MARKET DEPTH AND PRICE DYNAMICS: A NOTE

Similar documents
effect on foreign exchange dynamics as transaction taxes. Transaction taxes seek to curb

THE WORKING OF CIRCUIT BREAKERS WITHIN PERCOLATION MODELS FOR FINANCIAL MARKETS

Butter Mountains, Milk Lakes and Optimal Price Limiters

Central bank intervention and feedback traders

The rst 20 min in the Hong Kong stock market

G R E D E G Documents de travail

Dynamic Forecasting Rules and the Complexity of Exchange Rate Dynamics

Lecture One. Dynamics of Moving Averages. Tony He University of Technology, Sydney, Australia

Technical Report: CES-497 A summary for the Brock and Hommes Heterogeneous beliefs and routes to chaos in a simple asset pricing model 1998 JEDC paper

The effectiveness of Keynes Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach $

Heterogeneous expectations and asset price dynamics

Agents Play Mix-game

The use of agent-based financial market models to test the effectiveness of regulatory policies *

Studies in Nonlinear Dynamics & Econometrics

Target Zone Interventions and Coordination of Expectations 1

Exchange rate dynamics, central bank interventions and chaos control methods

Market dynamics and stock price volatility

Animal Spirits in the Foreign Exchange Market

Universal Properties of Financial Markets as a Consequence of Traders Behavior: an Analytical Solution

CEO Attributes, Compensation, and Firm Value: Evidence from a Structural Estimation. Internet Appendix

Evolution of Market Heuristics

Parallel Accommodating Conduct: Evaluating the Performance of the CPPI Index

An Agent-Based Simulation of Stock Market to Analyze the Influence of Trader Characteristics on Financial Market Phenomena

Government spending in a model where debt effects output gap

Investments for the Short and Long Run

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 Mar 1999

Chapter DIFFERENTIAL EQUATIONS: PHASE SPACE, NUMERICAL SOLUTIONS

Market law found? Supply and demand follow same pattern for all firms. 9 January 2003 PHILIP BALL

Graduate School of Information Sciences, Tohoku University Aoba-ku, Sendai , Japan

Tobin tax introduction and risk analysis in the Java simulation

1 The Solow Growth Model

Interactions between the real economy and the stock market

A Nonlinear Structural Model for Volatility Clustering

S9/ex Minor Option K HANDOUT 1 OF 7 Financial Physics

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 11 Jul 1999

Commodity price dynamics and the nonlinear market impact oftechnical traders: empirical evidence for the US corn market

Inflation Stabilization and Default Risk in a Currency Union. OKANO, Eiji Nagoya City University at Otaru University of Commerce on Aug.

ANNEX 3. The ins and outs of the Baltic unemployment rates

Demographics and the behavior of interest rates

Business Cycles II: Theories

Finance when no one believes the textbooks. Roy Batchelor Director, Cass EMBA Dubai Cass Business School, London

The Welfare Cost of Inflation. in the Presence of Inside Money

Agent Based Trading Model of Heterogeneous and Changing Beliefs

Does the uptick rule stabilize the stock market? Insights from adaptive rational equilibrium dynamics

Using Fractals to Improve Currency Risk Management Strategies

Market entry waves and volatility outbursts in stock markets

Commentary: Challenges for Monetary Policy: New and Old

Conditional versus Unconditional Utility as Welfare Criterion: Two Examples

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Jan 2004

The Gertler-Gilchrist Evidence on Small and Large Firm Sales

Application of multi-agent games to the prediction of financial time-series

Emergent Volatility in Asset Markets

This paper is part of a series that uses the authors' Keynes+Schumpeter

Tobin Taxes and Dynamics of Interacting Financial Markets

arxiv:physics/ v2 11 Jan 2007

Minority games with score-dependent and agent-dependent payoffs

Chapter 1. Chaos in the Dornbusch Model of the Exchange Rate

Herding behavior and volatility clustering in financial markets

CHAPTER-3 DETRENDED FLUCTUATION ANALYSIS OF FINANCIAL TIME SERIES

Theory of the rate of return

EFFECTS OF CONTRARIAN INVESTOR TYPE IN ASSET PRICE DYNAMICS

Schizophrenic Representative Investors

Macroeconomics and finance

Lecture 9: Exchange rates

Quantitative relations between risk, return and firm size

Volatility as investment - crash protection with calendar spreads of variance swaps

Heterogeneous Agent Models Lecture 1. Introduction Rational vs. Agent Based Modelling Heterogeneous Agent Modelling

Limitations of demand constraints in stabilising financial markets with heterogeneous beliefs.

Nonlinearities and Robustness in Growth Regressions Jenny Minier

Introduction to economic growth (2)

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 11 May 1998

The Nonlinear Real Interest Rate Growth Model: USA

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 7 Apr 2003

Chapter 9 Dynamic Models of Investment

The Effects of Dollarization on Macroeconomic Stability

Real Wage Rigidities and Disin ation Dynamics: Calvo vs. Rotemberg Pricing

arxiv: v1 [q-fin.tr] 29 Apr 2014

UNIVERSITY OF CALIFORNIA Economics 134 DEPARTMENT OF ECONOMICS Spring 2018 Professor David Romer LECTURE 9

April, 2006 Vol. 5, No. 4

Journal of Economic Dynamics & Control

Threshold cointegration and nonlinear adjustment between stock prices and dividends

Discussion Reactions to Dividend Changes Conditional on Earnings Quality

THE POLICY RULE MIX: A MACROECONOMIC POLICY EVALUATION. John B. Taylor Stanford University

ON INTEREST RATE POLICY AND EQUILIBRIUM STABILITY UNDER INCREASING RETURNS: A NOTE

Does Calendar Time Portfolio Approach Really Lack Power?

Steve Keen s Dynamic Model of the economy.

ECON 450 Development Economics

9. Real business cycles in a two period economy

Mandatory Social Security Regime, C Retirement Behavior of Quasi-Hyperb

Another Look at Market Responses to Tangible and Intangible Information

III Econometric Policy Evaluation

Depreciation: a Dangerous Affair

The distribution and scaling of fluctuations for Hang Seng index in Hong Kong stock market

Impact of Imperfect Information on the Optimal Exercise Strategy for Warrants

Department of Finance and Risk Engineering, NYU-Polytechnic Institute, Brooklyn, NY

Asset Pricing under Information-processing Constraints

Advanced Macroeconomics 5. Rational Expectations and Asset Prices

P&L Attribution and Risk Management

OUTPUT SPILLOVERS FROM FISCAL POLICY

SPECULATIVE ATTACKS 3. OUR MODEL. B t 1 + x t Rt 1

Transcription:

International Journal of Modern hysics C Vol. 5, No. 7 (24) 5 2 c World Scientific ublishing Company MARKET DETH AND RICE DYNAMICS: A NOTE FRANK H. WESTERHOFF Department of Economics, University of Osnabrueck Rolandstrasse 8, D-4969 Osnabrueck, Germany fwesterho@oec.uni-osnabrueck.de Received 6 March 24 Revised 27 March 24 This note explores the consequences of nonlinear price impact functions on price dynamics within the chartist fundamentalist framework. rice impact functions may be nonlinear with respect to trading volume. As indicated by recent empirical studies, a given transaction may cause a large (small) price change if market depth is low (high). Simulations reveal that such a relationship may create endogenous complex price fluctuations even if the trading behavior of chartists and fundamentalists is linear. Keywords: Econophysics; market depth; price dynamics; nonlinearities; technical and fundamental analysis.. Introduction Interactions between heterogeneous agents, so-called chartists and fundamentalists, may generate endogenous price dynamics either due to nonlinear trading rules or due to a switching between simple linear trading rules.,2 Overall, multi-agent models appear to be quite successful in replicating financial market dynamics. 3,4 In addition, this research direction has important applications. On the one hand, understanding the working of financial markets may help to design better investment strategies. 5 On the other hand, it may facilitate the regulation of disorderly markets. For instance, Ehrenstein shows that the imposition of a low transaction tax may stabilize asset price fluctuations. 6 Within these models, the orders of the traders typically drive the price via a log linear price impact function: buying orders shift the price proportionally up and selling orders shift the price proportionally down. Recent empirical evidence suggests, however, that the relationship between orders and price adjustment may be nonlinear. Moreover, as reported by Farmer et al., large price fluctuations occur when market depth is low. 3,7 Following this observation, our goal is to illustrate a novel mechanism for endogenous price dynamics. We investigate within an otherwise linear chartist fundamentalist setup a price impact function which depends nonlinearly on market depth. To be precise, a 5

6 F. H. Westerhoff given transaction yields a larger price change when market depth is low than when it is high. Simulations indicate that such a relationship may lead to complex price movements. The dynamics may be sketched as follows. The market switches back and forth between two regimes. When liquidity is high, the market is relatively stable. But low price fluctuations indicate only weak trading signals and thus the transactions of speculators decline. As liquidity decreases, the price responsiveness of a trade increases. The market becomes unstable and price fluctuations increase again. The remainder of this note is organized as follows: Sec. 2 sketches the empirical evidence on price impact functions. In Sec. 3, we present our model, and in Sec. 4, we discuss the main results. The final section concludes the paper. 2. Empirical Evidence Financial prices are obviously driven by the orders of heterogeneous agents. However, it is not clear what is the true functional form of price impact. For instance, Farmer proposes a log linear price impact function for theoretical analysis while Zhang develops a model with nonlinear price impact. 8,9 His approach is backed up by empirical research that documents a concave price impact function. According to Hasbrouck, the larger is the order size, the smaller is the price impact per trade unit. Kempf and Korn, using data on DAX futures, and lerou et al., using data on the 6 most frequently traded US stocks, find that the price impact function displays a concave curvature with increasing order size, and flattening out at larger values.,2 Weber and Rosenow fitted a concave function in the form of a power law and obtained an impressive correlation coefficient of.977. 3 For a further theoretical and empirical debate on the possible shape of the price impact function with respect to the order size, see Gabaix et al., Farmer and Lillo, and lerou et al. 4 6 But these results are currently challenged by an empirical study which is crucial for this note. Farmer et al. present evidence that price fluctuations caused by individual market orders are essentially independent of the volume of the orders. 7 Instead, large price fluctuations are driven by fluctuations in liquidity, i.e., variations in the market s ability to absorb new orders. The reason is that even for the most liquid stocks there can be substantial gaps in the order book. When such a gap exists next to the best price due to low liquidity even a small new order can remove the best quote and trigger a large price change. These results are supported by Chordia, Roll and Subrahmanyam, who also document that there is considerable variation in market wide liquidity and by Lillo, Farmer and Mantenga, who detect that higher capitalization stocks tend to have smaller price responses for the same normalized transaction size. 7,8 Note that the relation between liquidity and price impact is of direct importance to investors developing trading strategies and to regulators attempting to stabilize financial markets. Farmer et al. argue, for instance, that agents who are trying to transact large amounts should split their orders and execute them a little at

Market Depth and rice Dynamics: A Note 7 a, watching the order book, and taking whatever liquidity which is available as it enters. 7 Hence, when there is a lot of volume in the market, they should submit large orders. Assuming a concave price impact function would obviously lead to quite different investment decisions. Ehrenstein, Westerhoff and Stauffer demonstrate, for instance, that the success of a Tobin tax depends on its impact on market depth. 9 Depending on the degree of the nonlinearity of the price impact function, a transaction tax may stabilize or destabilize the markets. 3. The Model Following Simon, agents are boundedly rational and display a rule-governed behavior. 2 Moreover, survey studies reveal that financial market participants rely strongly on technical and fundamental analysis to predict prices. 2,22 Chartists typically extrapolate past price movements into the future. Let be the log of the price. Then, their orders may be expressed as D C t = a( t t ), () where a is a positive reaction coefficient denoting the strength of the trading. Accordingly, technical traders submit buying orders if prices go up and vice versa. In contrast, fundamentalists expect the price to track its fundamental value. Orders from this type of agent may be written as D F t = b(f t ). (2) Again, b is a positive reaction coefficient, and F stands for the log of the fundamental value. For instance, if the asset is overvalued, fundamentalists submit selling orders. As usual, excess buying drives the price up and excess selling drives it down so that the price adjustment process may be formalized as t+ = t + A t (wd C t + ( w)d F t ), (3) where w indicates the fraction of chartists and ( w) the fraction of fundamentalists. The novel idea is to base the degree of price adjustment A on a nonlinear function of the market depth. 23 Exploiting that given excess demand has a larger (smaller) impact on the price if the trading volume is low (high), one may write c A t = ( wdt C + (. (4) w)df t )d The curvature of A is captured by d, while c > is a shift parameter. For d =, the price adjustment function is log linear.,3 In that case, the law of motion of the price, derived from Eqs. () (4), is a second-order linear difference equation which has a unique steady state at t+ = t = t = F. (5)

8 F. H. Westerhoff Rewriting Schur s stability conditions, the fixed point is stable for for w > b aw 4a + b, < c < 2 else. b( w) 2aw (6) However, we are interested in the case where d >. Combining Eqs. () (4) and solving for yields wa( t t ) + ( w)b(f t ) t+ = t + c ( wa( t t ) + ( w)b(f t ) ) d, (7) which is a two-dimensional nonlinear difference equation. Since Eq. (7) precludes closed analysis, we simulate the dynamics to demonstrate that the underlying structure gives rise to endogenous deterministic motion. 4. Some Results Figure contains three bifurcation diagrams for < d < and w =.7 (top), w =.5 (central) and w =.3 (bottom). The other parameters are fixed at a = b = c = and the log of the fundamental value is F =. We increase d in 5 steps. In each step, is plotted from t =. Note that bifurcation diagrams are frequently used to illustrate the dynamic properties of nonlinear systems. Figure suggests that if d is small, there may exist a stable equilibrium. For instance, for w =.5, prices converge towards the fundamental value as long as d is smaller than around.. If d is increased further, the fixed point becomes unstable. In addition, the range in which the fluctuations take place increases too. Note also that many different types of bifurcation occur. Our model generates the full range of possible dynamic outcomes: fixed points, limit cycles, quasi periodic motion and chaotic fluctuations. For some parameter combinations coexisting attractors emerge. Comparing the three panels indicates that the higher the fraction of chartists, the less stable the market seems to be. To check the robustness of endogenous motion, Fig. 2 presents bifurcation diagrams for < a < 2 (top), < b < 2 (central) and < c < 2 (bottom), with the remaining parameters fixed at a = b = c = and d = w =.5. Again, complicated movements arise. While chartism seems to destabilize the market, fundamentalism is apparently stabilizing. Naturally, a higher price adjustment destabilizes the market as well. Overall, many parameter combinations exist which trigger complicated motion. a a To observe permanent fluctuations only small variations in A are needed. Suppose that A takes two values centered around the upper bound of the stability condition X, say X Y and X + Y, depending on whether trading volume is above or below a certain level Z. Such a system obviously not only produces nonconvergent but also nonexplosive fluctuations for arbitrary values of Y and Z.

Market Depth and rice Dynamics: A Note 9.25.5.75 d.25.5.75 d.25.5.75 d Fig.. Bifurcation diagrams for < d < and w =.7 (top), w =.5 (central) and w =.3 (bottom). The other parameters are fixed at a = b = c =. The parameter d is increased in 5 steps. For each value of d, is plotted from t =. The log of the fundamental value is F =. Let us explore what drives the dynamics. Figure 3 shows the dynamics in the domain for a =.85, b = c =, and d = w =.5. The first, second and third panels present the log of the price, the price adjustment A and the trading volume V for 5 observations, respectively. Visual inspection reveals that the price circles around its fundamental value without any tendency to converge. Nonlinear price adjustment may thus be an endogenous engine for volatility and trading volume. Note that when trading volume drops the price adjustment increases and price movements are amplified. However, the dynamics does not explode since a higher trading volume leads again to a decrease in the price adjustment.

F. H. Westerhoff.5.5 2 a.5.5 2 b.5.5 2 c Fig. 2. Bifurcation diagrams for < a < 2 (top), < b < 2 (central) and < c < 2 (bottom), with the remaining parameters fixed at a = b = c = and d = w =.5. The bifurcation parameters are increased in 5 steps. For each value, is plotted from t =. The log of the fundamental value is F =. Finally, Fig. 4 displays the price (top panel) and the trading volume (bottom panel) for 5 observations (a =.25, b =, c = 5, d = 2 and w =.5). As can be seen, the dynamics may become quite complex. Remember that trading volume increases with increasing price changes (orders of chartists) and/or increasing deviations from fundamentals (orders of fundametalists). In a stylized way, the dynamics may thus be sketched as follows: suppose that trading volume is relatively low. Since the price adjustment A is strong, the system is unstable. As the trading becomes increasingly hectic, prices start to diverge from the fundamental value.

Market Depth and rice Dynamics: A Note.3..3 5 5 A 2.6 2.2.8 5 5 V.3.2. 5 5 Fig. 3. The dynamics in the domain for a =.85, b = c =, and d = w =.5. The first, second and third panels show the price, the price adjustment A and the trading volume V for 5 observations, respectively. The log of the fundamental value is F =. 5. 5 25 25 375 5 4 V 2 25 25 375 5 Fig. 4. The dynamics in the domain for a =.25, b =, c = 5, d = 2 and w =.5. The first (second) panel displays the price (the trading volume V ) for 5 observations. The log of the fundamental value is F =.

2 F. H. Westerhoff At some point, however, the trading activity has become so strong that, due to the reduction of the price adjustment A, the system becomes stable. Afterwards, a period of convergence begins until the system jumps back to the unstable regime. This process continually repeats itself but in an intricate way. 5. Conclusions When switching between simple linear trading rules and/or relying on nonlinear strategies, interactions between heterogeneous agents may cause irregular dynamics. This note shows that changes in market depth also stimulate price changes. The reason is that if market liquidity goes down, a given order obtains a larger price impact. For a broad range of parameter combinations, erratic yet deterministic trajectories emerge since the system switches back and forth between stable and unstable regimes. References. D. Farmer and S. Joshi, J. Economic Behavior and Organizations 49, 49 (22). 2. T. Lux and M. Marchesi, Int. J. Theor. Appl. Finance 3, 675 (2). 3. R. Cont and J.-. Bouchaud, Macroeconomic Dynamics 4, 7 (2). 4. D. Stauffer, Adv. Complex Syst. 4, 9 (2). 5. D. Sornette and W. Zhou, Quantitative Finance 2, 468 (22). 6. G. Ehrenstein, Int. J. Mod. hys. C 3, 323 (22). 7. D. Farmer, L. Gillemot, F. Lillo, S. Mike and A. Sen, What really causes large price changes? SFI Working aper, 4-2-6 (24). 8. D. Farmer, Industrial and Corporate Change, 895 (22). 9. Y.-C. Zhang, hysica A 269, 3 (999).. J. Hasbrouck, J. Finance 46, 79 (99).. A. Kempf and O. Korn, J. Financial Markets 2, 29 (999). 2. V. lerou,. Gopikrishnan, X. Gabaix and E. Stanley, hys. Rev. E 66, 274 (22). 3.. Weber and B. Rosenow, Order book approach to price impact, preprint condmat/3457 (23). 4. X. Gabaix,. Gopikrishnan, V. lerou and E. Stanley, Nature 423, 267 (23). 5. D. Farmer and F. Lillo, Quantitative Finance 4, C7 (24). 6. V. lerou,. Gopikrishnan, X. Gabaix and E. Stanley, Quantitative Finance 4, C (24). 7. T. Chordia, R. Roll and A. Subrahmanyam, J. Finance 56, 5 (2). 8. F. Lillo, D. Farmer and R. Mantegna, Nature 42, 29 (23). 9. G. Ehrenstein, F. Westerhoff and D. Stauffer, Tobin tax and market depth, preprint cond-mat/358 (23). 2. H. Simon, Quarterly J. Economics 9, 99 (955). 2. M. Taylor and H. Allen, J. Int. Money and Finance, 34 (992). 22. Y.-H. Lui and D. Mole, J. Int. Money and Finance 7, 535 (998). 23. D. Sornette and K. Ide, Int. J. Mod. hys. C 4, 267 (23).