM Practice Exam #1 These practice exams should be used during the month prior to your exam. This practice exam contains 20 questions, of equal value, corresponding to about a 2 hour exam.

More information

Window Width Selection for L 2 Adjusted Quantile Regression

Window Width Selection for L 2 Adjusted Quantile Regression Window Width Selection for L 2 Adjusted Quantile Regression Yoonsuh Jung, The Ohio State University Steven N. MacEachern, The Ohio State University Yoonkyung Lee, The Ohio State University Technical Report

More information

Content Added to the Updated IAA Education Syllabus

Content Added to the Updated IAA Education Syllabus IAA EDUCATION COMMITTEE Content Added to the Updated IAA Education Syllabus Prepared by the Syllabus Review Taskforce Paul King 8 July 2015 This proposed updated Education Syllabus has been drafted by

More information

CMBS Default: A First Passage Time Approach

CMBS Default: A First Passage Time Approach CMBS Default: A First Passage Time Approach Yıldıray Yıldırım Preliminary and Incomplete Version June 2, 2005 Abstract Empirical studies on CMBS default have focused on the probability of default depending

More information

INTRODUCTION TO SURVIVAL ANALYSIS IN BUSINESS

INTRODUCTION TO SURVIVAL ANALYSIS IN BUSINESS INTRODUCTION TO SURVIVAL ANALYSIS IN BUSINESS By Jeff Morrison Survival model provides not only the probability of a certain event to occur but also when it will occur... survival probability can alert

More information

Statistical Modeling Techniques for Reserve Ranges: A Simulation Approach

Statistical Modeling Techniques for Reserve Ranges: A Simulation Approach Statistical Modeling Techniques for Reserve Ranges: A Simulation Approach by Chandu C. Patel, FCAS, MAAA KPMG Peat Marwick LLP Alfred Raws III, ACAS, FSA, MAAA KPMG Peat Marwick LLP STATISTICAL MODELING

More information

Back-Testing the ODP Bootstrap of the Paid Chain-Ladder Model with Actual Historical Claims Data

Back-Testing the ODP Bootstrap of the Paid Chain-Ladder Model with Actual Historical Claims Data Back-Testing the ODP Bootstrap of the Paid Chain-Ladder Model with Actual Historical Claims Data by Jessica (Weng Kah) Leong, Shaun Wang and Han Chen ABSTRACT This paper back-tests the popular over-dispersed

More information

Clark. Outside of a few technical sections, this is a very process-oriented paper. Practice problems are key!

Clark. Outside of a few technical sections, this is a very process-oriented paper. Practice problems are key! Opening Thoughts Outside of a few technical sections, this is a very process-oriented paper. Practice problems are key! Outline I. Introduction Objectives in creating a formal model of loss reserving:

More information

LTCI: a multi-state semi-markov model to describe the dependency process for elderly people

LTCI: a multi-state semi-markov model to describe the dependency process for elderly people LTCI: a multi-state semi-markov model to describe the dependency process for elderly people Guillaume Biessy Friday, April 4th 2014 Friday, April 4th 2014 Guillaume Biessy LTCI: dependency as a 4-state

More information

Simulation of Extreme Events in the Presence of Spatial Dependence

Simulation of Extreme Events in the Presence of Spatial Dependence Simulation of Extreme Events in the Presence of Spatial Dependence Nicholas Beck Bouchra Nasri Fateh Chebana Marie-Pier Côté Juliana Schulz Jean-François Plante Martin Durocher Marie-Hélène Toupin Jean-François

More information

Non parametric individual claim reserving in insurance

Non parametric individual claim reserving in insurance Non parametric individual claim reserving in insurance Maximilien BAUDRY and Christian Y. ROBERT November 27, 2017 Abstract Accurate loss reserves are an important item in the nancial statement of an insurance

More information

Surrenders in a competing risks framework, application with the [FG99] model

Surrenders in a competing risks framework, application with the [FG99] model s in a competing risks framework, application with the [FG99] model AFIR - ERM - LIFE Lyon Colloquia June 25 th, 2013 1,2 Related to a joint work with D. Seror 1 and D. Nkihouabonga 1 1 ENSAE ParisTech,

More information

Calibration of Interest Rates

Calibration of Interest Rates WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,

More information

Design of Engineering Experiments Part 9 Experiments with Random Factors

Design of Engineering Experiments Part 9 Experiments with Random Factors Design of ngineering xperiments Part 9 xperiments with Random Factors Text reference, Chapter 13, Pg. 484 Previous chapters have considered fixed factors A specific set of factor levels is chosen for the

More information

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018 ` Subject CS1 Actuarial Statistics 1 Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who are the sole distributors.

More information

Midas Margin Model SIX x-clear Ltd

Midas Margin Model SIX x-clear Ltd xcl-n-904 March 016 Table of contents 1.0 Summary 3.0 Introduction 3 3.0 Overview of methodology 3 3.1 Assumptions 3 4.0 Methodology 3 4.1 Stoc model 4 4. Margin volatility 4 4.3 Beta and sigma values

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Margraf, C. (2017). On the use of micro models for claims reversing based on aggregate data. (Unpublished Doctoral thesis,

More information