PLANT DESIGN AND ECONOMICS

Similar documents
Engineering Economy Chapter 4 More Interest Formulas

2/22/2017. Engineering Economics Knowledge. Engineering Economics FE REVIEW COURSE SPRING /22/2017

The Time Value of Money

CHAPTER 4. The Time Value of Money. Chapter Synopsis

CHAPTER 4 SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY APPLICATIONS. Copyright -The Institute of Chartered Accountants of India

Lecture Notes 2. XII. Appendix & Additional Readings

Day Counting for Interest Rate Calculations

Nominal and Effective Interest Rates

Mortgages & Equivalent Interest

A central precept of financial analysis is money s time value. This essentially means that every dollar (or

THREE. Interest Rate and Economic Equivalence CHAPTER

Section 5.1 Simple and Compound Interest

CPT Section D Quantitative Aptitude Chapter 4 J.P.Sharma

CHAPTER 2. Financial Mathematics

(Refer Slide Time: 3:03)

4. INTERMEDIATE EXCEL

Math 147 Section 6.4. Application Example

LESSON 2 INTEREST FORMULAS AND THEIR APPLICATIONS. Overview of Interest Formulas and Their Applications. Symbols Used in Engineering Economy

Mathematics for Economists

SECURITY VALUATION BOND VALUATION

IE463 Chapter 2. Objective. Time Value of Money (Money- Time Relationships)

Financial Management Masters of Business Administration Study Notes & Practice Questions Chapter 2: Concepts of Finance

Lesson 39 Appendix I Section 5.6 (part 1)

CH0401 Process Engineering Economics. Lecture 1c. Balasubramanian S. Department of Chemical Engineering SRM University

Chapter 3 Mathematics of Finance

Midterm Review Package Tutor: Chanwoo Yim

FINAN303 Principles of Finance Spring Time Value of Money Part B

4: Single Cash Flows and Equivalence

Intermediate Excel. Winter Winter 2011 CS130 - Intermediate Excel 1

Intermediate Excel. Combination Cell References A B C D E =A1/$A$ =A$1*$B4+B2 3 =A1+A

The Theory of Interest

Chapter 2 Time Value of Money ANSWERS TO END-OF-CHAPTER QUESTIONS

FinQuiz Notes

A Refresher on Engineering Economics

Future Value of Multiple Cash Flows

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

Mathematics of Finance

The Time Value. The importance of money flows from it being a link between the present and the future. John Maynard Keynes

The three formulas we use most commonly involving compounding interest n times a year are

1. Draw a timeline to determine the number of periods for which each cash flow will earn the rate-of-return 2. Calculate the future value of each

SOLUTION METHODS FOR SELECTED BASIC FINANCIAL RELATIONSHIPS

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Time Value of Money and Economic Equivalence

Full file at

Bond Valuation. Capital Budgeting and Corporate Objectives

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Perpetuity It is a type of annuity whose payments continue forever.

Cash Flow and the Time Value of Money

Chapter 16. Managing Bond Portfolios

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

1. (a) Explain fire and explosion hazards. (b) Discuss preservation and control of Mechanical, Electrical and Chemical hazards.

3: Balance Equations

Math116Chap10MathOfMoneyPart2Done.notebook March 01, 2012

Key Concepts. Some Features of Common Stock Common Stock Valuation How stock prices are quoted Preferred Stock

Dr. Maddah ENMG 400 Engineering Economy 07/06/09. Chapter 5 Present Worth (Value) Analysis

4.1 Exponential Functions. Copyright Cengage Learning. All rights reserved.

Chapter 1. 1) simple interest: Example : someone interesting 4000$ for 2 years with the interest rate 5.5% how. Ex (homework):

SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS. EXAM FM SAMPLE QUESTIONS Interest Theory

Note on Present Value

Debt. Last modified KW

Chapter 7: Random Variables

MA162: Finite mathematics

Engineering Economics

Survey of Math Chapter 21: Savings Models Handout Page 1

Convenience Yield Calculator Version 1.0

Introduction to Bonds. Part One describes fixed-income market analysis and the basic. techniques and assumptions are required.

Chapter 03 - Basic Annuities

Introduction to the Hewlett-Packard (HP) 10B Calculator and Review of Mortgage Finance Calculations

MFE8812 Bond Portfolio Management

Financial Mathematics I Notes

Lectures 2-3 Foundations of Finance

YIELDS, BONUSES, DISCOUNTS, AND

TIME VALUE OF MONEY. Lecture Notes Week 4. Dr Wan Ahmad Wan Omar

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

APPM 2360 Project 1. Due: Friday October 6 BEFORE 5 P.M.

COPYRIGHTED MATERIAL. Time Value of Money Toolbox CHAPTER 1 INTRODUCTION CASH FLOWS

SECURITY ANALYSIS AND PORTFOLIO MANAGEMENT. 2) A bond is a security which typically offers a combination of two forms of payments:

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Lectures 1-2 Foundations of Finance

Introduction. Deriving the ADF For An Ordinary Annuity

Interest Formulas. Simple Interest

Arithmetic. Mathematics Help Sheet. The University of Sydney Business School

3. Time value of money. We will review some tools for discounting cash flows.

Profitability Estimates

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis

FE Review Economics and Cash Flow

1 Cash-flows, discounting, interest rates and yields

CHAPTER 4 TIME VALUE OF MONEY

Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 1

The Theory of Interest

Chapter 04 - More General Annuities

Chapter 2: BASICS OF FIXED INCOME SECURITIES

Stat 274 Theory of Interest. Chapter 1: The Growth of Money. Brian Hartman Brigham Young University

3. Time value of money

Exponential functions: week 13 Business

Time Value of Money. Part III. Outline of the Lecture. September Growing Annuities. The Effect of Compounding. Loan Type and Loan Amortization

Department of Humanities. Sub: Engineering Economics and Costing (BHU1302) (4-0-0) Syllabus

(Refer Slide Time: 2:20)

Transcription:

(7) PLANT DESIGN AND ECONOMICS Zahra Maghsoud ٢ INTEREST AND INVESTMENT COSTS (Ch. 7 Peters and Timmerhaus ) Engineers define interest as the compensation paid for the use of borrowed capital. This definition permits distinction between profit and interest. ١

TYPES OF INTEREST ٣ Interest Simple Interest Compound Interest Continuous Interest Ordinary and Exact Simple Interest 1-Simple Interest ۴ The simplest form of interest requires compensation payment at a constant interest rate based only on the original principal. Thus, if $1000 were loaned for a total time of 4 years at a constant interest rate of 10 percent/year, the simple interest earned would be: 400 $ =1000$ x 0.1 x 4 I = P x i x n The amount of simple interest Principal number of time units Interest rate ٢

1-Simple Interest ۵ The entire amount S of principal plus simple interest due after n interest periods is: S=P + I = P(1+in) simple interest For calculation of the compound interest, It is assumed that the interest is not withdrawn but is added to the principal and then in the next period interest is calculated based upon the principal plus the interest in the preceding period. 2-Compound Interest ۶ Thus, an initial loan of $1000 at an annual interest rate of 10 percent would require payment of $100 as interest at the end of the first year. The interest for the second year would be ($1000 + $100)(0.1) = $110 and the total compound amount due after 2 years would be $1000 + $100 + $110 = $1210 ٣

2-Compound Interest ٧ The compound amount due after any discrete number of interest periods can be determined as follows: 2-Compound Interest ٨ Therefore, the total amount of principal plus compounded interest due after n interest periods and designated as S is: S = P(1+i) n The term (1+i) n is commonly referred to as the discrete single-payment compound-amount factor. Values for this factor at various interest rates and numbers of interest periods are given in Table 1. ۴

2-Compound Interest ٩ NOMINAL AND EFFECTIVE INTEREST RATES ١٠ There are cases where time units other than 1 year are employed. Even though the actual interest period is not 1 year, the interest rate is often expressed on an annual basis. Consider an example in which the interest rate is 3 percent per period and the interest is compounded at half-year periods. A rate of this type would be referred to as 6 percent compounded semiannually. Interest rates stated in this form are known as nominal interest rates. ۵

NOMINAL AND EFFECTIVE INTEREST RATES ١١ The actual annual return on the principal would not be exactly 6 percent but would be somewhat larger because of the compounding effect at the end of the semiannual period. It is desirable to express the exact interest rate based on the original principal and the convenient time unit of 1 year. NOMINAL AND EFFECTIVE INTEREST RATES ١٢ A rate of this type is known as the effective interest rate. In common engineering practice, it is usually preferable to deal with effective interest rates rather than with nominal interest rates. The only time that nominal and effective interest rates are equal is when the interest is compounded annually. ۶

NOMINAL AND EFFECTIVE INTEREST RATES ١٣ Nominal interest rates should always include a qualifying statement indicating the compounding period. For example, using the common annual basis, $100 invested at a nominal interest rate of 20 percent if compounded annually would amount to $120.00 after 1 year; compounded semiannually, the amount would be $121.00; compounded continuously, the amount would be $122.14. The corresponding effective interest rates are 20.00 percent, 21.00 percent, and 22.14 percent, respectively. NOMINAL AND EFFECTIVE INTEREST RATES ١۴ Let r be the nominal interest rate under conditions where there are m interest periods per year. ٧

Applications of different types of interest ١۵ Example 1 It is desired to borrow $1000 to meet a financial obligation. This money can be borrowed from a loan agency at a monthly interest rate of 2 percent. Determine the following: a)the total amount of principal plus simple interest due after 2 years if no intermediate payments are made. b)the total amount of principal plus compounded interest due after 2 years if no intermediate payments are made. c)the nominal interest rate when the interest is compounded monthly. d)the effective interest rate when the interest is compounded monthly. 3- Continuous Interest ١۶ Although in practice the basic time interval for interest accumulation is usually taken as one year, shorter time periods can be used as, for example, one month, one day, one hour, or one second. The extreme case, of course, is when the time interval becomes infinitesimally small so that the interest is compounded continuously. ٨

3- Continuous Interest ١٧ r.n S=P e Calculations with continuous interest compounding ١٨ Example 2. For the case of a nominal annual interest rate 20.00 percent, determine: The total amount to which one dollar of initial principal would accumulate after one 365-day year with daily compounding. The total amount to which one dollar of initial principal would accumulate after one year with continuous compounding. The effective annual interest rate if compounding is continuous. ٩

Present Worth and Discount ١٩ It is often necessary to determine the amount of money which must be available at the present time in order to have a certain amount accumulated at some definite time in the future. The present worth (or present value) of a future amount is the present principal which must be deposited at a given interest rate to yield the desired amount at some future date. Present Worth and Discount ٢٠ S = P(1+i) n Therefore, the present worth can be determined by merely rearranging the above Equation: Present worth: P = S/(1+i) n The factor 1/(1+i) n is commonly referred to as the discrete single-payment present-worth factor. Similarly, for the case of continuous interest compounding: Present worth: P = S/e rn ١٠

Present Worth and Discount ٢١ Some types of capital are in the form of bonds having an indicated value at a future date. In business terminology, the difference between the indicated future value and the present worth (or present value) is known as the discount. Determination of present worth and discount ٢٢ Example 4 A bond has a maturity value of $1000 at an effective annual rate of 3 percent. Determine the following at a time four years before the bond reaches maturity value: a) Present worth. b) Discount. c) Discrete compound rate of effective interest which will be received by a purchaser if the bond were obtained for $700. d) Repeat part (a) for the case where the nominal bond interest is 3 percent compounded continuously. ١١

Annuities ٢٣ An annuity (R) is a series of equal payments occurring at equal time intervals. Payments of this type can be used to pay off a debt, accumulate a desired amount of capital. An annuity term is the time from the beginning of the first payment period to the end of the last payment period. Relation between Amount of Ordinary Annuity and the Periodic Payments ٢۴ The first payment of R is made at the end of the first period and will bear interest for n - 1 periods. The second payment of R is made at the end of the second period and will bear interest for n - 2 periods giving an accumulated amount of R(1+i) n-2. By definition, the amount of the annuity is the sum of all the accumulated amounts from each payment. ١٢

Relation between Amount of Ordinary Annuity and the Periodic Payments ٢۵ Continuous Cash Flow and Interest Compounding Let represent the total of all ordinary annuity payments occurring regularly and uniformly throughout the year so that /m is the uniform annuity payment at the end of each period. ٢۶ Continuous Cash Flow and Interest Compounding For the case of continuous cash flow and interest compounding, m approaches infinity ١٣

Present Worth of an Annuity ٢٧ The present worth of an annuity is defined as the principal which would have to be invested at the present time at compound interest rate i to yield a total amount at the end of the annuity term equal to the amount of the annuity. + Present Worth of an Annuity ٢٨ The expression [(l + i) n - l]/[i(l + i) n ] is referred to as the discrete uniform-series present-worth factor or the series present-worth factor. while the reciprocal [i(l + i) n ]/[(l + i) n - l] is often called the capital-recovery factor. ١۴

Present Worth of an Annuity ٢٩ For the case of continuous cash flow and interest compounding: + Application of annuities in determining amount of depreciation with discrete interest compounding. ٣٠ Example 5 A piece of equipment has an initial installed value of $12,000. It is estimated that its useful life period will be 10 years and its scrap value at the end of the useful life will be $2000. The depreciation will be charged by making equal charges each year, the first payment being made at the end of the first year. The depreciation fund will be accumulated at an annual interest rate of 6 percent. At the end of the life period, enough money must have been accumulated to account for the decrease in equipment value. Determine the yearly cost due to depreciation under these conditions. ١۵

Application of annuities in determining amount of depreciation with continuous cash flow and interest compounding. ٣١ Example 6 Repeat Example 5 with continuous cash flow and nominal annual interest of 6 percent compounded continuously. PERPETUITIES AND CAPITALIZED COSTS ٣٢ A perpetuity is an annuity in which the periodic payments continue indefinitely. This type of annuity is of particular interest to engineers, for in some cases they may desire to determine a total cost for a piece of equipment or other asset under conditions which permit the asset to be replaced perpetually without considering inflation or deflation. ١۶

PERPETUITIES AND CAPITALIZED COSTS ٣٣ useful-life:10 years equipment Capitalized cost $12,000 + $12650 supply $10,000 every 10 years scrap value: $2000 ($12,650)(1 + 0.06) 10 = $22,650 Needed fund: $12,650 PERPETUITIES AND CAPITALIZED COSTS ٣۴ S = P(1+i) n C R =S-P K: capitalized cost C R : Replacement cost C V : original cost ١٧

Determination of capitalized cost ٣۵ Example 7 A new piece of completely installed equipment costs $12,000 and will have a scrap value of $2000 at the end of its useful life. If the useful-life period is 10 years and the interest is compounded at 6 percent per year, what is the capitalized cost of the equipment? ٣۶ Comparison of alternative investments using capitalized costs Example 8. A reactor, which will contain corrosive liquids, has been designed. If the reactor is made of mild steel, the initial installed cost will be $5000, and the useful-life period will be 3 years. Since stainless steel is highly resistant to the corrosive action of the liquids, stainless steel, as the material of construction, has been proposed as an alternative to mild steel. The stainless-steel reactor would have an initial installed cost of $15,000. The scrap value at the end of the useful life would be zero for either type of reactor, and both could be replaced at a cost equal to the original price. On the basis of equal capitalized costs for both types of reactors, what should be the useful-life period for the stainless-steel reactor if money is worth 6 percent compounded annually? ١٨

Example 8 ٣٧ the useful-life period of the stainless-steel reactor should be 11.3 years for the two types of reactors to have equal capitalized costs. If the stainless-steel reactor would have a useful life of more than 11.3 years, it would be the recommended choice, while the mild-steel reactor would be recommended if the useful life using stainless steel were less than 11.3 years. ٣٨ RELATIONSHIPS FOR CONTINUOUS CASH FLOW AND CONTINUOUS INTEREST OF IMPORTANCE FOR PROFITABILITY ANALYSES The fundamental relationships dealing with continuous interest compounding can be divided into two general categories: 1. Those that involve instantaneous or lump-sum payments, such as a required initial investment or a future payment that must be made at a given time 2. Those that involve continuous payments or continuous cash flow, such as construction costs distributed evenly over a construction period. ١٩

RELATIONSHIPS FOR CONTINUOUS CASH FLOW AND CONTINUOUS INTEREST ٣٩ The symbols S, P, and R represent discrete lump-sum payments as future worth, present principal (or present worth), and end-of-period (or end-of-year) payments, respectively. A bar above the symbol, such as,, or, means that the payments are made continuously throughout the time period under consideration. For example, consider the case where construction of a plant requires a continuous flow of cash to the project for one year, with the plant ready for operation at the end of the year of construction. RELATIONSHIPS FOR CONTINUOUS CASH FLOW AND CONTINUOUS INTEREST ۴٠ The symbol represents the total amount of cash put into the project on the basis of one year with a continuous flow of cash. At the end of the year, the compound amount of this is The future worth of the plant construction cost after n years with continuous interest compounding is: ٢٠

Discount and compounding factors ۴١ F d ۴٢ For the case of continuous cash flow declining to zero at a constant rate over a time period of n T the linear equation for R is g = the constant declining rate or the gradient Ř = instantaneous value of the cash flow a = a constant A situation similar to this exists when the sum-ofthe years-digits method is used for calculating depreciation ٢١

Table 3 ۴٣ Compounding factors ۴۴ ٢٢

۴۵ PROBLEMS (Ch 7) ۴۶ ٢٣