Rational Infinitely-Lived Asset Prices Must be Non-Stationary

Similar documents
RATIONAL BUBBLES AND LEARNING

BROWNIAN MOTION Antonella Basso, Martina Nardon

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

BROWNIAN MOTION II. D.Majumdar

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ

4 Martingales in Discrete-Time

Econ Financial Markets Spring 2011 Professor Robert Shiller. Problem Set 3 Solution

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4

Consumption and Portfolio Choice under Uncertainty

Time Resolution of the St. Petersburg Paradox: A Rebuttal

then for any deterministic f,g and any other random variable

16 MAKING SIMPLE DECISIONS

Asymptotic results discrete time martingales and stochastic algorithms

The Value of Information in Central-Place Foraging. Research Report

CAPITAL BUDGETING IN ARBITRAGE FREE MARKETS

True versus Measured Information Gain. Robert C. Luskin University of Texas at Austin March, 2001

Prediction Market Prices as Martingales: Theory and Analysis. David Klein Statistics 157

Energy Price Processes

Finite Population Dynamics and Mixed Equilibria *

Markets Do Not Select For a Liquidity Preference as Behavior Towards Risk

A note on sufficient conditions for no arbitrage

ARCH and GARCH Models vs. Martingale Volatility of Finance Market Returns

Econometrica Supplementary Material

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

4 Reinforcement Learning Basic Algorithms

The Fallacy of Large Numbers

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

LECTURE 1 : THE INFINITE HORIZON REPRESENTATIVE AGENT. In the IS-LM model consumption is assumed to be a

Some simple Bitcoin Economics

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 4: May 2, Abstract

Martingale Measure TA

The Fallacy of Large Numbers and A Defense of Diversified Active Managers

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

An Introduction to Stochastic Calculus

February 23, An Application in Industrial Organization

Trying to Measure Sunk Capital

EFFICIENT MARKETS HYPOTHESIS

16 MAKING SIMPLE DECISIONS

Chapter 1 Microeconomics of Consumer Theory

Accounting for Employee Stock Options

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

The value of foresight

Stock Price Behavior. Stock Price Behavior

Self-organized criticality on the stock market

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability

Risk Aversion, Stochastic Dominance, and Rules of Thumb: Concept and Application

Drunken Birds, Brownian Motion, and Other Random Fun

X i = 124 MARTINGALES

An Adaptive Learning Model in Coordination Games

Maturity, Indebtedness and Default Risk 1

Option Pricing under Delay Geometric Brownian Motion with Regime Switching

In the Name of God. Sharif University of Technology. Graduate School of Management and Economics

VOLATILITY FORECASTING IN A TICK-DATA MODEL L. C. G. Rogers University of Bath

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

Edgeworth Binomial Trees

Review of key points about estimators

Math-Stat-491-Fall2014-Notes-V

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

17 MAKING COMPLEX DECISIONS

Fiscal and Monetary Policies: Background

CONVERTIBLE BONDS IN SPAIN: A DIFFERENT SECURITY September, 1997

Aggregation with a double non-convex labor supply decision: indivisible private- and public-sector hours

BEEM109 Experimental Economics and Finance

Econ 8602, Fall 2017 Homework 2

On Forchheimer s Model of Dominant Firm Price Leadership

1 Asset Pricing: Replicating portfolios

Advanced Macroeconomics 5. Rational Expectations and Asset Prices

Discussion. Benoît Carmichael

Economics 430 Handout on Rational Expectations: Part I. Review of Statistics: Notation and Definitions

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Random Walk for Stock Price

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for

Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

1.1 Interest rates Time value of money

Equivalence between Semimartingales and Itô Processes

1 The continuous time limit

Notation. P τ. Let us assume that the prices and the interest rates follow a stationary stochastic process.

Infinitely Repeated Games

Valuation and Tax Policy

Transport Costs and North-South Trade

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

Homework Assignments

Correlation vs. Trends in Portfolio Management: A Common Misinterpretation

Martingales. by D. Cox December 2, 2009

Chapter 4. Determination of Income and Employment 4.1 AGGREGATE DEMAND AND ITS COMPONENTS

Probability Models.S2 Discrete Random Variables

18. Forwards and Futures

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES

Characterization of the Optimum

4: SINGLE-PERIOD MARKET MODELS

The Fisher Equation and Output Growth

GEK1544 The Mathematics of Games Suggested Solutions to Tutorial 3

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

On Existence of Equilibria. Bayesian Allocation-Mechanisms

1 Precautionary Savings: Prudence and Borrowing Constraints

Market interest-rate models

Remarks on Probability

Transcription:

Rational Infinitely-Lived Asset Prices Must be Non-Stationary By Richard Roll Allstate Professor of Finance The Anderson School at UCLA Los Angeles, CA 90095-1481 310-825-6118 rroll@anderson.ucla.edu November 1, 2000 Abstract Rational expectations must not be expected to change. Hence, a rational expectation about a future random quantity must follow a pure martingale until the uncertainty is resolved. This implies that the expectation itself could be non-stationary and, in fact, is non-stationary if the increments are iid. Most asset prices are functions of expectations about future quantities, so asset prices also could be non-stationary. This has consequences for tests based on prices rather than on returns. Acknowledgement The author is grateful for stimulating discussions with Stephen Ross and for helpful comments from John Cochrane, Robert Geske, Jun Liu, and Eduardo Schwartz. Rational Infinitely-Lived Assets Must be Non-Stationary, R. Roll, November 1, 2000

I. Stochastic Processes for Rational Expectations. If an expectation is expected to change, it cannot be rational (Samuelson [1965]). The explanation is simple: altering an expectation is costless, so if it is expected to change in the future, rationality requires a revision now. An elementary form of this idea can be illustrated as follows: Imagine thatv ~ is some stochastic (denoted by ~) quantity that will revealed for certain n periods from the current period t. Its current expectation is denoted E t (V ~ t+n). Rationality requires that future expectations not be expected to change; i.e., that E t [ E ~ t+j(v ~ t+n)] = E t (V ~ t+n), 0<j<n. Since this condition holds for j=1, the general discrete stochastic process for rational expectations can be written E t ( E ~ t+1) = E t, (1) where the dependence on future V ~ has been notationally suppressed for convenience. Expression (1) describes a pure martingale sequence for rational expectations. Its equivalent ex post form is E t+1 = E t + ε t+1 (2) where ε t+1 has mean zero and cov(ε t+j, ε t )=0 for j 0. In the special case when ε is iid, (2) describes a random walk, which is non-stationary and thus requires special empirical methods. More generally, process (2) could be non-stationary even if the increments are not identically distributed as, for example, when their volatility is stochastic but bounded away from zero. Note that non-stationarity is a direct consequence of rationality and hence uncorrelated innovations in expectations. 1

II. An Application to Forward Rates. Even the above primitive form of the rational expectations property has application to some long-cherished models in finance. My first example involves a theory of forward and spot foreign exchange rates. The unbiased forward rate hypothesis states E t ( S ~ t+n) = F t,n (3) where F t,n is the forward rate on a date t contract to deliver foreign exchange n periods in the future and S t+n is the spot exchange rate on date t+n. There is no risk premium, hence no bias, according to this hypothesis. Rational expectations requires the same condition to hold in each future period before t+n, so for successive periods, E t [ E ~ t+1( S ~ t+n)] = E t ( F ~ t+1,n-1) = F t,n (4) which shows that the sequence of forward exchange rates is a martingale. Another example is the pure expectations hypothesis of the term structure of interest rates. It has exactly the same algebraic form and therefore implies that the sequence of forward interest rates pertaining to the same future spot loan period must follow a pure martingale. These simple models of forward rate expectations can be augmented by the addition of risk premiums, possibly non-constant. In the case of foreign exchange, one can simply add the premium, say π t, to (4) and write it in ex post form as F t+1,n-1 = F t,n + π t + ε t+1. (5) Process (5) could conceivably be stationary, but only if the ex ante risk premium moves inversely with the level of F t,n and eventually dominates the innovations represented by ε t+1, the unanticipated alterations in expectations. If the variability in risk premiums is small relative to the volatility in the innovations, (5) could be non-stationary. This seems likely because forward rates are very noisy, far too noisy to be dominated by slowly varying risk premiums except near expiration when the volatility of ε vanishes. 2

III. Long-lived Assets. A typical stock or bond is algebraically more complex since it emits stochastic cash flows over extended periods. For simplicity of illustration, assume first that the discount rate (or required return) is a constant for all time. The standard discounted cash flow approach gives the asset s value on date t as V t = (C ~ j d E t t+ j) (6) Where d is the (constant) discount factor and C t+j is a cash outflow on date t+j. j Given a constant discount factor, the same cash flow formula applies in each successive period; i.e., E t ( V ~ ) = j ~ (C~ )] t+ 1 d E t[ Et+ 1 t+ 1+ j. (7) Applying the principle of rational expectations and simplifying, (7) can be reduced to j E t ( V ~ + t+ 1 C ~ ) = V t+ 1 t/d. (8) In structure, expression (8) is similar to the forward exchange rate sequence with a risk premium discussed above. It differs in only two respects. First, the current asset value is multiplied by 1/d, which would exceed unity in all but pathological cases. Second, there is a stochastic cash flow in the next period added to the asset s value on the left side. To make things even easier for illustration, imagine that this asset will emit no cash flows in the immediate future. In this special case, the ex post process is V t+1 = V t /d + ε t+1, (9) a submartingale in V (because d<1). If ε happens to be iid, process (9) is obviously nonstationary and even explosive. The submartingale described by (8) is stationary if the price is bounded. Moreover, the convergence would be quite rapid if (a) successive values of the cash flows attenuated the 3

process, or (b) the stochastic innovations in expectations vanished over time. For a zerocoupon bond, the stochastic innovations would in fact vanish at the maturity date. Expressions (6) and (7) can be easily generalized to allow for maturity-dependent and stochastic discount factors. This would not, however, negate the general strong tendency for rational expectations to imply near non-stationarity unless the discount factors varied inversely with the level of asset prices. IV. A General and Disturbing Property of Rational Expectations. A martingale may or may not be stationary. If its increments are iid, then it becomes a non-stationary random walk. But there are other possibilities; for example, its increments could have declining volatility over time. As volatility vanishes the process ultimately anchors to some realized value, constant and trivially stationary. This would be true for forward exchange rates or interest rates. They must eventually equal a realized future spot rate. Whether or not they behave as a non-stationary process prior to that realization is an intriguing empirical question. When a martingale sequence continues indefinitely, it can still be stationary. This is true even for a submartingale, which has positive drift. The martingale convergence theorem, Durrett [1996, p. 235], states that a submartingale sequence converges almost surely to a fixed finite value provided that its maximal expected positive value is bounded below +. 1 It may be hard to visualize an economic time series, even infinitely long, which does not satisfy this last condition. It may seem unthinkable that infinity is the maximal expected value of any economic series though of course this cannot be ruled out logically in an infinitely long universe. Even if the series is bounded, convergence could take quite a while and the near-term path could be arbitrarily close to and virtually impossible to distinguish from a true non-stationary process. 1 This result is not very intuitive. To understand it, one must remember that a martingale s increments are uncorrelated. If a series is bounded, either it displays mean reversion and therefore does not have uncorrelated increments or it must eventually cleave to a fixed finite value. 4

Yet it seems even more difficult to accept the astonishing economic implication of the martingale convergence theorem that a bounded series eventually settles down to a constant value. Such super-stationary is decidedly not characteristic of the typically noisy economic time series. In general then, with rational expectations there are three possibilities: (1) the series of expectations is subject to a stationary terminal condition at a finite time; (2) the series is infinitely lived and, being bounded, converges to a constant; (3) the series is nonstationary. The first possibility applies to all assets with finite expiration dates; e.g., forward rates, derivatives, bonds. For the second condition to prevail, we must imagine some future date beyond which there is no longer any volatility in the series. This seems quite implausible for most infinitely-lived economic variables such as GNP or stock prices. Hence, we are left with the third possibility as the most likely model for their expectations. Note that martingales admit no intermediate limiting distribution; if bounded they converge to a constant while if unbounded they cannot be covariance stationary. For infinitely lived assets such as equities, there is probably no diminution over time in the size of stochastic innovations in expectations. Moreover, to the extent that cash flows such as dividends are fractions of the expected price appreciation, it seems plausible that processes analogous to (8), even if discount rates vary through time, could be nonstationary. This suggests that tests employing functions of prices, such as size, marketto-book ratios, dividend yields, and similar constructs, should be interpreted with caution. Non-stationary processes often display seemingly bizarre behavior and can easily conjure up the specter of an anomaly. But caution is not outright condemnation. Even if prices are non-stationary, dividend yields, for example, would pose few empirical difficulties so long as dividends are also non-stationary and are cointegrated with prices. Moreover, since returns are essentially first differences in prices, they should be stationary. 5

In conclusion, there seem to be no really appealing choices for processes to describe infinitely-lived asset price levels under rational expectations. Convergence to a fixed price has never been witnessed but non-stationarity seems equally bizarre and implausible. If neither condition is deemed acceptable, the alternative is irrational expectations. In that case, anything is possible. References Durrett, Richard, 1996, Probability: Theory and Examples, 2 nd Wadsworth.) edition, (Belmont: Samuelson, Paul A., 1965, Proof that Properly Anticipated Prices Fluctuate Randomly, Industrial Management Review 6, (Spring), 41-49. 6