Institute of Chartered Accountants Ghana (ICAG) Paper 1.4 Quantitative Tools in Business

Similar documents
Institute of Chartered Accountant Ghana (ICAG) Paper 2.4 Financial Management

Institute of Chartered Accountants Ghana (ICAG) Paper 1.1 Financial Accounting

Institute of Chartered Accountant Ghana (ICAG) Paper 3.3 Advanced Financial Management

Institute of Chartered Accountants Ghana (ICAG) Paper 2.1 Financial Reporting

Institute of Chartered Accountants Ghana (ICAG) Paper 2.1 Financial Reporting

Institute of Chartered Accountants Ghana (ICAG) Paper 3.1 Corporate Reporting

Institute of Chartered Accountants Ghana (ICAG) Paper 3.1 Corporate Reporting

(AA12) QUANTITATIVE METHODS FOR BUSINESS

Institute of Chartered Accountants Ghana (ICAG) Paper 1.1 Financial Accounting

Institute of Chartered Accountant Ghana (ICAG) Paper 3.3 Advanced Financial Management

Diploma in Financial Management with Public Finance

ACCA Paper F9 Financial Management. Mock Exam. Commentary, Marking scheme and Suggested solutions

Paper Reference. Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary

FACULTY OF SCIENCE DEPARTMENT OF STATISTICS

Management Accounting. Paper F2 Integrated Course Notes ACF2CN07(D)

ACCA Paper F5 Performance Management

physicsandmathstutor.com Paper Reference Statistics S1 Advanced/Advanced Subsidiary Wednesday 20 May 2009 Afternoon Time: 1 hour 30 minutes

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1

RELATIONAL DIAGRAM OF MAIN CAPABILITIES

X 410 Business Applications of Calculus

Interpretation of consolidated financial statements

ACCA. Paper F2. Management accounting. Essential text

CBA Model Question Paper CO3. Paper 1

Notes on a Basic Business Problem MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W

C03-Fundamentals of business mathematics

Labor Economics Field Exam Spring 2014

ACCA Professional Level Paper P4 Advanced Financial Management

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours

ACCA Paper F5. Performance Management. Class Notes

SUGGESTED SOLUTIONS. KE2 Management Accounting Information. September All Rights Reserved

THE INSTITUTE OF CHARTERED ACCOUNTANTS (GHANA)

SUGGESTED SOLUTIONS. KE2 Management Accounting Information. March All Rights Reserved

Subject CS2A Risk Modelling and Survival Analysis Core Principles

You are responsible for upholding the University of Maryland Honor Code while taking this exam.

NOVEMBER 2016 PROFESSIONAL EXAMINATIONS QUANTITATIVE TOOLS IN BUSINESS (PAPER 1.4) CHIEF EXAMINER S REPORT, QUESTIONS & MARKING SCHEME

2014 EXAMINATIONS KNOWLEDGE LEVEL PAPER 3 : MANAGEMENT INFORMATION

Management Accounting (F2/FMA) September 2015 to August 2016 (for CBE exams up to 22 September 2016)

BUSINESS MATHEMATICS & QUANTITATIVE METHODS

MATHEMATICS FRIDAY 23 MAY 2008 ADVANCED SUBSIDIARY GCE 4732/01. Probability & Statistics 1. Morning Time: 1 hour 30 minutes

DRAM Weekly Price History

You will be given five minutes at the end of the examination to complete the front of any answer books used. May/June 2016 EC /6 A 001

QUANTITATIVE INVESTMENT ANALYSIS WORKBOOK

Statistics S1 Advanced/Advanced Subsidiary

(F2/FMA) December 2011

Management Accounting

Management Accounting (MA)/FMA September 2018 to August 2019

Chapter 7 Pricing with Market Power SOLUTIONS TO EXERCISES

CHAPTER 2 Describing Data: Numerical

F2 Study Text Management Accounting ACCA

(F2/FMA) December 2011

Instructor: A.E.Cary. Math 243 Final Exam

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Quantitative. Workbook

2015 EXAMINATIONS ACCOUNTING TECHNICIAN PROGRAMME PAPER TC 3: BUSINESS MATHEMATICS & STATISTICS

STUDY HINTS FOR THE LEVEL I CFA EXAM

Recreational marijuana and collision claim frequencies

2016 EXAMINATIONS ACCOUNTING TECHNICIAN PROGRAMME PAPER TC 3: BUSINESS MATHEMATICS & STATISTICS

Cost (in dollars) 0 (free) Number of magazines purchased

AS/ECON 4070 AF Answers to Assignment 1 October 2001

Allocate and Level Project Resources

MgtOp 215 TEST 1 (Golden) Spring 2016 Dr. Ahn. Read the following instructions very carefully before you start the test.

ICAP. Financial accounting and reporting I

CHAPTER 13: A PROFIT MAXIMIZING HARVEST SCHEDULING MODEL

STUDY HINTS FOR THE LEVEL I CFA EXAM

Paper 1.2. Financial Information for Management PART 1 FRIDAY 10 DECEMBER 2004 QUESTION PAPER. Time allowed 3 hours

Class 8: Time Series and Index Numbers. Statistics

This homework assignment uses the material on pages ( A moving average ).

MAY 2018 PROFESSIONAL EXAMINATIONS QUANTITATIVE TOOLS IN BUSINESS (PAPER 1.4) CHIEF EXAMINER S REPORT, QUESTIONS AND MARKING SCHEME

NEW YORK LINKING STUDY

DATA GAPS AND NON-CONFORMITIES

AS/ECON 2350 S2 N Answers to Mid term Exam July time : 1 hour. Do all 4 questions. All count equally.

Year 10 General Maths Unit 2

SJAM MPM 1D Unit 5 Day 13

Quantitative Methods

MATHEMATICS APPLICATIONS

Illinois LINKING STUDY

Time allowed : 3 hours Maximum marks : 100. Total number of questions : 8 Total number of printed pages : 7 PART A

Characterization of the Optimum

Cost Accounting. Level 3. Model Answers. Series (Code 3616) 1 ASE /2/06

Quantitative Methods

P1 Performance Operations

Putting a price on political risk

MOCK TEST PAPER INTERMEDIATE (IPC): GROUP I PAPER 3: COST ACCOUNTING AND FINANCIAL MANAGEMENT

EC 202. Lecture notes 14 Oligopoly I. George Symeonidis

Retirement Income Scenario Matrices. William F. Sharpe. 1. Demographics

PAPER F2 S T U D Y T E X T MANAGEMENT ACCOUNTING. In this edition approved by ACCA. BPP's i-learn and i-pass products also support this paper.

Organisation responsible: Hellenic Statistical Authority (ELSTAT)

Cost and Management Accounting

TUTORIAL KIT OMEGA SEMESTER PROGRAMME: BANKING AND FINANCE

Math Review Chapter 1

1.1. Simple Interest. INVESTIGATE the Math

MICHIGAN LINKING STUDY

September-December 2016 Examinations ACCA F5 21. Many factors are relevant when considering what price to charge.

OHIO LINKING STUDY. A Study of the Alignment of the NWEA RIT Scale with the Ohio Achievement Assessment (OAA) December 2012

Microeconomics, IB and IBP

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Massachusetts LINKING STUDY

Department of Humanities. Sub: Engineering Economics and Costing (BHU1302) (4-0-0) Syllabus

YEAR 12 Trial Exam Paper FURTHER MATHEMATICS. Written examination 1. Worked solutions

Transcription:

Institute of Chartered Accountants Ghana (ICAG) Paper 1.4 Quantitative Tools in Business Final Mock Exam 1 Marking scheme and suggested solutions DO NOT TURN THIS PAGE UNTIL YOU HAVE COMPLETED THE MOCK EXAM

ii Quantitative Tools in Business The Institute of Chartered Accountants Ghana First edition 2015 ISBN 9781 4727 2836 4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of BPP Learning Media Ltd. Published by BPP Learning Media Ltd BPP House, Aldine Place London W12 8AA www.bpp.com/learningmedia The Institute of Chartered Accountants Ghana 2015

Final Mock Exam 1: Answers 1 Question 1 Marking scheme (a) (i) Identify correct formula 1 Calculate annual rate 2 (ii) New rate calculation 1 Annual interest saved 2 Minimum balance 2 (b) (i) Identify cash flows 2 Discount factors 2 Multiplication 2 (ii) Identify cash flows 2 Discount factors 2 Multiplication 2 Marks 3 5 8 6 6 20 Suggested solution (a) (i) Effective annual rate [(1 + r) 12/n 1] (b) Where r rate for each time period n number of months in time period Effective annual rate (1 + 0.022) 12/1 1 0.2984 29.84% (ii) The new effective annual rate (1 + 0.018) 12/1 1 0.2387 23.87% (i) The annual saving in interest per outstanding (0.2984 0.2387) 0.0597 The minimum balance to be kept on the card to benefit from the change 8/0.0597 134. Year Cash flow Discount factor Present value 15% 0-1,500 + 300 1,200 1.000 1,200.0 1 500 150 350 0.870 304.5 2 550 150 400 0.756 302.4 3 500 150 350 0.658 230.3 4 500 150 350 0.572 200.2 NPV 162.6 (ii) Year Cash flows Discount factor Present value 5% 0 1,200 1.000 1,200.00 1 350 0.952 333.20 2 400 0.907 362.80 3 350 0.864 302.40 4 350 0.823 288.05 NPV 86.45

2 Final Mock Exam 1: Answers Question 2 Marking scheme (a) (i) Expression for total cost 2 (ii) Maximum cost 2 Batch size at maximum cost 2 (b) (i) Define variables 1 Establish constraints 2 Objective function 1 (ii) Solving equations 1 Statement of optimal solutions 2 Statement of correct simultaneous equations, 1 Solving simultaneous equations 2 Calculation of profit 3 Identifying optimal production plan 1 Marks 6 4 10 20 Suggested solution (a) (i) The cost of packing a batch is (2 0.001q)q (2q 0.001q 2 ). (ii) The delivery cost is 500. The total cost (C) 0.001q 2 +2q + 500. 2 dc d C The cost will be maximised when 0 and when < 0. 2 dc 0.002q + 2 d 2 C 2 0.002 < 0 The cost is maximised when 0 0.002q + 2 ie when 0.002q 2 q 1,000 The batch size that would incur the largest possible total cost is 1,000. The largest possible total cost ( 0.001 1,000 2 ) + (2 1,000) + 500 1,500. (b) (i) Define variables Let x quantity of product X produced Let y quantity of product Y produced Establish constraints Material A 2,200 0.4x + 0.3y Material B 2,500 0.2x + 0.5y Non-negativity x 0, y 0

Final Mock Exam 1: Answers 3 (ii) Construct objective function Maximise profit (P) (10 4.5)x + (13.50 7)y P 5.5x + 6.5y This assumes that fixed costs are unaffected by changes to the production plan. There are three possible optimal solutions. (1) When materials A and B are used to the limit (2) When no units of X are produced (ie x 0) (3) When no units of Y are produced (ie y 0) (1) If materials A and B are used to the limit, the optimal production plan is found using the following simultaneous equations. 2,200 0.4x + 0.3y (1) 2,500 0.2x + 0.5y (2) 5,000 0.4x + y (3) (2) 2 2,800 0.7y (3) (1) 4,000 y 5,000 0.4x + 4,000 (sub y value into (3)) x 2,500 Profit (2,500 5.50) + (4,000 6.50) 39,750 (2) If x 0, the material A constraint becomes 2,200 0.3y y 7,333 and x 0 and the material B constraint becomes 2,500 0.5y y 5,000 and x 0 Maximum value for y 5,000 (if y 7,333, Material B constraint is not satisfied) profit 5,000 6.50 32,500 (3) If y 0, the material A constraint becomes 2,200 0.4x x 5,500 and y 0 and the material B constraint becomes 2,500 0.2x x 12,500 and y 0 Maximum value for x 5,500 (if x 12,500, Material A constraint is not satisfied) profit 5,500 5.50 30,250 Plan Contribution (i) 39,750 (ii) 32,500 (iii) 30,250 Optimal production plan is to produce 2,500 units of X and 4,000 units of Y.

4 Final Mock Exam 1: Answers Question 3 Marking scheme (a) Differentiation of functions 2 Identification of profit maximising quantity 1 Calculation of Chalk Ltd profit 2 Calculation of Cheese Ltd profit 2 (b) Differentiation of functions 2 Identification of profit maximising quantity 1 Calculation of Chalk Ltd profit 2 Calculation of Cheese Ltd profit 2 (c) Differentiation of functions 2 Identification of profit maximising quantity 1 Calculation of Chalk and Cheese Ltd profit 3 Marks 7 7 6 20 Suggested solution (a) Chalk Ltd C 2q 2 + 40q + 80 dc 4q + 40 marginal cost (MC) Revenue (R) 200q dr 200 marginal revenue (MR) Profit is maximised where MC MR: 4q + 40 200 q 40 Profits at q 40 are as follows. Chalk Ltd Cheese Ltd Revenue 8,000 14,400 Less costs 4,880 14,800 * Weekly profit/(loss) 3,120 (400) (b) * 2q 2 + 80q + 400 PLUS the costs of purchases from Chalk Ltd which total 200q, ie 2q 2 + 280q + 400. Cheese Ltd C 2q 2 + 280q + 400 dc 4q + 280 R 1,000q 16q 2 dr 1,000 32q MC MR where 4q + 280 1,000 32q 36q 720 q 20

Final Mock Exam 1: Answers 5 Profits at q 20 are as follows. Chalk Ltd Cheese Ltd Revenue 4,000 13,600 Less costs 1,680 6,800 * Weekly profit 2,320 6,800 (c) * 2q 2 + 280q + 400 Chalk and Cheese Ltd Total costs 2q 2 + 40q + 80 2q 2 + 80q + 400 C 4q 2 + 120q + 480 dc 8q + 120 R 1,000q 16q 2 dr 1,000 32q MR MC when 1,000 32q 8q + 120 880 40q q 22 Revenue 14,256 Less costs 5,056 Weekly profit 9,200

6 Final Mock Exam 1: Answers Question 4 Marking scheme Marks (a) (i) Negative coefficient 1 Explanation of constant 1 Explanation of gradient 2 4 (ii) Calculation of forecast using regression equation 2 (iii) Each valid point (1.5 marks) 6 12 (b) (i) Calculation of seasonal variation 4 Explanation 2 6 (ii) Calculation of forecast output 2 20 Suggested solution (a) (i) We have negative correlation here, as shown by the negative coefficient of x in the regression line. That is, as the number of years employed with the company rises, so the number of days absent in a year through sickness falls. (ii) (iii) y 15.6 1.2x The 15.6 represents the numbers of days absence through sickness that an employee with zero years service is expected to suffer, so it is the number of days that an employee will need off through sickness in their first year of employment. The 1.2 represents the gradient of the regression line, meaning that for each extra year's service with the company, an employee will take 1.2 fewer days off sick per year. y 15.6 (1.2 8) 15.6 9.6 6 days. An employee who has been with the company for eight years is expected to require six days sick leave per year. Limitations and problems of using this equation in practice (1) The regression line approach presupposes that there is a linear relationship between the two variables: a sample of 50 workers has given us quite strong correlation, but still a strict linear relationship seems unlikely. (2) A linear relationship may hold good within a small relevant range of data within which the equation may be useful in practice. But extrapolating outside this range will lead to serious inaccuracies. Thus the equation would predict that an employee with more than 15.6/1.2 13 years' service would have less than zero sick leave. (3) If we use the equation to predict the future, we will use historical data to forecast the future, which is always risky. (4) The regression line shows the expected number of days sick for a given employment period. But it is unlikely that all categories of workers will experience the same sickness pattern. The equation would be most useful if there were many employees all doing the same job in the same work conditions.

Final Mock Exam 1: Answers 7 (b) (i) Spring Summer Autumn Winter Total Year 1 +11.2 +23.5 Year 2 9.8 28.1 +12.5 +23.7 Year 3 7.4 26.3 +11.7 Average variation 8.6 27.2 +11.8 +23.6 0.4 Adjust total variation to nil +0.1 +0.1 +0.1 +0.1 +0.4 Estimated seasonal variation 8.5 27.1 +11.9 +23.7 0.0 Seasonal variations are short-term fluctuations in recorded values, due to different circumstances which affect results at different times of the year, on different days of the week, at different times of day, or whatever. For example, sales of ice cream will be higher in summer than in winter. In this data, the highest output can be expected to be in the winter and the lowest in the summer. (ii) Forecast output Trend + Seasonal variation 10,536 + 23.7 10,559.7 units

8 Final Mock Exam 1: Answers Question 5 Marking scheme (a) Workings 4 Tree diagram 4 Marks (b) (i) Workings 6 Tree diagram 4 10 (ii) Calculation 2 2 20 8 Suggested solution (a) Decision: How many to employ? Employ 1 Employ 2 Employ 3 Weak demand 0.5 Average demand 0.3 Strong demand 0.2 Weak demand 0.5 Average demand 0.3 Strong demand 0.2 Weak demand 0.5 Average demand 0.3 +40,000 + 50,000 + 60,000 + 10,000 + 80,000 + 110,000 30,000 + 60,000 Strong demand 0.2 + 150,000 Workings Expected value of profit Employ 1 person (0.5 40,000) + (0.3 50,000) + (0.2 60,000) 47,000 Employ 2 people (0.5 10,000) + (0.3 80,000) + (0.2 110,000) 51,000 Employ 3 people (0.5 (30,000)) + (0.3 60,000) + (0.2 150,000) 33,000 Using expected value as the basis for making a decision, the recommended decision is to employ 2 people because the EV of profit is highest.

Final Mock Exam 1: Answers 9 (b) (i) Make money 0.30 Sack adviser 0.65 Do not sack 0.35 Joint probability 0.195 0.105 0.70 Do not make money Sack adviser 0.95 Do not sack 0.05 0.665 0.035 1.000 (ii) Probability that the adviser will be sacked (0.30 0.65) + (0.70 0.95) 0.195 + 0.665 0.86 Probability Make money, sack adviser (0.3 0.65) 0.195 Make money, do not sack adviser (0.3 0.35) 0.105 Do not make money, sack adviser (0.7 0.95) 0.665 Do not make money, do not sack adviser (0.7 0.05) 0.035 1.000 Probability that the venture capitalist made money but sacked the adviser is: 0.105/(0.105 + 0.665) 0.105/0.770 0.1364 or 13.64%.

10 Final Mock Exam 1: Answers Question 6 Marking scheme Marks (a) Calculations for (i) to (iii) (1 mark each) 3 (b) Calculations for (i) to (iii) (2 marks each) 6 (c) (i) Calculations for (1) to (4) (2 marks each) 8 (ii) Comments (1 mark per valid point) 3 11 20 Suggested solution (a) (b) The durations of the train journeys (in hours) in order of magnitude are 1.95, 1.98, 2.00, 2.05, 2.06, 2.08, 2.09, 2.11, 2.16, 2.22 (i) P(> 2.10 hours) 3/10 0.3 (ii) P(< 2 hours) 2/10 0.2 (iii) P(between 2.04 and 2.10 hours) 4/10 0.4 The durations follow a normal distribution with 2.07 0.08 (i) (ii) (iii) 2.10 hours is 0.03 hours above the mean. z 0.03/0.08 0.375. From normal distribution tables, the probability for z 0.375 is: (0.1443 + 0.1480)/2 0.1462 Probability of a journey in excess of 2.10 hours 0.5 0.1462 0.3538 2 hours is 0.07 hours below the mean z 0.07/0.08 0.875 From normal distribution tables, the probability for z 0.875 is: (0.3078 + 0.3106)/2 0.3092 Probability of a journey time less than 2 hours 0.5 0.3092 0.1908 2.03 hours is 0.04 hours below the mean z 0.04/0.08 0.5 From normal distribution tables, the probability for z 0.5 is 0.1915 Probability of a journey time between 2.04 and 2.08 hours 0.1915. Probability of a journey time between 2.08 hours and 2.10 hours (see answer to (i)) 0.1462. Probability of journey time between 2.04 and 2.1 hours (0.1915 + 0.1462) 0.3377

Final Mock Exam 1: Answers 11 (c) (i) (1) P(male reaching age of 80) P(female reaching age of 80) 16,199 100,000 0.16199 24,869 100,000 0.24869 (2) P(male of 25 not reaching age of 50) 85,824 74,794 85,824 P(female of 25 not reaching age of 50) 11,030 0.1285 85,824 88,133 78,958 9,175 88,133 88,133 (3) P(new born male survives until 10) 0.1041 89,023 0.89023 100,000 P(new born female survives until 10) 91,083 0.91083 100,000 (4) P(male of 50 not reaching age of 80) 74,794 16,199 74,794 P(female of 50 not reaching age of 80) 78,958 24,869 78,958 58,595 74,794 0.7834 54,089 0.6850 78,958 (ii) A glance at the table of figures shows that females are likely to live longer than males. The probability calculations confirm that conclusion. Such data are used by life assurance companies, which use the statistics on the large numbers of people taking out life assurance policies to determine premiums. Note that reliable statistics can only be compiled on the basis of large samples, and that life assurance companies can only use them appropriately if they write many policies. If only one person has a policy, and he or she dies early, the assurer would suffer a loss even if that person had been 'likely' to live to a great age.

12 Final Mock Exam 1: Answers Question 7 Marking scheme (a) (i) Calculating year's sales 1 Analysing by market and type 2 Home and overseas calculations 2 Calculating proportion required 1 (ii) Structure and presentation 1 Correct bars 22 Correct components 2 Marks (b) (i) Calculating adjustments 2 Calculating bar heights 2 Histogram 3 7 (ii) Frequency polygon 2 20 6 5 Suggested solution (a) (i) Analysis of sales for 20X4 Market Home Overseas Total Type of customer m m m Household 128.86 (W8) 42.70 (W7) 171.56 (W4) Industrial 100.30 (W5) 17.08 (W7) 117.38 (W5) Other 3.50 (W8) 8.54 (W7) 12.04 (W6) 232.66 (W3) 68.32 (W2) 300.98 (W1) Household sales in the home market represent 128.86/232.66 100% 55.39% of total home market sales. Workings 1 Total sales 267.3m 1.126 300.98m 2 300.98m 0.227 68.32m 3 (300.98 68.32)m 232.66m 4 300.98m 0.57 171.56 5 300.98m 0.39 117.38 6 (300.98 171.56 117.38)m 12.04m 7 Household 68.32m 5/8 42.70m Industrial 68.32m 2/8 17.08m Other 68.32m 1/8 8.54m 8 Household (171.56 42.70)m 128.86m Industrial (117.38 17.08)m 100.30m Other (12.04 8.54)m 3.5m

Final Mock Exam 1: Answers 13 (ii) Sales 300 Bar chart showing analysis of sales for 20X4 250 200 150 100 Key Household Industrial Other 50 0 Home Overseas Total (b) (i) and (ii) Class interval Size of Frequency Height of (value of orders) width of orders Adjustment block 5 < 15 10 36 5/10 18 15 < 20 5 48 5/5 48 20 < 25 5 53 5/5 53 25 < 30 5 84 5/5 84 30 < 35 5 126 5/5 126 35 < 40 5 171 5/5 171 40 < 45 5 155 5/5 155 45 < 50 5 112 5/5 112 50 < 55 5 70 5/5 70 55 < 65 10 60 5/10 30 65 < 85 20 54 5/20 13.5 Histogram of value of orders received over a period Frequency density 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 5 15 20 25 30 35 40 45 50 55 65 85 Value of orders

14 Final Mock Exam 1: Answers