Section Compound Interest

Similar documents
Sections F.1 and F.2- Simple and Compound Interest

6.1 Simple and Compound Interest

Section 5.1 Compound Interest

SECTION 6.1: Simple and Compound Interest

Simple Interest: Interest earned on the original investment amount only. I = Prt

Using the Finance Menu of the TI-83/84/Plus calculators

Section 5.1 Compound Interest

The TVM Solver. When you input four of the first five variables in the list above, the TVM Solver solves for the fifth variable.

Simple Interest: Interest earned on the original investment amount only

The values in the TVM Solver are quantities involved in compound interest and annuities.

Math Week in Review #10

Chapter 3 Mathematics of Finance

A mortgage is an annuity where the present value is the amount borrowed to purchase a home

Sample Investment Device CD (Certificate of Deposit) Savings Account Bonds Loans for: Car House Start a business

Chapter 4 Real Life Decisions

Financial institutions pay interest when you deposit your money into one of their accounts.

Example. Chapter F Finance Section F.1 Simple Interest and Discount

Unit 9: Borrowing Money

KEY CONCEPTS. A shorter amortization period means larger payments but less total interest

TVM Appendix: Using the TI-83/84

7.5 Amount of an Ordinary Annuity

Math 166: Topics in Contemporary Mathematics II

The Regular Payment of an Annuity with technology

Definition: The exponential functions are the functions of the form f(x) =a x,wherethe base a is a positive constant with a 6= 1.

F.3 - Annuities and Sinking Funds

When changing any conditions of an investment or loan, the amount or principal will also change.

7.7 Technology: Amortization Tables and Spreadsheets

Simple Interest. Simple Interest is the money earned (or owed) only on the borrowed. Balance that Interest is Calculated On

Getting Started Pg. 450 # 1, 2, 4a, 5ace, 6, (7 9)doso. Investigating Interest and Rates of Change Pg. 459 # 1 4, 6-10

Activity 1.1 Compound Interest and Accumulated Value

Week in Review #7. Section F.3 and F.4: Annuities, Sinking Funds, and Amortization

5= /

Texas Instruments 83 Plus and 84 Plus Calculator

Learning Goal: What is compound interest? How do we compute the interest on an investment?

Finance Notes AMORTIZED LOANS

1: Finance, then 1: TVM Solver

And Why. What You ll Learn. Key Words

Chapter 2 Applying Time Value Concepts

Unit 9 Financial Mathematics: Borrowing Money. Chapter 10 in Text

Unit 9 Financial Mathematics: Borrowing Money. Chapter 10 in Text

The principal is P $5000. The annual interest rate is 2.5%, or Since it is compounded monthly, I divided it by 12.

Chapter 2 Applying Time Value Concepts

Copyright 2015 by the McGraw-Hill Education (Asia). All rights reserved.

5.3 Amortization and Sinking Funds

The three formulas we use most commonly involving compounding interest n times a year are

Chapter 2 Applying Time Value Concepts

Principles of Corporate Finance

hp calculators HP 20b Loan Amortizations The time value of money application Amortization Amortization on the HP 20b Practice amortizing loans

P+I= Simple Interest : I Prt I= /2. =$z048. part. Complex. Bought F- $ =19. invested at the beginning. Simple.

The High Cost of Other People s Money. Hutch Sprunt Appalachian State University NCCTM October 2005

Copyright 2015 Pearson Education, Inc. All rights reserved.

Introduction. Once you have completed this chapter, you should be able to do the following:

Introduction to Corporate Finance, Fourth Edition. Chapter 5: Time Value of Money

Math 1324 Finite Mathematics Chapter 4 Finance

Lesson 24 Annuities. Minds On

Section 5.1 Simple and Compound Interest

TI-83 Plus Workshop. Al Maturo,

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University,

3.1 Simple Interest. Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time

Interest: The money earned from an investment you have or the cost of borrowing money from a lender.

Everyone Wants a Mortgage

Our Own Problems and Solutions to Accompany Topic 11

Mathematics for Economists

A nd Edition, (Updated: July 25, 2011)

Personal Finance and Budget

Chapter 5: Finance. Section 5.1: Basic Budgeting. Chapter 5: Finance

Time Value of Money. Chapter 5 & 6 Financial Calculator and Examples. Five Factors in TVM. Annual &Non-annual Compound

2. A loan of $7250 was repaid at the end of 8 months. What size repayment check was written if a 9% annual rate of interest was charged?

Annuities and Income Streams

Name Date. Goal: Solve problems that involve simple interest. 1. term: The contracted duration of an investment or loan.

Chapter 5 & 6 Financial Calculator and Examples

2.4 - Exponential Functions

Chapter 15B and 15C - Annuities formula

Enhanced Instructional Transition Guide

บทท 3 ม ลค าของเง นตามเวลา (Time Value of Money)

6.1 Simple Interest page 243

Texas Credit Opening/Closing Date: 7/19/08 08/18/08

Chapter 4. Discounted Cash Flow Valuation

Graphing Calculator Appendix

Casio 9750G PLUS Calculator

Name Date. Which option is most beneficial for the bank, and which is most beneficial for Leandro? A B C N = N = N = I% = I% = I% = PV = PV = PV =

Further Mathematics 2016 Core: RECURSION AND FINANCIAL MODELLING Chapter 7 Loans, investments and asset values

Lecture 3. Chapter 4: Allocating Resources Over Time

Section 8.1. I. Percent per hundred

Copyright 2015 by the McGraw-Hill Education (Asia). All rights reserved.

Annual = Semi- Annually= Monthly=

Time Value of Money Menu

Mortgages & Equivalent Interest

The Time Value. The importance of money flows from it being a link between the present and the future. John Maynard Keynes

CHAPTER 2. Financial Mathematics

Further Mathematics 2016 Core: RECURSION AND FINANCIAL MODELLING Chapter 6 Interest and depreciation

Midterm 1 Practice Problems

Advanced Mathematical Decision Making In Texas, also known as

Real Estate. Refinancing

Chapter 21: Savings Models

Chapter 9: Consumer Mathematics. To convert a percent to a fraction, drop %, use percent as numerator and 100 as denominator.

Chapter 5. Interest Rates ( ) 6. % per month then you will have ( 1.005) = of 2 years, using our rule ( ) = 1.

Lecture 2 Time Value of Money FINA 614

TIME VALUE OF MONEY (TVM) IEG2H2-w2 1

Using Series to Analyze Financial Situations: Future Value

Transcription:

Section 5.1 - Compound Interest Simple Interest Formulas If I denotes the interest on a principal P (in dollars) at an interest rate of r (as a decimal) per year for t years, then we have: Interest: Accumulated Amount: Example 1: Find the simple interest on a $2,000 investment made for 3 months at an interest rate of 6% per year. What is the accumulated amount? Example 2: An investment paying simple interest at the rate of 5% per year grew to $3,100 in 10 months. Find the principal. Example 3: Find the accumulated amount after 3 years if $3,500 is invested at 5% interest per year compounded annually. Example 4: Find the accumulated amount after 3 months if $1,000 is invested at an annual interest rate of 4.5% compounded monthly. 1

Compound Interest Formula where A = Accumualated amount at the end of the time period, P =Principal, r =Nominal interest rate per year as a decimal, m = Number of compounding periods per year, and t =number of years Example 5: Find the accummulated amount after 5 years if $3,500 is invested at 3.8% interest per year compounded quarterly. TVM Solver: We can also use the TVM Solver on our calculator to solve problems involving compound interest. To access the Finance Menu, you need to press APPS > 1:Finance (Please note that if you have a plain TI-83, you need to press 2nd x 1 to access the Finance Menu). Below we define the inputs on the TVM Solver: N =the total number of compounding periods I% = interest rate (as a percentage) PV = present value (principal amount). Entered as a negative number if invested, a positive number if borrowed. PMT = payment amount (0 if no payments are involved) FV =future value (accummulated amount) P/Y = C/Y =the number of compounding periods per year. Move the cursor to the value you are solving for and hit ALPHA and then ENTER. In all of the problems we do make sure that END is highlighted at the bottom of the screen. This represents that payments are received at the end of each period. Example 6: How much is in an account after 10 years if $1000 is invested at 2.4% annual interest compounded a) annually? b) quarterly? c) monthly? d) weekly? 2

e) daily? f) continuously? Continuous Compound Interest Formula A = Pe rt where P =principal, r=annual interest rate compounded continously (as a decimal), t =Time in years, A =Accumulated amount at the end of t years. Definition: The effective rate of interest is the equivalent interest rate if compounding was only done once a year. It allows us to compare different interest rates with different compounding frequencies. We use the C:Eff( option on the Finance Menu to compute the effective rate of interest. The inputs are as follows: Eff(annual interest rate as a percentage, the number of compounding periods per year) Example 7: You have been doing some research and have found that you can either invest your money at 3.55% compounded daily or 3.60% compounded quarterly. Which one would you choose? Example 8: Find the present value of $30,000 due in 6 years at an interest rate of 8%/year compounded monthly. Example 9: How long will it take an investment of $8,000 to grow to $10,000 if the investment earns interest at the rate of 6%/year compounded daily? Section 5.1 Highly Suggested Homework Problems: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 43, 49, 51, 79, 81 3

Sections 5.2 and 5.3 - Annuities Definition: An annuity is a sequence of payments made at regular time intervals. In general, the amounts in the payments need not be equal. Definition: An Ordinary Annuity is an annuity in which payments are made of at the end of each payment period. Definition: An Annuity Due is an annuity in which payments are made at the beginning of each payment period. Definition: A Simple Annuity is an annuity in which the payment period coincides with the conversion period. In this course, we will study annuities with the following properties: 1. The terms are given by fixed time intervals. 2. The periodic payments are equal in size. 3. The payments are made at the end of the payment periods. 4. The payment periods coincide with the interest conversion periods. Example 1: Since you are a poor college student you currently have $10 in your bank account. If you put $50 each month into your bank account that earns 3.45% compounded monthly, how much would you have when you retire? (Let s assume that is 46 years from now) Example 2: How much would you need to put into the bank account from Example 1 if you want $1,000,000 when you retire? (i.e. 46 years from now) How much money did you actually put into the bank account? Example 3: If instead you waited 10 years to start putting payments into your bank account, how much would the payments need to be to have $1,000,000 when you retire? How much money did you actually put into the bank account? (Use the same information from Example 2) 4

Example 4: You are searching for a new car and not sure what you can afford. You ve discovered that you can get a 60 month loan with a 5.24% interest rate compounded monthly. Looking at your current income, you ve decided that you can afford a $400 monthly car payment. What s the most expensive car that you can afford? Example 5: At the beginning of 2000 Jenny and Eddie bought a house for $170,000. They financed it for 30 years at a 6.9% annual interest rate compounded monthly on the unpaid balance. a) What were their monthly payments? b) How much total interest would they end up paying? c) At the beginning of 2004 they decided to refinance their house with a 30 year mortgage that has a 5.325% annual interest rate compounded monthly on the unpaid balance. What are their new monthly payments? d) How much total interest are they saving by refinancing? 5

Example 6: Angie has graduated from college and is ready to start paying back her student loans. She has determined that she will need to make monthly payments to pay back her student loans of $30,000 over a 20 year period with a 6.125% annual interest rate compounded monthly on the unpaid balance. a) What will her monthly payments be? b) How much total interest will she be paying? c) Angie has received good advice from her family and friends and has decided to pay $100 extra each month towards the principal. How long will it take her to pay-off the student loans now? d) How much total interest will she be paying now that she is paying an extra $100 a month? e) How much money is Angie saving in interest by paying the extra $100 each month? 6

Example 7: You purchase a $150,000 home. You put 10% down and then finance the remaining balance with a 30 year mortgage that has an interest rate of 5.75%/year compounded monthly. a) What is your required monthly payment? b) If you decide to pay $400 extra each month, how long will it take you to pay-off the mortgage? c) Create an amortization schedule for the first two payments and the 101st payment without the extra payment. d) Create an amortization schedule for the first two payments and the 101st payment with the extra payment. Highly Suggested Homework Problems: 1, 3, 7, 9, 13, 15, 19, 21, 23 (Section 5.2) and 1, 7, 9, 15, 19, 23, 25, 29, 41, 49 (Section 5.3) 7