The Great Moderation Flattens Fat Tails: Disappearing Leptokurtosis

Similar documents
Cross-Country Evidence on Output Growth Volatility: Nonstationary Variance and GARCH Models

Department of Economics Working Paper Series

Oil Price Effects on Exchange Rate and Price Level: The Case of South Korea

Volatility Clustering of Fine Wine Prices assuming Different Distributions

Modelling Inflation Uncertainty Using EGARCH: An Application to Turkey

Volatility Analysis of Nepalese Stock Market

Financial Econometrics

Indian Institute of Management Calcutta. Working Paper Series. WPS No. 797 March Implied Volatility and Predictability of GARCH Models

Modelling Stock Market Return Volatility: Evidence from India

The Effect of 9/11 on the Stock Market Volatility Dynamics: Empirical Evidence from a Front Line State

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2010, Mr. Ruey S. Tsay. Solutions to Midterm

Lecture 5a: ARCH Models

Chapter 4 Level of Volatility in the Indian Stock Market

International Journal of Business and Administration Research Review. Vol.3, Issue.22, April-June Page 1

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Research Article The Volatility of the Index of Shanghai Stock Market Research Based on ARCH and Its Extended Forms

Steven Trypsteen. School of Economics and Centre for Finance, Credit and. Macroeconomics, University of Nottingham. May 15, 2014.

Conditional Heteroscedasticity

ARCH and GARCH models

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Midterm

Forecasting Stock Index Futures Price Volatility: Linear vs. Nonlinear Models

The Impact of Falling Crude Oil Price on Financial Markets of Advanced East Asian Countries

MODELING EXCHANGE RATE VOLATILITY OF UZBEK SUM BY USING ARCH FAMILY MODELS

Forecasting Volatility of USD/MUR Exchange Rate using a GARCH (1,1) model with GED and Student s-t errors

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2016, Mr. Ruey S. Tsay. Solutions to Midterm

Forecasting the Volatility in Financial Assets using Conditional Variance Models

Cross-Sectional Distribution of GARCH Coefficients across S&P 500 Constituents : Time-Variation over the Period

GARCH Models. Instructor: G. William Schwert

RETURNS AND VOLATILITY SPILLOVERS IN BRIC (BRAZIL, RUSSIA, INDIA, CHINA), EUROPE AND USA

Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics

THE INFORMATION CONTENT OF IMPLIED VOLATILITY IN AGRICULTURAL COMMODITY MARKETS. Pierre Giot 1

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Midterm

Modeling Volatility of Price of Some Selected Agricultural Products in Ethiopia: ARIMA-GARCH Applications

GARCH Models for Inflation Volatility in Oman

Inflation and inflation uncertainty in Argentina,

MODELING VOLATILITY OF BSE SECTORAL INDICES

Equity Price Dynamics Before and After the Introduction of the Euro: A Note*

A market risk model for asymmetric distributed series of return

Implied Volatility v/s Realized Volatility: A Forecasting Dimension

Volume 37, Issue 2. Modeling volatility of the French stock market

Financial Econometrics Lecture 5: Modelling Volatility and Correlation

Modelling Stock Returns Volatility on Uganda Securities Exchange

Return Volatility and Asymmetric News Effect in Sri Lankan Stock Market

INFORMATION EFFICIENCY HYPOTHESIS THE FINANCIAL VOLATILITY IN THE CZECH REPUBLIC CASE

Modeling the volatility of FTSE All Share Index Returns

Model Construction & Forecast Based Portfolio Allocation:

Financial Time Series Analysis (FTSA)

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Midterm

The Efficient Market Hypothesis Testing on the Prague Stock Exchange

Lecture 6: Non Normal Distributions

Modelling and Forecasting Volatility of Returns on the Ghana Stock Exchange Using GARCH Models

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

An Empirical Research on Chinese Stock Market Volatility Based. on Garch

A STUDY ON ROBUST ESTIMATORS FOR GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC MODELS

Variance clustering. Two motivations, volatility clustering, and implied volatility

THE INFLATION - INFLATION UNCERTAINTY NEXUS IN ROMANIA

Amath 546/Econ 589 Univariate GARCH Models

Macroeconomic News, Business Cycles and Australian Financial Markets

Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

Modeling Exchange Rate Volatility using APARCH Models

Time series: Variance modelling

ESTABLISHING WHICH ARCH FAMILY MODEL COULD BEST EXPLAIN VOLATILITY OF SHORT TERM INTEREST RATES IN KENYA.

Lecture 8: Markov and Regime

The Analysis of ICBC Stock Based on ARMA-GARCH Model

Actuarial Model Assumptions for Inflation, Equity Returns, and Interest Rates

THE DYNAMICS OF PRECIOUS METAL MARKETS VAR: A GARCH-TYPE APPROACH. Yue Liang Master of Science in Finance, Simon Fraser University, 2018.

THE DYNAMICS OF THE DOW JONES SUKUK VOLATILITY: EVIDENCE FROM EGARCH MODEL

Volatility Model for Financial Market Risk Management : An Analysis on JSX Index Return Covariance Matrix

Study on Dynamic Risk Measurement Based on ARMA-GJR-AL Model

Does the interest rate for business loans respond asymmetrically to changes in the cash rate?

Chapter 1. Introduction

Comovement of Asian Stock Markets and the U.S. Influence *

Market Risk Management for Financial Institutions Based on GARCH Family Models

Value-at-Risk Estimation Under Shifting Volatility

Recent analysis of the leverage effect for the main index on the Warsaw Stock Exchange

Lecture 9: Markov and Regime

Estimating and forecasting volatility of stock indices using asymmetric GARCH models and Student-t densities: Evidence from Chittagong Stock Exchange

Modeling and Forecasting Volatility in Financial Time Series: An Econometric Analysis of the S&P 500 and the VIX Index.

Modelling Stock Returns Volatility In Nigeria Using GARCH Models

A Study of Stock Return Distributions of Leading Indian Bank s

The Relationship between Inflation, Inflation Uncertainty and Output Growth in India

Does inflation has an impact on Stock Returns and Volatility? Evidence from Nigeria and Ghana

Prerequisites for modeling price and return data series for the Bucharest Stock Exchange

Trading Volume, Volatility and ADR Returns

Expiration-Day Effects of Equity Derivatives in India

Empirical Analysis of Stock Return Volatility with Regime Change: The Case of Vietnam Stock Market

Research on the GARCH model of the Shanghai Securities Composite Index

Asian Economic and Financial Review EXPLORING THE RETURNS AND VOLATILITY SPILLOVER EFFECT IN TAIWAN AND JAPAN STOCK MARKETS

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE MODULE 2

Martingales in Daily Foreign Exchange Rates: Evidence from Six Currencies against the Lebanese Pound

Asian Economic and Financial Review EMPIRICAL TESTING OF EXCHANGE RATE AND INTEREST RATE TRANSMISSION CHANNELS IN CHINA

Financial Econometrics Jeffrey R. Russell Midterm 2014

Forecasting Volatility in the Chinese Stock Market under Model Uncertainty 1

RISK SPILLOVER EFFECTS IN THE CZECH FINANCIAL MARKET

The Variability of IPO Initial Returns

MAGNT Research Report (ISSN ) Vol.6(1). PP , 2019

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Final Exam

Assicurazioni Generali: An Option Pricing Case with NAGARCH

On Risk-Return Relationship: An application of GARCH(p,q) M Model to Asia_Pacific Region

Transcription:

The Great Moderation Flattens Fat Tails: Disappearing Leptokurtosis WenShwo Fang Department of Economics Feng Chia University 100 WenHwa Road, Taichung, TAIWAN Stephen M. Miller* College of Business University of Nevada, Las Vegas 4505 Maryland Parkway Las Vegas, Nevada, USA 89154-6005 stephen.miller@unlv.edu ChunShen Lee Department of Economics Feng Chia University 100 WenHwa Road, Taichung, TAIWAN Abstract Recently, Fagiolo et al. (008) find fat tails in the distribution of economic growth rates after adjusting for outliers, autocorrelation, and heteroskedasticity. This paper employs US quarterly real output growth, showing that this finding of fat tails may reflect the Great Moderation. That is, leptokurtosis disappears after GARCH adjustment once we incorporate the break in the variance equation to account for the Great Moderation. Keywords: JEL classification: real GDP growth, the Great Moderation, leptokurtosis, GARCH models C3; E3; O40 * Corresponding author

1. Introduction In a recent study, assuming that the underlying generating mechanism governing output growth dynamics exhibits time invariance, Fagiolo et al. (008) find that fat tails characterize the output growth rate distribution after adjusting for outliers, autocorrelation, and heteroskedasticity for the US and other OECD countries. Using quarterly real US GDP growth, we show that once we incorporate a structural break in the variance equation for the Great Moderation, fat tails disappear in a simple autoregressive generalized autoregressive conditional heteroskedasticity (AR-GARCH) model, either under symmetric or asymmetric specifications. We specify the AR-GARCH(1,1) model as follows: y t p = a0 + = a y + ε, and ε t = σ tηt, (1) i 1 i t i t σ α + α ε β σ, () t = 0 1 t 1 + 1 t 1 where η t ~ iid(0,1). Bollerslev (1986) introduced this frequently employed specification that models excess kurtosis and volatility clustering in the output growth rate y t. The specification contained in equations (1) and () assumes that positive and negative shocks generate the same effect on volatility, implying a symmetric GARCH. The volatility may respond differently, however, to shocks during periods of rising or falling output growth. To provide a systematic analysis, we also examine the exponential GARCH (EGARCH) introduced by Nelson (1991) as follows: ε ε log σ (3) t 1 t 1 t = α 0 + α1 + α + β1 logσ t 1, σ t 1 σ t 1 where asymmetry exists, if α 0. When α < 0, negative shocks generate higher volatility than positive shocks of the same magnitude, and vice versa, when α > 0. The log transformation guarantees a positive variance.

When modeling real GDP growth in longer sample periods, structural changes in the mean and variance in addition to outliers will occur with a higher probability. Although no evidence of changes in the mean growth exists in studies, McConnell and Perez-Quiros (000) among others, document a structural change in, and a rather dramatic reduction of, the volatility of US GDP growth, called the Great Moderation. The Great Moderation violates the assumption of time invariance imposed by Fagiolo et al. (008). In this study, following Franses and Ghijsels (1999), we first apply the method of Chen and Liu (1993) to detect and correct for additive outliers in GARCH models. We then use the multiple structural change test of Bai and Perron (1998, 003a) to identify breaks in the mean and variance of the growth rate, if any. Finally, we incorporate the changes in the GARCH models to observe the behavior of leptokurtosis. In the application, we provide new evidence that leptokurtosis disappears when the break enters into the variance equation. That is, the finding of fat tails of the growth rate does not prove robust to the structural change in the variance, or the Great Moderation, which researchers, now, commonly recognize.. Data and Empirical Results Output growth rates ( y t ) equal the percentage change in the logarithm of seasonally adjusted quarterly real GDP, which equals nominal GDP deflated by the GDP deflator with base year 000. All data come from the IMF International Financial Statistics (IFS) over the period 1957:1 to 008:1. Applying the method of Chen and Liu (1993) and the procedures developed by Franses and Ghijsels (1999), we find an additive outlier at 1978:, which is the maximum observation in the original growth rate series. Table 1 reports summary statistics for the outlier-corrected growth rate. In Panel A, the skewness statistic displays an asymmetric distribution. The kurtosis 3

statistic exhibits leptokurticity with fat tails. The Jarque-Bera test rejects normality. The Ljung- Box Q-statistics for the growth rates (Q ) and its squared rates ( Q ) indicate autocorrelation and heteroskedasticity up to six lags, suggesting ARMA processes for the mean and the variance equations to capture the dynamic structure and to generate white-noise residuals. We construct an AR model for the mean growth rate. The SBC selects AR() and this process proves adequate to produce uncorrelated residuals. Skewness, kurtosis, and heteroskedasticity, however, remain in the residuals. We adopt a GARCH-type process to capture the time-varying variance. We estimate the GARCH models employing Bollerslev and Wooldridge s (199) quasi-maximum likelihood estimation technique, assuming normally distributed errors and using the BHHH algorithm. In Panels B and C, the fitted GARCH and EGARCH models adequately capture the timeseries properties of the growth rate. That is, the Ljung-Box Q-statistics for standardized residuals and standardized squared residuals, up to 6 lags, do not detect autocorrelation and heteroskedasticity. The residuals, however, exhibit significant leptokurtosis for the two models at the 5- and 10-percent levels. The likelihood ratio (LR) tests for α 1 + β 1 = 1 in the GARCH and β 1 = 1 in the EGARCH process provide another cautionary note in that they do not reject the null hypothesis of an integrated GARCH (IGARCH) effect. The high persistence measures may reflect structural changes in the mean growth rate, its variance, or both, which the GARCH estimations ignore as shown recently by Hillebrand (005) and Krämer and Azamo (007). In sum, the fat tails of the growth rate exist after we adjust for outliers, autocorrelation, and heteroskedasticity in symmetric or asymmetric GARCH models. But, so far, we ignore the Great Moderation. 4

Implementing the test of Bai and Perron (1998, 003a), we find no change in the mean. In Table, Panel A displays the results of testing for breaks in the variance, identifying one, and only one, break in 1984:1. 1 This break date matches that identified by McConnell and Perez- Quiros (000). In Panel B, we conduct a structural stability test, a variance-ratio test for the equality of the unconditional variances between the two sub-periods. A clear, significant decline in the standard deviation of the growth rate occurs from 1.1040 in the pre-1984 sample to 0.4934 in the post-1984 sample. The decline equals 55-percent. As the introduction notes, economists call the substantial drop in the variance of output growth in the period after the break the Great Moderation. To examine the effect of the Great Moderation on leptokurtosis, we include a dummy variable in the conditional variance equation, which equals unity from the break date forward, zero otherwise, in the GARCH and EGARCH processes, respectively, as follows: σ t = α 0 + α1ε 1 1 D t + β σ t 1 + γ, (4) ε ε log σ + t 1 t 1 t = α 0 + α1 + α + β1 logσ D t 1 γ σ t 1 σ t 1, (5) where D = 1 for t > 1984 : 1 ; and 0, otherwise. Since the volatility declines, we expect a significant negative estimate of γ to capture the break in the variance process. Table 3 reports the estimates with the variance dummy variable. The coefficient of the structural dummy (i.e., γ ) proves significantly negative in the variance equation at the 5-percent level. The Ljung-Box Q-statistics show no evidence of autocorrelation and heteroskedasticity. 1 According to Bai and Perron (003b), the sup F (5 0) test proves significant at the 5-percent level for m=5, suggesting the existence of at least one break in the variance. The two double maximum statistics, UD max WD, agree with this result. The test, sup F ( 1) = 1.6396 falls below the critical value, suggesting that a single max structural break exists at 1984:1 with a 95-percent confidence interval [198:4-1989:3]. and 5

The coefficients of skewness and kurtosis prove insignificant. Thus, the residuals conform to a normal distribution. For both the symmetric and the asymmetric GARCH models, these results suggest that the statistical evidence for leptokurtosis in the growth rate may reflect structural change in the variance caused by the Great Moderation. Finally, the significant LR statistics indicate no IGARCH effect. That is, high volatility persistence also reflects the Great Moderation. 3. Conclusion Using GARCH modeling, we show that fat tails of US quarterly real GDP growth rates exist after the adjustments for outliers, autocorrelation, and heteroskedasticity under the assumption of a time invariant volatility. Instability or the Great Moderation, however, governs the variance process. Once we incorporate the break into the variance equation, fat tails in the GARCH residuals disappear. This completes the unfinished tale of leptokurtosis of the output growth rate as told by Fagiolo et al. (008), at least for the US. References Bai, J. and Perron, P., 1998. Estimating and testing linear models with multiple structural changes. Econometrica 66, 47-78. Bai, J. and Perron, P., 003a. Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18, 1-. Bai, J. and Perron, P., 003b. Critical values for multiple structural change tests. Econometrics Journal 6, 7-78. Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-37. 6

Bollerslev, T. and Wooldridge, J. M., 199. Quasi-maximum likelihood estimation and inference in dynamic models with time varying covariance. Econometric Reviews 11, 143-17. Chen, C. and Liu, L., 1993. Joint estimation of model parameters and outlier effects in time series. Journal of the American Statistical Association, 88, 84-97. Fagiolo, G., Napoletano, M., and Roventini, A., 008. Are output growth-rate distributions fattailed? some evidence from OECD countries. Journal of Applied Econometrics 3, 639-669. Franses, P. H. and Ghijsels, H., 1999. Additive outliers, GARCH and forecasting volatility. International Journal of Forecasting 15, 1-9. Hillebrand, E., 005. Neglecting parameter changes in GARCH models. Journal of Econometrics 19, 11-138. Krämer, W. and Azamo, B. T., 007. Structural change and estimated persistence in the GARCH(1,1)-model. Economics Letters 97, 17-3. McConnell, M. M. and Perez-Quiros, G., 000. Output fluctuations in the United States: What has changed since the early 1980 s? American Economic Review 90, 1464-1476. Nelson, D. B., 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59, 347-370. 7

Table 1: Summary Statistics for Quarterly Real GDP Growth, 1957-008 Mean Standard deviation Panel A: Descriptive Statistics Maximum Minimum Skewness Kurtosis Normality test 0.7831 0.8703.730 -.758-0.5644* [0.0010] 1.4517* [0.0000] Q (1) Q () Q (3) Q (4) Q (5) Q (6) 19.867* 7.3615* 7.767* 7.7695* 3.400* 3.9619* [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] Q (1) Q () Q (3) Q (4) Q (5) Q (6) 8.8586* 16.9030* 0.6155* 1.971*.3580*.380* [0.009] [0.000] [0.0001] [0.000] [0.0004] [0.0010] Panel B: GARCH(1,1) Estimates a 0 a 1 a 0.4511* (0.0846) 0.581* (0.0786) 0.1930* (0.0761) β α 0 α 1 1 0.0301* (0.0148) 0.178* (0.080) Q (6) (6) 5.9911 [0.441] 0.7796* (0.09) Q LR Skewness Kurtosis Normality 4.8385 [0.5646] 1.8438 [0.1761] a 0 a 1 a 0.4684* (0.0955) 0.1946* (0.079) 0.0* (0.0740) Panel C: -0.485* [0.0135] α 0 α 1 α 1 β 1.49* 19.3176* [0.0003] [0.0000] EGARCH(1,1) Estimates -0.908* (0.0966) 0.934* (0.0589) -0.0938 (0.0589) 0.9305* (0.0494) Q (6) Q (6) LR Skewness Kurtosis Normality 4.8058 [0.5689] 7.8057 [0.56] 1.9743 [0.1616] -0.15 [0.55] 0.639** [0.0740] 4.7967** [0.0908] Note: 8.7443* [0.0000] We report p-values in brackets; 0.0000 indicates less than 0.00005. The measures of skewness and kurtosis are normally distributed as N ( 0,6 / T ) and N ( 0,4 / T ), respectively, where T equals the number of observations. Q (k ) and Q ( k) equal Ljung-Box Q-statistics, testing for level (standardized residuals) and squared terms (squared standardized residuals) for autocorrelations up to k lags. Standard errors appear in parentheses. The likelihood ratio statistic (LR) tests for α + 1 in GARCH and β 1 = 1 in EGARCH, respectively. * significant at the 5-percent level. ** significant at the 10-percent level. 1 β 1 = 8

Table : Break Date and Structural Stability Test Panel A. Structural Break Test in Variance Sup F( 10) Sup F( 0) Sup F( 3 0) Sup F( 4 0) Sup F( 5 0) UD max WD max 44.869* 3.006* 15.6404* 1.3835* 11.1895* 44.869* 44.869* Sup F( 1) Sup F( 3 ) Sup F( 4 3) Sup F( 5 4) Break date 95% Confidence Interval 1.6396 1.0154 0.7364 0.7119 1984:1 [198:4-1989:3] Panel B. Structural Stability Test Break date Period Mean Standard Deviation Sub-sample 1 vs Sub-sample 1984:1 1957:1-1984:1 1984:-008:1 0.8130 0.7494 1.1040 0.4934 5.0059* [0.0000] Note: Critical values for the structural tests are reported in Bai and Perron (003b). The unconditional variance ratio tests for equality between the sub-samples 1 and, and is asymptotically distributed as F ( df 1, df ), where df denotes the degrees of freedom. The p-value 0.0000 in the bracket indicates less than 0.00005. * significant at the 5-percent level. Table 3: GARCH(1,1) Estimates with Structural Break in Variance a 0 1 0.4638* (0.0793) a 0.139* (0.0714) Panel A: a 0.1770* (0.0715) γ GARCH(1,1) Estimates α 0 α 1 β 1 0.9306* 0.0981 0.1004-0.7754* (0.387) (0.0899) (0.656) (0.801) Q (6) Q (6) LR Skewness Kurtosis Normality.5908 [0.8581] 5.149 [0.578] a 0 1 0.444* (0.087) 9.517* [0.007] Panel B: a a 0.665* (0.0788) 0.1605* (0.0713) -0.169 [0.3481] -0.1508 [0.6670] 1.0850 [0.581] EGARCH(1,1) Estimates α 0 α 1 α β 1 0.075-0.007 0.0848-0.5500 -.5057* (0.17) (0.140) (0.0886) (0.3714) (0.5365) Q (6) Q (6) LR Skewness Kurtosis Normality.403 7.9690 17.4114* -0.645 0.1013.4419 [0.8791] [0.403] [0.0000] [0.176] [0.775] [0.949] Note: See Table 1. * significant at the 5-percent level. γ 9