A note on sufficient conditions for no arbitrage

Similar documents
Necessary and Sufficient Conditions for No Static Arbitrage among European Calls

The Forward PDE for American Puts in the Dupire Model

Option Pricing under Delay Geometric Brownian Motion with Regime Switching

CONSISTENCY AMONG TRADING DESKS

Pricing Exotic Options Under a Higher-order Hidden Markov Model

ECON FINANCIAL ECONOMICS

How do Variance Swaps Shape the Smile?

Factor Models for Option Pricing

Learning Martingale Measures to Price Options

Local vs Non-local Forward Equations for Option Pricing

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1.

Local Variance Gamma Option Pricing Model

CAPITAL BUDGETING IN ARBITRAGE FREE MARKETS

Basic Concepts in Mathematical Finance

Asset Pricing(HON109) University of International Business and Economics

Using the Risk Neutral Density to Verify No Arbitrage in Implied Volatility by Fabrice Douglas Rouah

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Journal of Mathematical Analysis and Applications

A generalized coherent risk measure: The firm s perspective

In Discrete Time a Local Martingale is a Martingale under an Equivalent Probability Measure

Asset Pricing Theory PhD course at The Einaudi Institute for Economics and Finance

Pricing of options in emerging financial markets using Martingale simulation: an example from Turkey

A Note on the No Arbitrage Condition for International Financial Markets

Predicting the Market

ECON FINANCIAL ECONOMICS

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures

A Lower Bound for Calls on Quadratic Variation

Fixed-Income Securities Lecture 5: Tools from Option Pricing

Equivalence between Semimartingales and Itô Processes

Consistency of option prices under bid-ask spreads

No ANALYTIC AMERICAN OPTION PRICING AND APPLICATIONS. By A. Sbuelz. July 2003 ISSN

Hedging and Pricing in the Binomial Model

Pricing Option CGMY model

A model for a large investor trading at market indifference prices

From Discrete Time to Continuous Time Modeling

Asset Pricing Theory PhD course The Einaudi Institute for Economics and Finance

TAX BASIS AND NONLINEARITY IN CASH STREAM VALUATION

Changes of the filtration and the default event risk premium

Bruno Dupire April Paribas Capital Markets Swaps and Options Research Team 33 Wigmore Street London W1H 0BN United Kingdom

Equilibrium Asset Pricing: With Non-Gaussian Factors and Exponential Utilities

The Notion of Arbitrage and Free Lunch in Mathematical Finance

Rational Infinitely-Lived Asset Prices Must be Non-Stationary

Conserving Capital by adjusting Deltas for Gamma in the presence of Skewness

Risk Neutral Pricing. to government bonds (provided that the government is reliable).

A Study on Numerical Solution of Black-Scholes Model

No-Arbitrage Conditions for a Finite Options System

Non-Equivalent Martingale Measures: An Example

Simulating Continuous Time Rating Transitions

Chapter 1. Introduction and Preliminaries. 1.1 Motivation. The American put option problem

On the valuation of the arbitrage opportunities 1

The Yield Envelope: Price Ranges for Fixed Income Products

sample-bookchapter 2015/7/7 9:44 page 1 #1 THE BINOMIAL MODEL

On Forchheimer s Model of Dominant Firm Price Leadership

Optimal Option Pricing via Esscher Transforms with the Meixner Process

A New Tool For Correlation Risk Management: The Market Implied Comonotonicity Gap

Options Strategies. Liuren Wu. Options Pricing. Liuren Wu ( c ) Options Strategies Options Pricing 1 / 19

Numerical Solution of BSM Equation Using Some Payoff Functions

Pricing with a Smile. Bruno Dupire. Bloomberg

Risk, Return, and Ross Recovery

Arbitrage and Asset Pricing

based on two joint papers with Sara Biagini Scuola Normale Superiore di Pisa, Università degli Studi di Perugia

O N MODEL UNCERTAINTY IN

Valuation in Illiquid Markets

Fast Convergence of Regress-later Series Estimators

BPHD Financial Economic Theory Fall 2013

The Game-Theoretic Framework for Probability

COMP331/557. Chapter 6: Optimisation in Finance: Cash-Flow. (Cornuejols & Tütüncü, Chapter 3)

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Performance Measurement with Nonnormal. the Generalized Sharpe Ratio and Other "Good-Deal" Measures

Review for Quiz #2 Revised: October 31, 2015

Pricing Dynamic Solvency Insurance and Investment Fund Protection

RISK NEUTRAL PROBABILITIES, THE MARKET PRICE OF RISK, AND EXCESS RETURNS

Risk Aversion, Stochastic Dominance, and Rules of Thumb: Concept and Application

Numerical Evaluation of Multivariate Contingent Claims

Mathematics in Finance

Model Estimation. Liuren Wu. Fall, Zicklin School of Business, Baruch College. Liuren Wu Model Estimation Option Pricing, Fall, / 16

Hedging Credit Derivatives in Intensity Based Models

4: SINGLE-PERIOD MARKET MODELS

Continuous time Asset Pricing

HEDGING BY SEQUENTIAL REGRESSION : AN INTRODUCTION TO THE MATHEMATICS OF OPTION TRADING

Valuing power options under a regime-switching model

Option Pricing Model with Stepped Payoff

Hedging Derivative Securities with VIX Derivatives: A Discrete-Time -Arbitrage Approach

Credit Risk in Lévy Libor Modeling: Rating Based Approach

AMH4 - ADVANCED OPTION PRICING. Contents

6: MULTI-PERIOD MARKET MODELS

Pricing of a European Call Option Under a Local Volatility Interbank Offered Rate Model

One COPYRIGHTED MATERIAL. Option Pricing and Volatility Modeling. PART

The Notion of Arbitrage and Free Lunch in Mathematical Finance

CHAPTER 1 Introduction to Derivative Instruments

due Saturday May 26, 2018, 12:00 noon

Robust Trading of Implied Skew

3 Arbitrage pricing theory in discrete time.

Evaluation of Credit Value Adjustment with a Random Recovery Rate via a Structural Default Model

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +...

Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model

Towards a Theory of Volatility Trading. by Peter Carr. Morgan Stanley. and Dilip Madan. University of Maryland

Viability, Arbitrage and Preferences

ISSN BWPEF Uninformative Equilibrium in Uniform Price Auctions. Arup Daripa Birkbeck, University of London.

Transcription:

Finance Research Letters 2 (2005) 125 130 www.elsevier.com/locate/frl A note on sufficient conditions for no arbitrage Peter Carr a, Dilip B. Madan b, a Bloomberg LP/Courant Institute, New York University, 499 Park Avenue, New York, NY 10022, USA b Robert H. Smith School of Business, Van Munching Hall, University of Maryland, College Park, MD 20742, USA Received 22 May 2004; accepted 29 April 2005 Available online 15 June 2005 Abstract It is shown that the absence of call spread, butterfly spread and calendar spread arbitrages is sufficient to exclude all static arbitrages from a set of option price quotes across strikes and maturities on a single underlier. 2005 Elsevier Inc. All rights reserved. JEL classification: G10; G12; G13; G14 Keywords: Markov martingales; Matching marginals; Call spread; Butterfly spread; Calendar spread 1. Introduction The absence of arbitrage opportunities is a fundamental principle underlying the modern theory of financial asset pricing. In particular, this concept is intrinsic to the statement of the first fundamental theorem due to Harrison and Kreps (1979), Harrison and Pliska (1981), and Delbaen and Schachermayer (1994). These authors establish conditions and exact definitions under which the absence of arbitrage opportunities is equivalent to the existence of an equivalent martingale measure. In a continuous time setting, it can actually be quite difficult to confidently establish whether or not the given prices of a given set of assets are arbitrage-free. The reason is that * Corresponding author. E-mail address: dbm@rhsmith.umd.edu (D.B. Madan). 1544-6123/$ see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.frl.2005.04.005

126 P. Carr, D.P. Madan / Finance Research Letters 2 (2005) 125 130 the definition of an arbitrage opportunity depends critically on the nature of the information set which can be used in developing trading strategies in the specified assets. Likewise, the associated continuous time martingales are defined through conditional expectations which rely on the same informational basis. Typically, this informational basis includes the entire path of past underlying asset prices at a minimum. Hence, to certify that a given set of asset prices are arbitrage-free in continuous time, the structure of the possible price paths must be specified a priori. For example, one must specify whether the possible price paths are purely continuous, pure jump, or a combination of the two. One must also specify whether the possible price paths display finite or infinite variation over time. Since one can only observe past prices in practice and then only discretely, it is difficult to have any confidence in any particular structure which is imposed on future paths. Nonetheless, a certification that a given set of asset prices is arbitrage-free in the traditional sense does require this specification of the nature of the possible price paths. One way out of this difficulty is to alter the technical definition of an arbitrage opportunity. By reducing the size of the information set upon which trading strategies can rely, it becomes easier to certify that a given set of asset prices are free of these restricted arbitrage opportunities. A concrete example of such a restricted set of trading strategies is given in Carr, Géman, Madan and Yor (2003) (henceforth CGMY). These authors introduce the phrase static arbitrage to describe a much simpler concept of an arbitrage opportunity. Parsing this phrase, the arbitrage part refers as usual to a costless trading strategy which at some future time provides a positive profit with positive probability, but has no possibility of a loss. The static part of the phrase signifies that the position taken in the underlying stock at a particular time can only depend on the time and on the contemporaneous stock price. Positions cannot depend on past prices or their path properties. CGMY establish the equivalence of no static arbitrage with the existence of a Markov martingale in some information filtration. This martingale is used to price the assets just at the initial time by discounting the expected cash flow under this process. Assuming that the initial market prices of a given set of European calls are free of static arbitrage, Madan and Yor (2002) go beyond the CGMY existence result by providing several concrete constructions of Markov martingales which are consistent with these prices. The CGMY results suggest a related problem which is of considerable practical interest. This problem is to determine whether or not a given rectangular grid of European option prices quoted across several strikes and maturities is in fact free of static arbitrage. Many specific arbitrages are known due to the seminal results of Merton (1973) and others, but it is still unclear at this relatively late date whether the elimination of these known arbitrages is sufficient to exclude all static arbitrages. The limited but useful contribution of this short note is to establish the structure of a finite set of tests that do in fact imply that all of the option quotes are free of static arbitrage. If the given option quotes pass our set of tests, then no further tests need to be conducted in order to certify that the quotes are free of static arbitrage. A critical step in the formation of our tests requires the extraction of risk-neutral probability measures at each maturity from quoted option prices. This fundamental idea is essentially due to Breeden and Litzenberger (1978). The extraction of these measures is followed by establishing sufficient conditions for these measures to be increasing in the convex order as described in Shaked and Shantikumar (1994). We next appeal to Kellerer

P. Carr, D.P. Madan / Finance Research Letters 2 (2005) 125 130 127 (1972) who establishes that these conditions are equivalent to the existence of a Markov martingale with the same marginals as those extracted from option prices. The filtration for this martingale includes price paths and hence the current price. Standard results then imply that there are no static arbitrage opportunities. We note that Kellerer s results are also implicit in the earlier works in economics on increasing risk published in Rothschild and Stiglitz (1970, 1971). The structure of this note is as follows. Section 2 establishes sufficient conditions for the existence of a risk-neutral probability measure at each maturity. Section 3 lists sufficient conditions for these measures to be increasing in the convex order. Section 3 also shows that our set of tests are jointly sufficient to establish that the provided option quotes are free of static arbitrage. Section 4 concludes. 2. The price grid and marginal probabilities We suppose that at some fixed time, we have been given several market quotes for European call options arranged on a rectangular grid. More specifically, the quotes are for a countably infinite collection of discrete strikes and for each strike, the quotes are for a common set of maturities which are finite in number. We recognize that the assumed regularity of the provided data may fail to hold in practice, but we regard the issue of missing data as an alternative problem. Let C ij denote the given quote for a call of strike K i, i = 1,...,, and maturity T j, j = 1,...,M. We suppose that the strikes K i form an increasing and positive sequence as do the maturities T j. We also suppose that the strikes tend to infinity as i tends to infinity. We require that the given call prices tend to zero as the strike becomes infinite. Furthermore, we suppose that interest rates and dividends are zero over the period ending at the longest maturity. We augment the provided call quotes with quotes for calls of strikes K 0 0. For each maturity, these additional quotes are taken to be S 0, the current spot price. We also take the prices at maturity T 0 = 0to be (S 0 K i ) +, i = 1,...,. This gives us the augmented matrix of prices C ij, with now i = 0,..., and j = 0,...,M. Suppose that for each j >0, we define the following quantities: C i 1,j C i,j Q i,j, i >0, Q 0,j 1. (1) K i K i 1 For each i > 0, Q i,j is clearly the cost of a vertical spread which by definition is long 1/(K i K i 1 ) calls of strike K i 1 and short 1/(K i K i 1 ) calls of strike K i. A graph of the payoff from this position against the terminal stock price indicates that this payoff is bounded below by zero and above by one. We therefore require for our first test that Q i,j [0, 1] for all i, j. Next, for each j >0, we define the following quantities: K i+1 K i 1 K i K i 1 BS i,j C i 1,j C i,j + C i+1,j, i >0. K i+1 K i K i+1 K i For each i >0, BS i,j is clearly the cost of a butterfly spread which by definition is long the call struck at K i 1, short (K i+1 K i 1 )/(K i+1 K i ) calls struck at K i, and long

128 P. Carr, D.P. Madan / Finance Research Letters 2 (2005) 125 130 (K i K i 1 )/(K i+1 K i ) calls struck at K i+1. A graph quickly indicates that the butterfly spread payoff is nonnegative and hence our second test requires that K i+1 K i 1 K i K i 1 C i 1,j C i,j + C i+1,j 0. K i+1 K i K i+1 K i Equivalently, we require that K i K i 1 C i 1,j C i,j (C i,j C i+1,j ). (2) K i+1 K i It follows from (1) and (2) that the risk-neutral complementary distribution functions are declining at each maturity: Q i,j Q i+1,j, i,j 0. Given that the call quotes pass both tests, suppose we now define C i 1,j C i,j C i,j C i+1,j q i,j Q i,j Q i+1,j =, K i K i 1 K i+1 K i i = 1,...,. (3) The sequence of nonnegative numbers q i, i = 1,...,, defines a probability mass func tion (PMF) since i=1 q i,j = 1. We may interpret each q i,j as the marginal risk-neutral probability that the stock price at maturity T j equals K i for i = 1,...,. Furthermore, (3) implies that the risk-neutral complementary distribution function can be recovered from the risk-neutral PMF by Q i,j = q k,j, i,j > 0. k=i Summarizing to this point, we have imposed two tests on the provided call quotes. Assuming that the quotes pass both tests, the quotes have been manipulated in a standard way to yield the marginal risk-neutral probabilities of the stock price being at level K i at time T j for all i, j 0. We may now define the call pricing function on the continuum of strikes K 0 for each discrete maturity T j by C j (K) (K l K) + q l,j. l The call prices obtained in this way linearly interpolate the provided call quotes. For future use, we also associate with each maturity a risk-neutral probability measure defined by Q j (K) = q l,j. K l K As K increases from 0, this measure will be piecewise constant and increasing from 0 to 1.

P. Carr, D.P. Madan / Finance Research Letters 2 (2005) 125 130 129 3. The convex order As a third and final test on the provided call quotes, we require that for each discrete strike K i, i 0, and each discrete maturity T j, j 0: C i,j 1 C i,j 0 +, i,j 0. (4) The left-hand side of (4) is clearly the cost of a calendar spread consisting of long one call of maturity T j + 1 and short one call of maturity T j, with both calls struck at K i. Hence, our third test requires that calendar spreads comprised of adjacent maturity calls are not negatively priced at each maturity. As the call pricing functions are linear interpolations of the provided quotes, we have that at each maturity T j, calendar spreads are not negatively priced for the continuum of strikes K>0. Since all convex payoffs may be represented as portfolios of calls with nonnegative weights, it follows that all convex functions φ(s) are priced higher when promised at T j + 1 than when they are promised at T j. In turn, this ordering implies that the risk-neutral probability measures Q j (K) constructed in the last section are increasing in the convex order with respect to the index j. By the results of Kellerer (1972), it follows that there exists a discrete time Markov martingale M j with E[M j 1 M j ]=M j, + such that all of the call prices satisfy [ ] + C j (K) = E (M j K), K >0, j = 0, 1,...,m. This further implies that there exists a martingale measure which is consistent with the call quotes and which is defined on some filtration that includes at least the stock price and time. Finally, it follows that the provided call quotes are free of static arbitrage by standard results in arbitrage pricing theory. 4. Conclusion This short note has shown that a rectangular grid of European call quotes are free of static arbitrage if all adjacent vertical spreads, butterfly spreads, and calendar spreads are nonnegatively priced. The result relies on deep results on constructing Markov martingales which match given marginals when the latter are found to be increasing in the convex order. These results go back to the work of Rothschild and Stiglitz (1970, 1971) in economics and Kellerer (1972) in probability theory. Although both of these works are widely cited in their respective fields, their relevance for option pricing has not been previously highlighted to our knowledge. The current note rectifies this oversight by drawing attention to these papers and linking them to other well-known results in the option pricing literature.

130 P. Carr, D.P. Madan / Finance Research Letters 2 (2005) 125 130 References Breeden, D., Litzenberger, R., 1978. Prices of state contingent claims implicit in option prices. Journal of Business 51, 621 651. Carr, P., Géman, H., Madan, D.B., Yor, M., 2003. Stochastic volatility for Lévy processes. Mathematical Finance 13, 345 382. Delbaen, F., Schachermayer, W., 1994. A general version of the fundamental theorem of asset pricing. Mathematische Annalen 300, 463 520. Harrison, J., Kreps, D., 1979. Martingales and arbitrage in multiperiod securities markets. Journal of Economic Theory 20, 381 408. Harrison, M., Pliska, S., 1981. Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and Their Applications 11, 215 260. Kellerer, H.G., 1972. Markov-Komposition und eine Anwendung auf Martingale. Mathematische Annalen 198, 99 122. Madan, D.B., Yor, M., 2002. Making Markov martingales meet marginals. Bernoulli 8, 509 536. Merton, R.C., 1973. Theory of rational option pricing. Bell Journal of Economics and Management Science 4, 141 183. Rothschild, M., Stiglitz, J.E., 1970. Increasing risk: I. A definition. Journal of Economic Theory 2, 225 243. Rothschild, M., Stiglitz, J.E., 1971. Increasing risk: II. Its economic consequences. Journal of Economic Theory 3, 66 84. Shaked, M., Shantikumar, J.G., 1994. Stochastic Orders and Their Applications. Academic Press, San Diego.