Recalling that private values are a special case of the Milgrom-Weber setup, we ve now found that

Similar documents
Up till now, we ve mostly been analyzing auctions under the following assumptions:

ECO 426 (Market Design) - Lecture 9

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012

Day 3. Myerson: What s Optimal

October An Equilibrium of the First Price Sealed Bid Auction for an Arbitrary Distribution.

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

Notes on Auctions. Theorem 1 In a second price sealed bid auction bidding your valuation is always a weakly dominant strategy.

Auctions: Types and Equilibriums

1 Theory of Auctions. 1.1 Independent Private Value Auctions

Recap First-Price Revenue Equivalence Optimal Auctions. Auction Theory II. Lecture 19. Auction Theory II Lecture 19, Slide 1

Microeconomic Theory III Spring 2009

Auctions. Agenda. Definition. Syllabus: Mansfield, chapter 15 Jehle, chapter 9

ECO 426 (Market Design) - Lecture 8

So we turn now to many-to-one matching with money, which is generally seen as a model of firms hiring workers

March 30, Why do economists (and increasingly, engineers and computer scientists) study auctions?

(v 50) > v 75 for all v 100. (d) A bid of 0 gets a payoff of 0; a bid of 25 gets a payoff of at least 1 4

ECON Microeconomics II IRYNA DUDNYK. Auctions.

An Empirical Study of an Auction with Asymmetric Information. Kenneth Hendricks and Robert Porter

Signaling in an English Auction: Ex ante versus Interim Analysis

Auctions. Michal Jakob Agent Technology Center, Dept. of Computer Science and Engineering, FEE, Czech Technical University

Multiunit Auctions: Package Bidding October 24, Multiunit Auctions: Package Bidding

Auctioning a Single Item. Auctions. Simple Auctions. Simple Auctions. Models of Private Information. Models of Private Information

Auction is a commonly used way of allocating indivisible

Revenue Equivalence and Income Taxation

Parkes Auction Theory 1. Auction Theory. Jacomo Corbo. School of Engineering and Applied Science, Harvard University

Revenue Equivalence and Mechanism Design

Auctions. Microeconomics II. Auction Formats. Auction Formats. Many economic transactions are conducted through auctions treasury bills.

Bayesian games and their use in auctions. Vincent Conitzer

When we did independent private values and revenue equivalence, one of the auction types we mentioned was an all-pay auction

Optimal Auctions. Game Theory Course: Jackson, Leyton-Brown & Shoham

Auctions. Economics Auction Theory. Instructor: Songzi Du. Simon Fraser University. November 17, 2016

Games of Incomplete Information ( 資訊不全賽局 ) Games of Incomplete Information

Stochastic Games and Bayesian Games

Chapter 3. Dynamic discrete games and auctions: an introduction

Independent Private Value Auctions

Game Theory Lecture #16

KIER DISCUSSION PAPER SERIES

Bids as a Vehicle of (Mis)Information: Collusion in English Auctions with Affiliated Values

Auction. Li Zhao, SJTU. Spring, Li Zhao Auction 1 / 35

Bayesian Nash Equilibrium

CS364B: Frontiers in Mechanism Design Lecture #18: Multi-Parameter Revenue-Maximization

CUR 412: Game Theory and its Applications, Lecture 4

Auctions. Michal Jakob Agent Technology Center, Dept. of Computer Science and Engineering, FEE, Czech Technical University

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

Auctions in the wild: Bidding with securities. Abhay Aneja & Laura Boudreau PHDBA 279B 1/30/14

Auctions. N i k o l a o s L i o n i s U n i v e r s i t y O f A t h e n s. ( R e v i s e d : J a n u a r y )

CUR 412: Game Theory and its Applications, Lecture 4

Econ 101A Final exam Mo 18 May, 2009.

Problem Set 3: Suggested Solutions

Auction Theory: Some Basics

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria

Prof. Bryan Caplan Econ 812

Game Theory Problem Set 4 Solutions

2 Comparison Between Truthful and Nash Auction Games

Auctions. Episode 8. Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto

January 26,

EconS Games with Incomplete Information II and Auction Theory

ECON20710 Lecture Auction as a Bayesian Game

Auctioning one item. Tuomas Sandholm Computer Science Department Carnegie Mellon University

Topics in Contract Theory Lecture 6. Separation of Ownership and Control

Auctions. MSc Finance Theory of Finance 1: Financial Topics Autumn Arup Daripa Birkbeck College. The background

Corporate Control. Itay Goldstein. Wharton School, University of Pennsylvania

Auction theory. Filip An. U.U.D.M. Project Report 2018:35. Department of Mathematics Uppsala University

Econ 101A Final exam May 14, 2013.

All Equilibrium Revenues in Buy Price Auctions

ESSAYS ON THE ECONOMICS OF INFORMATION IN AUCTIONS

Auction types. All Pay Auction: Everyone writes down a bid in secret. The person with the highest bid wins. Everyone pays.

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours

Sequential Auctions, Price Trends, and Risk Preferences

Games with Private Information 資訊不透明賽局

EC476 Contracts and Organizations, Part III: Lecture 3

Comparing Allocations under Asymmetric Information: Coase Theorem Revisited

Practice Problems 2: Asymmetric Information

Auctions 1: Common auctions & Revenue equivalence & Optimal mechanisms. 1 Notable features of auctions. use. A lot of varieties.

Is Japanese Dutch Auction Unreasonable?: A Note on Dutch Auction with Mari

Experiments on Auctions

Columbia University. Department of Economics Discussion Paper Series. Bidding With Securities: Comment. Yeon-Koo Che Jinwoo Kim

Matching Markets and Google s Sponsored Search

Econ 101A Final exam May 14, 2013.

G5212: Game Theory. Mark Dean. Spring 2017

A theory of initiation of takeover contests

Efficiency in auctions with crossholdings

AUCTIONEER ESTIMATES AND CREDULOUS BUYERS REVISITED. November Preliminary, comments welcome.

Claremont McKenna College. Stochastically Equivalent Sequential Auctions with Multi-Unit Demands. Submitted to. Professor Yaron Raviv.

Lecture 6 Applications of Static Games of Incomplete Information

Auctions. Book Pages Auction. Auction types. Rules to Auctions

CS364A: Algorithmic Game Theory Lecture #3: Myerson s Lemma

by open ascending bid ("English") auction Auctioneer raises asking price until all but one bidder drops out

Graduate Macro Theory II: Two Period Consumption-Saving Models

Last-Call Auctions with Asymmetric Bidders

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2

PAULI MURTO, ANDREY ZHUKOV. If any mistakes or typos are spotted, kindly communicate them to

University of Hong Kong

PAULI MURTO, ANDREY ZHUKOV

We examine the impact of risk aversion on bidding behavior in first-price auctions.

Auditing in the Presence of Outside Sources of Information

1 Intro to game theory

Social Network Analysis

without transaction costs, all government allocations are equally efficient, since parties will bargain to correct any externality.

ISSN BWPEF Uninformative Equilibrium in Uniform Price Auctions. Arup Daripa Birkbeck, University of London.

Transcription:

Econ 85 Advanced Micro Theory I Dan Quint Fall 27 Lecture 12 Oct 16 27 Last week, we relaxed both private values and independence of types, using the Milgrom- Weber setting of affiliated signals. We found that maximal-information button auctions revenue-dominated minimal-information button auctions, which dominated sealed-bid first-price auctions; and that revealing his own information was, in expectation, also beneficial to the seller. Recalling that private values are a special case of the Milgrom-Weber setup, we ve now found that Risk-aversion favors the first-price over the ascending auction......but affiliation of signals favors the ascending over the first price To try to capture the benefits of both and to avoid a couple other problems we ll look at shortly Paul Klemperer proposed a hybrid of the two auction types, called an Anglo- Dutch Auction. An Anglo-Dutch auction works like this. Suppose there are N bidders. Hold an ascending auction until all but two of the bidders have dropped out. Then hold a first-price auction among between the two remaining bidders, with the reserve price equal to the price at which the third-to-last bidder dropped out. The first stage can be thought of as information extraction, since the actual types of the N 2 lowest bidders are revealed by their equilibrium play. (This information revelation was what led the max-information button auction to dominate the others under risk neutrality.) But then holding a sealed-bid auction among the last two bidders gives some of the benefits of a first-price auction under risk-aversion. (Using a sealed-bid auction for the final stage also solves two other problems we ll come to later: the existence of lowrevenue alternative equilibria in the ascending auction, and the relative ease of collusion.) I sent out a link last week to a short note by Dan Levin and Lixin Ye, Hybrid Auctions Revisited, which is forthcoming in Economics Letters. They show an example of a setting with affiliated private values and risk-averse bidders. They also generalize Klemperer s Anglo-Dutch auction by allowing the ascending portion to end with more than two bidders remaining (holding a sealed-bid first-price auction among anywhere between 2 and N 1 survivors). The Levin and Ye example uses a common technique for generating positively-correlated signals: conditional independence. They assume an unobserved but stochastic state of the world V, drawn from the uniform distribution on the interval [v, v]. Conditional on a realized state V = v, bidder valuations x i are then uniform draws on the interval [v ɛ, v+ɛ]. 1

They implement risk-aversion using a particular utility function, the Constant Relative Risk Aversion utility u(y) = y 1 ρ for ρ [, 1). It is so named because the coefficient of relative risk aversion, y u (y) u (y) turns out to be equal to ρ everywhere, therefore constant. Levin and Ye consider hybrid (Anglo-Dutch) auctions where an ascending auction is held until k bidders have dropped out, and then a first-price auction is held among the remaining N k bidders. The results they find are as follows: For any realization of v, the expected revenue in any hybrid auction is at least as high as it would be in an English (pure ascending) auction. In their example, the optimal hybrid auction is when k = 1, that is, the ascending portion should only continue until one bidder drops out. (This doesn t seem to be very general seems related to the assumption of uniform distributions.) For ρ sufficiently large large (bidders sufficiently risk-averse), the first-price auction dominates the optimal hybrid auction for most realizations of v, and therefore in expectation On the other hand, for ρ sufficiently small, the optimal hybrid auction dominates the first-price auction (This last point: we know the optimal hybrid auction revenue-dominates the ascending auction with max info; and we know from Milgrom-Weber that when ρ =, the ascending dominates the first-price. So this last result is by continuity.) So they find that the optimal hybrid auction dominates the pure ascending auction, but that whether the hybrid or the first-price is better depends on the degree of risk aversion. 2

Common Value Auctions Another special case of the Milgrom and Weber setup is the case of common values. That is, settings where at any realized type profile, all bidders have the same valuation for the object v i (t) = v j (t) (These are sometimes called pure common values, to differentiate them from settings with common and private components.) Common values are commonly used to model Natural resource auctions. The value of leases to drill for oil and natural gas depend on the amount underground, which is not known precisely until it is extracted. The value of rights to log in federally-owned forests depends on the number of type of trees, which can similarly only be estimated. Corporate takeovers. The value of a company is the discounted value of future profits, and may not depend much on who owns the company. Spectrum auctions. The value of rights to parts of the wireless spectrum may depend more on the overall profitability of the cell phone and other industries, more than the particulars of which company controls what. In all these cases, uncertainty about the object s actual value may dwarf differences in expost value to the different bidders, so common values might be a reasonable approximation of the truth. (Thursday, we ll come back to the question of whether close is close enough.) Drainage Tract Auctions For today, we ll focus on an early common-values model, the Drainage Tract model. The model was created in the late 196s, to model first-price auctions for offshore oil drilling rights. A drainage tract is a tract next to one that is already being drilled by an oil company. Thus, in drainage tract auctions, one company is expected to have better information about the true value of the land than its competitors. (The company with the neighboring tract, and therefore the better information, is referred to as the neighbor.) The model is credited to Bob Wilson, but with a different bidding procedure. Equilibrium bidding in a conventional first-price auction is analyzed in a paper by Richard Englebrecht-Wiggans, Paul Milgrom, and Robert Weber, and further in another paper by Milgrom and Weber. Drainage tract auctions were also examined empirically by Ken Hendricks, Robert Porter, and Charles Wilson, who found that nearly all the theoretical predictions of the model held empirically, with one exception; they introduced a change to the model that fixed that theoretical prediction to match the data. The model assumes there is just one neighbor, that is, just one firm with an informational advantage. They assume that the non-neighbors have no private information, only access 3

to the public information that all of them (and the neighbor) can see; and that the neighbor has access to some additional relevant private information. For the analysis of equilibrium play, it is without loss of generality to assume that the neighbor knows the value exactly, since all that matters is its expected value conditioned on all available information, all of which the neighbor is assumed to have. Non-neighbors, who know nothing, will turn out to play mixed strategies in equilibrium. However, it helps to assume that they get an uninformative private signal, and play an equilibrium strategy that is increasing in that signal. Assume the neighbor is bidder 1. We assume that all bidders get independent signals t i, which are normalized to be drawn from the uniform distribution on [, 1], and that the value of the object to whoever wins it is v(t 1 ), where v is increasing. (Independence of signals is not a meaningful assumption here, since all signals but t 1 are simply randomizing devices for bidders playing mixed strategies.) Equilibrium is easiest to describe with just one non-neighbor: Theorem 1. Suppose v is continuous, differentiable, nondecreasing, and has a positive right-hand derivative at. If N = 2, the first-price auction in this setting has a unique equilibrium. The neighbor bids β(s) = E(v(t 1 ) t 1 < s) = 1 s s v(r)dr The non-neighbor bids uses the same bid function as a function of his own signal, and gets expected profit of regardless of his bid. That is, the unique equilibrium of the drainage tract has the informed bidder bidding an increasing function of his information, and the uninformed bidder playing a mixed strategy with exactly the same distribution of bids. First, we prove this is an equilibrium; then that it is unique. Consider first the uninformed bidder. At any bid x = β(y), the uninformed bidder wins whenever β(t 1 ) < β(y), for t 1 < y. Thus, when he wins, he pays β(y) for an object worth, in expectation, E (v(t 1 ) t 1 < y) = β(y) so his expected payoff is. Bidding less than β() wins with probability, and bidding above β(1) is dominated by bidding β(1), so bidding β(t 2 ) is a best-response. Next, the informed bidder. Assume his true type is t 1, his opponent bids according to β, and he chooses to bid β(t) for some t [, 1]. Then his expected payoff is t(v(t 1 ) β(t)) since he wins whenever t 2 < t. Differentiating gives his first-order condition v(t 1 ) β(t) tβ (t) 4

This should equal at t = t 1, so Integrating from with respect to t 1 gives v(t 1 ) = β(t 1 ) + t 1 β (t 1 ) = d dt (t 1β(t 1 )) x v(t 1 )dt 1 = xβ(x) giving the same bid function β as the solution to the FOC. β is increasing, and since it satisfies the first-order condition, it satisfies the envelope condition; so it is a best-response among possible bids β(y). Bids below β() or above β(1) are dominated, and so it s an equilibrium strategy. To show uniqueness, note that any equilibrium bid functions β 1 and β 2 for the two bidders must have the same range, and that range must be convex otherwise some type could lower his bid without lowering his chance of winning. Bidder 2 must play a mixed strategy with no point masses, or else bidder 1 will have no best-response at certain types (he ll want to outbid the mass by the minimum amount). Since bidder 2 mixes, he must get the same expected payoff from every bid; but his lowest bid must win with probability, so he must get expected payoff of whatever he bids. This means that the expected value of v(t 1 ), conditional on β 1 (t 1 ) < x, must be equal to x; or β 1 1 (x) (v(t 1 ) x)dt 1 = Plug in x = β 1 (r), since x must be within the range of β 1, and we find or β 1 (r) = 1 r bidder. r (v(t 1 ) β 1 (r))dt 1 = r v(t 1)dt 1. So this is the only possible equilibrium strategy for the informed The first-order condition of bidder 1 s optimization problem, along with the boundary condition β 1 (1) = β 2 (1), establish that this is also the only strategy for the uninformed bidder that makes β 1 the neighbor s best-response. When N > 2, equilibrium is very similar: Theorem 2. When N > 3, a set of bidding functions (β 1, β 2,..., β N ) are an equilibrium if and only if and the probability distribution of β 1 (t 1 ) = 1 t1 v(s)ds t 1 max{β 2 (t 2 ),..., β N (t N )} is the same as the probability distribution of β 1 (t 1 ). 5

The proofs are basically the same. The non-neighbors still get expected profits of conditional on winning, so they can mix in any way that collectively gives the neighbor the right incentives. This equilibrium characterization establishes some very strong theoretical predictions about drainage tract auctions: The distributions of the neighbor s bids should be the same as the distribution of the highest non-neighbor bid, and should not depend on the number of non-neighbors participating in the auction Non-neighbors should average profits when they win; neighbors should earn positive profits when they win Hendricks, Porter and Wilson examined a large number of actual drainage tract auctions held between 1959 and 1979, and found the following: When there were multiple neighbors, generally only one of them bid on a particular tract, so the model with just one neighbor fit fairly well (likely due to collusion) Winning neighbors got average ex-post profits of 18% of their bid; winning nonneighbors got average ex-post profits of approximately their bid (therefore net profits) The distribution of the neighbor s bid and the highest non-neighbor s bid match up almost perfectly at the high end, but the non-neighbor s distribution is too high at the low end To fix the low end of the distribution, Hendricks Porter and Wilson modified the model to allow for a random reserve price, which could be correlated with the true value; and found that the data fit the model fairly well. Given the somewhat surprising predictions, and the fact that they were borne out by the data, the drainage tract model is generally considered to be a smashing success. 6

The Value of Information Milgrom and Weber, in The Value of Information in a Sealed-Bid Auction, analyze the sensitivity of expected payoffs in drainage tract auctions to changes in the information setup. Many of the results in one of my working papers (which we ll look at in a couple weeks) are extensions of these results to more general common value auctions. Everything here is done assuming only one non-neighbor, but many of the results extend. First, we can calculate the expected payoffs of the neighbor. If the non-neighbor bids using β, the probability of winning given a bid of b is Pr(β(t 2 ) < b) = Pr(t 2 < β 1 (b)) = β 1 (b), so and therefore V 1 (t 1 ) = max(v(t 1 ) b)β 1 (b) b V 1(t 1 ) = v (t 1 )β 1 (b) evaluated at b = β(t 1 ), or V 1 = t 1v (t 1 ). By symmetry, a neighbor with type wins with probability in equilibrium, so V 1 () =, so V (t 1 ) = t1 sv (s)ds We can do a change of variables with w = v(s), and then V (t 1 ) = where F is the distribution of v(t 1 ). v(t1 ) F (w)dw We can also take the expected value of this (by integrating over v(t 1 ) with its corresponding density) and find that E t1 V (t 1 ) = v(t1 ) (1 F (w))f (w)dw Now suppose that there are two signals available, X and Y, about the value the object. Theorem 3. Let A be expected payoffs to the neighbor if it s common knowledge that he knows only X B be expected payoffs to neighbor if he knows X and Y but the non-neighbor bids as if he only knows X C be expected payoffs to neighbor if it s common knowledge he knows X and Y Then C B A. him. B A is obvious, since the neighbor could pretend he didn t know Y if it doesn t help 7

To see that C B, we ll actually show that expected payoffs are weakly higher at each realized value of v = E(V X, Y ) Let F X be the distribution of E(V X), and F XY the distribution of E(V X, Y ). Expected payoffs in case B, at a given realization v, are v F X (w)dw This is because once I calculate E(V X, Y ), my expected payoff is just based on that value and the bid distribution I m up against, which is the same as in auction A. On the other hand, given v, my expected payoff is v F XY (w)dw in case C. Iterated expectations show that E(V X = x) = E y X=x E(V X = x, Y = y) or to put it another way, if we define Z = E(V X = x) E(V X = x, Y = y) then E(Z X) = for all X. So F XY is a mean-preserving spread of F X ; and therefore by second-order stochastic dominance, v F XY (s)ds v F X (s)ds so C B at any realized value v. Taking the expectation over v finishes the proof. So more information is better for the neighbor; and it s even better when the neighbor knows you have better information. Intuitively, this is because when the neighbor is better informed, the non-neighbor faces a more severe winner s curse, and therefore has to bid more cautiously, which is good for the neighbor. Now look at it from the uninformed bidder s side: Theorem 4. Suppose it s common knowledge that the neighbor knows X and Y. non-neighbor does better learning Y and keeping it secret than learning Y publicly. The If the non-neighbor learns Y publicly, we re back in the situation where the neighbor has some private information (X) and the non-neighbor has only public information, so the non-neighbor still gets expected payoff. On the other hand, if the non-neighbor learns Y secretly, then in some cases, he can get positive expected payoffs. For instance, if E(V Y ) > E(V ) 8

that is, if Y increases the expected value of V, the non-neighbor can guarantee an expected payoff of the difference E(V Y ) E(V ) by bidding at the top of the neighbor s range and always winning. Finally, suppose the neighbor knows X and the seller knows Y. Here, the result is more ambiguous. Milgrom and Weber decompose the seller s expected gain from revealing Y to both bidders into two effects, a publicity effect and a weighting effect. The publicity effect is that, if X and Y are correlated, then revealing Y gives away some information about X as well, making it less private and therefore less valuable. So the publicity effect always favors revealing the information. The weighting effect is that knowing Y can make E(V ) either more or less sensitive to X, and can therefore increase or decrease the value of knowing X. For instance, suppose V = X + ɛ. Knowing ɛ may make knowledge of X more valuable, which would make X and ɛ informational complements. On the other hand, X and Y can be informational substitutes if knowing Y makes V less sensitive to X. (Formal definition in Milgrom book, or in Milgrom Weber.) The publicity effect always favors revealing Y, just like it did in the ascending auctions we studied last week. The weighting effect can go in either direction. But: Theorem 5. If (X, Y, V ) affiliated, then publicly announcing Y increases the seller s expected revenue. (If bidder 1 already knows both X and Y, then revealing Y always increases the seller e expected revenue.) (Like last week s results with revealing t, all these are ex ante results that is, committing ahead of time to always revealing Y dominates (or in some cases, doesn t dominate) planning to never reveal Y. If the seller could selectively reveal Y, or better yet, lie about Y, things change.) Today, we saw a particular common values setting with a unique equilibrium in the first-price auction. Thursday, we ll see that second-price auctions with common values tend to admit multiple equilibria, and that a small private-value advantage for one bidder can have an explosive effect on equilibrium outcomes (Klemperer s Almost Common Values paper). In addition, the drainage tract auction with one non-neighbor featured a surprising type of symmetry: even though the bidders were asymmetrically informed, they ended up having the same equilibrium bid distributions. This turns out to hold in some other types of common-value auctions as well, and we ll look at a couple of those. 9