Properties of a Diversified World Stock Index

Similar documents
Numerical Solution of Stochastic Differential Equations with Jumps in Finance

On the Distributional Characterization of Log-returns of a World Stock Index

Law of the Minimal Price

CEEAplA WP. Universidade dos Açores

Modeling Co-movements and Tail Dependency in the International Stock Market via Copulae

The marginal distributions of returns and volatility

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Estimation of the Diffusion Function for a Diversified World Stock Index

The stochastic calculus

SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1. By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD

MODELING DIVERSIFIED EQUITY INDICES

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Quadratic hedging in affine stochastic volatility models

RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK. JEL Codes: C51, C61, C63, and G13

Intraday Empirical Analysis and. Modeling of Diversified World Stock Indices

Normal Inverse Gaussian (NIG) Process

Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version

Approximating the Numéraire Portfolio by Naive Diversification

Modeling Obesity and S&P500 Using Normal Inverse Gaussian

Approximation of Jump Diffusions in Finance and Economics

Inflation-indexed Swaps and Swaptions

Conditional Density Method in the Computation of the Delta with Application to Power Market

Stochastic volatility modeling in energy markets

Mgr. Jakub Petrásek 1. May 4, 2009

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Pricing Volatility Derivatives under the Modified Constant Elasticity of Variance Model

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lévy models in finance

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s.,

arxiv: v2 [q-fin.pr] 23 Nov 2017

M5MF6. Advanced Methods in Derivatives Pricing

DFA Global Equity Portfolio (Class F) Quarterly Performance Report Q2 2014

Estimation of Value at Risk and ruin probability for diffusion processes with jumps

A Two-Factor Model for Low Interest Rate Regimes

THE MARTINGALE METHOD DEMYSTIFIED

Sato Processes in Finance

DFA Global Equity Portfolio (Class F) Performance Report Q2 2017

DFA Global Equity Portfolio (Class F) Performance Report Q3 2018

DFA Global Equity Portfolio (Class F) Performance Report Q4 2017

DFA Global Equity Portfolio (Class F) Performance Report Q3 2015

Optimal Securitization via Impulse Control

Pricing of some exotic options with N IG-Lévy input

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Asymmetric information in trading against disorderly liquidation of a large position.

A note on the existence of unique equivalent martingale measures in a Markovian setting

Pricing in markets modeled by general processes with independent increments

Extended Libor Models and Their Calibration

Portfolio Optimization. Prof. Daniel P. Palomar

Hedging under Arbitrage

Risk Measurement in Credit Portfolio Models

3.1 Itô s Lemma for Continuous Stochastic Variables

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena

Exam Quantitative Finance (35V5A1)

Pricing Variance Swaps on Time-Changed Lévy Processes

Local Volatility Dynamic Models

Using Lévy Processes to Model Return Innovations

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases

Business Statistics 41000: Probability 3

Implementing an Agent-Based General Equilibrium Model

Skewness in Lévy Markets

VaR Estimation under Stochastic Volatility Models

Modeling Portfolios that Contain Risky Assets Risk and Reward II: Markowitz Portfolios

Corporate Governance and Investment Performance: An International Comparison. B. Burçin Yurtoglu University of Vienna Department of Economics

Quantification of VaR: A Note on VaR Valuation in the South African Equity Market

Hedging of Contingent Claims under Incomplete Information

2.1 Mean-variance Analysis: Single-period Model

IEOR E4602: Quantitative Risk Management

Portfolio optimization for Student t and skewed t returns

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

MANDATORY PROVIDENT FUND SCHEMES AUTHORITY

An overview of some financial models using BSDE with enlarged filtrations

On modelling of electricity spot price

Basic Stochastic Processes

"Pricing Exotic Options using Strong Convergence Properties

Portfolio Management and Optimal Execution via Convex Optimization

PRICING OF BASKET OPTIONS USING UNIVARIATE NORMAL INVERSE GAUSSIAN APPROXIMATIONS

Lecture 8: The Black-Scholes theory

European option pricing under parameter uncertainty

Modeling Spot Price Dependence in Australian Electricity Markets with Applications to Risk Management

An application of Ornstein-Uhlenbeck process to commodity pricing in Thailand

Modeling Portfolios that Contain Risky Assets Stochastic Models I: One Risky Asset

San Francisco Retiree Health Care Trust Fund Education Materials on Public Equity

Sovereign Bond Yield Spreads: An International Analysis Giuseppe Corvasce

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel)

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Logarithmic derivatives of densities for jump processes

MANDATORY PROVIDENT FUND SCHEMES AUTHORITY. Guidelines on Recognized Exchanges

Business cycle volatility and country zize :evidence for a sample of OECD countries. Abstract

Steven Heston: Recovering the Variance Premium. Discussion by Jaroslav Borovička November 2017

INTRADAY EMPIRICAL ANALYSIS OF ELECTRICITY PRICE BEHAVIOUR

Time-changed Brownian motion and option pricing

Dependence Structure and Extreme Comovements in International Equity and Bond Markets

Hierarchical Bayes Analysis of the Log-normal Distribution

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data

Table 1. Statutory tax rates on capital income.

EMH vs. Phenomenological models. Enrico Scalas (DISTA East-Piedmont University)

Transcription:

Properties of a Diversified World Stock Index Eckhard Platen School of Finance and Economics and School of Mathematical Sciences University of Technology, Sydney Platen, E. & Heath, D.: A Benchmark Approach to Quantitative Finance Springer Finance, 700 pp., 199 illus., Hardcover, ISBN-10 3-540-26212-1 (2006). Le, T. & Platen. E.: Approximating the growth optimal portfolio with a diversified world stock index. J. Risk Finance 7(5), 559 574 (2006). Platen, E. & Sidorowicz, R.:Empirical evidence on Student-t log-returns of diversified world stock indices. University of Technology, Sydney. QFRC Research Paper 194 (2007).

Springer Finance S F Springer Finance E. Platen D. Heath The benchmark approach provides a general framework for financial market modeling, which extends beyond the standard risk neutral pricing theory. It allows for a unified treatment of portfolio optimization, derivative pricing, integrated risk management and insurance risk modeling. The existence of an equivalent risk neutral pricing measure is not required. Instead, it leads to pricing formulae with respect to the real world probability measure. This yields important modeling freedom which turns out to be necessary for the derivation of realistic, parsimonious market models. The first part of the book describes the necessary tools from probability theory, statistics, stochastic calculus and the theory of stochastic differential equations with jumps. The second part is devoted to financial modeling under the benchmark approach. Various quantitative methods for the fair pricing and hedging of derivatives are explained. The general framework is used to provide an understanding of the nature of stochastic volatility. The book is intended for a wide audience that includes quantitative analysts, postgraduate students and practitioners in finance, economics and insurance. It aims to be a self-contained, accessible but mathematically rigorous introduction to quantitative finance for readers that have a reasonable mathematical or quantitative background. Finally, the book should stimulate interest in the benchmark approach by describing some of its power and wide applicability. ISBN 3-540-26212-1 springer.com Platen Heath 1 A Benchmark Approach to Quantitative Finance A Benchmark Approach to Quantitative Finance Eckhard Platen David Heath 1 23

Benchmark Approach Pl. & Heath (2006) best performing strictly positive portfolio as benchmark growth optimal portfolio (GOP) benchmark in portfolio optimization numeraire in derivative pricing approximate GOPs Diversification Theorem Eckhard Platen AMAMEF07, Bedelow 1

log-return density for diversified stock indices Markowitz & Usmen (1996a, 1996b): S&P500 log-returns Student t (4.5) Hurst & Pl. (1997): regional stock market indices symmetric generalized hyperbolic distribution Student t (3.0) (4.5) Eckhard Platen AMAMEF07, Bedelow 2

Fergusson & Pl. (2006): maximum likelihood ratio test Student t (4) McNeil, Frey & Embrechts (2005): Student t type log-returns Pl. & Sidorowicz (2007): EWI104s Student t (4) 99.9% significance Eckhard Platen AMAMEF07, Bedelow 3

benchmark approach Pl. & Heath (2006) growth optimal portfolio (GOP) Kelly (1956) diversified portfolios (DPs) diversification theorem Pl. (2005) equally weighted index (EWI) EWI104s Eckhard Platen AMAMEF07, Bedelow 4

Index Construction market capitalization weighted indices (MCIs) diversity weighted indices (DWIs) Fernholz (2002) equally weighted indices (EWIs) world stock indices (WSIs) Le & Pl. (2006) Eckhard Platen AMAMEF07, Bedelow 5

portfolio generating function given any fractions π δ,t = (π 1 δ,t, π2 δ,t,..., πd δ,t ) forms vector of nonnegative fractions π δ,t = ( π 1 δ,t, π2 δ,t,..., πd δ,t ) = A(π δ,t ) [0, 1] d d j=1 π j δ,t = 1 Eckhard Platen AMAMEF07, Bedelow 6

Market Capitalization Weighted Indices MCI π j δ MCI,t = δj ts j t d i=1 δi ts i t δ j t number of units of jth constituent Eckhard Platen AMAMEF07, Bedelow 7

Diversity Weighted Index DWI Fernholz (2002) π j δ,t = (πj δ MCI,t )p d l=1 (πl δ MCI,t )p p [0, 1] p = 0.5 Eckhard Platen AMAMEF07, Bedelow 8

Equally Weighted Index EWI π j δ EWI,t = 1 d j {1, 2,..., d} Eckhard Platen AMAMEF07, Bedelow 9

world stock index WSI π j δ,t = (πj δ,t + µ t) p d l=1 (πl δ,t + µ t) p fractions of GOP π δ,t = Σ 1 t (a t r t 1) µ t = inf j π j δ,t + µ Eckhard Platen AMAMEF07, Bedelow 10

10000 9000 8000 7000 6000 5000 WSI EWI 4000 3000 DWI 2000 1000 0 MCI 28/08/76 18/02/82 11/08/87 31/01/93 24/07/98 14/01/04 Figure 1: Indices constructed from regional stock market indices. Eckhard Platen AMAMEF07, Bedelow 11

10000 9000 8000 7000 6000 WSI35s 5000 4000 EWI35s 3000 2000 1000 0 DWI35s MCI35s 28/08/76 18/02/82 11/08/87 31/01/93 24/07/98 14/01/04 Figure 2: Indices constructed from sector indices based on 35 industries. Eckhard Platen AMAMEF07, Bedelow 12

10000 9000 8000 7000 6000 5000 4000 WSI104s EWI104s 3000 2000 1000 0 DWI104s MCI104s 28/08/76 18/02/82 11/08/87 31/01/93 24/07/98 14/01/04 Figure 3: Indices constructed from sector indices based on 104 industries. Eckhard Platen AMAMEF07, Bedelow 13

10 4 EWI 10 3 EWI104s 10 2 10 1 28/08/76 18/02/82 11/08/87 31/01/93 24/07/98 14/01/04 Figure 4: The regional EWI and sector EWI104s indices in log-scale. Eckhard Platen AMAMEF07, Bedelow 14

Log-return Distributions Barndorff-Nielsen (1978), Hurst & Pl. (1997) McNeil, Frey & Embrechts (2005) normal mean-variance mixture distribution Z N(0, 1) X = m(w) + WσZ W 0 is nonnegative random variable independent of Z symmetric case = normal variance-mixture distribution X = WσZ Eckhard Platen AMAMEF07, Bedelow 15

Generalized Hyperbolic Distributions mixing density generalized inverse Gaussian W GIG(λ, χ, ψ) X GH(λ, χ, ψ, µ, σ, γ) f X (x) = ψλ (ψ + γβ) 1 2 λ ( χψ) λ 2πσKλ ( χψ) K λ 1 2 ( (χ + Q)(ψ + γβ) ) ( eξβ (χ )1 2 λ + Q)(ψ + γβ) ξ = x µ, β = γσ 2, Q = (x µ) 2 σ 2 K λ ( ) modified Bessel function of the third kind Eckhard Platen AMAMEF07, Bedelow 16

symmetric generalized hyperbolic density f X (x) = 1 δσk λ (ᾱ) ᾱ 2π ( 1+ x2 (δσ) 2 )1 2 (λ 1 2 ) ( ) K λ 1 ᾱ 1 + x2 2 (δσ) 2 λ R, α, δ 0, α 0 if λ 0, δ 0 if λ 0 ᾱ = αδ unique scale parameter c 2 = (δσ) 2 2(λ+1) if α = 0 for λ < 0 and ᾱ = 0, 2λσ 2, α 2 if δ = 0 for λ > 0 and ᾱ = 0, (δσ) 2 K λ+1 (ᾱ) ᾱk λ (ᾱ) otherwise Eckhard Platen AMAMEF07, Bedelow 17

Special Cases of the SGH Distribution Variance Gamma: ᾱ = 0 and λ > 0 Madan & Seneta (1990) Student t: ᾱ = 0 and λ < 0 Praetz (1972) Hyperbolic: λ = 1 Eberlein & Keller (1995) Normal Inverse Gaussian: λ = 0.5 Barndorff-Nielsen (1995) Eckhard Platen AMAMEF07, Bedelow 18

Variance Gamma Density ᾱ = 0, α = 2λ, δ = 0 gamma distribution mixing f X (x) = λ πσ2 λ 1 Γ(λ) ( 2λ x σ ) λ 1 2 K λ 1 2 ( ) 2λ x σ Madan & Seneta (1990) Eckhard Platen AMAMEF07, Bedelow 19

Student t Density Praetz (1972), Blattberg & Gonedes (1974) inverse gamma distribution mixing degrees of freedom ν = 2 λ 2 f X (x) = Γ ( ν 2 2 1 ν 2 ( ) 1 + Q πνσ ν ( ) ν+1 (ν ) 2 K ν+1 + Q)γβ 2 ( (ν ) ν+1 2 + Q)γβ e ξβ Eckhard Platen AMAMEF07, Bedelow 20

Likelihood Ratio Test likelihood ratio Λ = L model L nesting model L model maximized likelihood function test statistic L n = 2 ln(λ) Eckhard Platen AMAMEF07, Bedelow 21

P(L n < χ 2 1 α,1 ) F χ 2 (1)(χ 2 1 α,1 ) = 1 α L n < χ 2 0.01,1 0.000157 L n < χ 2 0.001,1 0.000002 not rejected at the 99.9% level Eckhard Platen AMAMEF07, Bedelow 22

Fitted Log-return Distributions daily log-returns 1973 2006 EWI104s denominated in 27 currencies > 200.000 observations Eckhard Platen AMAMEF07, Bedelow 23

10 1 10 2 10 3 10 4 10 5 0 5 10 Figure 5: Log-histogram of the EWI104s log-returns and Student t density with four degrees of freedom. Eckhard Platen AMAMEF07, Bedelow 24

Estimated LLF 10 5 2.84 2.86 2.88 2.9 2 2.92 2.94 1.5 5 4 3 2.15 1 Estimated λ 1 0 1 λ 2 3 4 5 0 0.5 α Figure 6: Log-likelihood function based on the EWI104s. Eckhard Platen AMAMEF07, Bedelow 25

1 MCI 1 DWI 1.5 1.5 λ 2 λ 2 2.5 2.5 3 0 0.2 0.4 0.6 1 α EWI 3 0 0.2 0.4 0.6 1 α WSI 1.5 1.5 λ 2 λ 2 2.5 2.5 3 0 0.2 0.4 0.6 α 3 0 0.2 0.4 0.6 α Figure 7: (ᾱ, λ)-plot for log-returns of indices in different currencies constructed from regional stock market indices as constituents. Eckhard Platen AMAMEF07, Bedelow 26

1 MCI35s 1 DWI35s 1.5 1.5 λ 2 λ 2 2.5 2.5 3 0 0.2 0.4 0.6 1 α EWI35s 3 0 0.2 0.4 0.6 1 α WSI35s 1.5 1.5 λ 2 λ 2 2.5 2.5 3 0 0.2 0.4 0.6 α 3 0 0.2 0.4 0.6 α Figure 8: (ᾱ, λ)-plot for log-returns of indices in different currencies constructed from 35 sector indices as constituents. Eckhard Platen AMAMEF07, Bedelow 27

1 MCI104s 1 DWI104s 1.5 1.5 λ 2 λ 2 2.5 2.5 3 0 0.2 0.4 0.6 1 α EWI104s 3 0 0.2 0.4 0.6 1 α WSI104s 1.5 1.5 λ 2 λ 2 2.5 2.5 3 0 0.2 0.4 0.6 α 3 0 0.2 0.4 0.6 α Figure 9: (ᾱ, λ)-plot for log-returns of indices in different currencies constructed from 104 sector indices as constituents. Eckhard Platen AMAMEF07, Bedelow 28

SGH Student t NIG Hyperbolic VG σ 0.9807068 0.7191163 0.9697258 0.9584118 0.9593693 ᾱ 0.0000000 0.9694605 0.7171357 λ -2.1629649 1.4912414 ν 4.3259646 ln(l ) -285796.3865295-285796.3865297-286448.9371892-287152.0787956-287499.8259143 L n 0.0000004 1305.1013194 2711.3845322 3406.8787696 Table 1: Results for log-returns of the EWI104s Eckhard Platen AMAMEF07, Bedelow 29

Country Student-t NIG Hyperbolic VG ν Australia 0.000000 76.770817 150.202282 181.632971 4.281222 Austria 0.000000 39.289103 77.505683 102.979330 4.725907 Belgium 0.000000 31.581622 60.867570 83.648470 4.989912 Brazil 2.617693 5.687078 63.800349 60.078395 2.713036 Canada 0.000000 47.506215 79.917741 104.297607 5.316154 Denmark 0.000000 41.509921 87.199686 114.853658 4.512101 Finland 0.000000 28.852844 68.677271 88.553080 4.305638 France 0.000000 26.303544 57.639325 80.567283 4.722787 Germany 0.000000 27.290205 52.667918 71.120798 5.005856 Greece 0.000000 60.432172 104.789463 125.601499 4.674626 Hong.Kong 0.000000 42.066531 100.834255 122.965326 3.930473 India 0.000000 74.773701 163.594078 198.002956 3.998713 Ireland 0.000000 77.727856 136.505582 170.013644 4.761519 Italy 0.000000 25.196598 55.185625 75.481897 4.668983 Japan 0.000000 37.630363 77.163656 102.967380 4.649745 Korea.S. 0.000000 120.904983 304.829431 329.854620 3.289204 Eckhard Platen AMAMEF07, Bedelow 30

Malaysia 0.000000 79.714054 186.013963 221.061290 3.785195 Netherlands 0.000000 26.832761 51.625813 71.541627 5.084056 Norway 0.000000 42.243851 89.012090 115.059003 4.472349 Portugal 0.000000 61.177624 137.681039 165.689683 3.984860 Singapore 0.000000 36.379685 77.600590 98.124375 4.251472 Spain 0.000000 56.694545 109.533768 138.259224 4.517153 Sweden 0.000000 77.618384 143.420049 178.983373 4.546640 Taiwan 0.000000 41.162560 96.283628 115.186585 3.914719 Thailand 0.000000 78.250621 254.590254 267.508143 3.032038 UK 0.000000 26.693076 55.937248 80.678494 4.952843 USA 0.000000 40.678242 79.617362 100.901197 4.636661 Table 2: L n test statistic of the EWI104s for different currency denominations Eckhard Platen AMAMEF07, Bedelow 31

Stochastic Volatility Model mixing density for returns is inverse gamma squared volatility dσ 2 t = 1 4 γ2 (ν + 2 4 ξ) σ 4(ξ 1) t ( σ 2 σ 2 t ) dt + γ σ 2ξ d W t stationary density is inverse gamma Heath, Hurst & Pl. (2001) d dt [ ] ln(σ 2 ) t = γ 2 σ 2(ξ 1) t γ 2 = ξ = 1 Eckhard Platen AMAMEF07, Bedelow 32

0.10 0.05 0.00 0.05 0 2000 4000 6000 8000 Figure 10: Returns of industry index. Eckhard Platen AMAMEF07, Bedelow 33

DF= 4.4679 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Figure 11: Histogram of returns. Eckhard Platen AMAMEF07, Bedelow 34

0.0000 0.0005 0.0010 0.0015 0.0020 0 2000 4000 6000 8000 Figure 12: Squared volatility. Eckhard Platen AMAMEF07, Bedelow 35

DF= 4.4554 0.0 e+00 1.0 e 05 2.0 e 05 3.0 e 05 0 50000 100000 150000 200000 Figure 13: Histogram of inverse squared volatility. Eckhard Platen AMAMEF07, Bedelow 36

0 50 100 150 200 250 300 350 0 2000 4000 6000 8000 Figure 14: Quadratic variation of log-squared volatility. Eckhard Platen AMAMEF07, Bedelow 37

Financial Market Model Wiener processes B k = {B k t, t R +} for k {1, 2,..., m} compensated normalized jump martingales trading uncertainties dq k t = (hk t ) 1 2 (dp k t hk t dt) W = {W t = (W 1 t,..., W m t, W m+1 t,..., W d t ), t R + } W 1 t = B1 t,..., W m t = B m t W m+1 t = q m+1 t,..., Wt d = qd t Eckhard Platen AMAMEF07, Bedelow 38

primary security accounts savings account S 0 t = exp { t 0 } r s ds < jth risky asset ds j t = S j t ( a j tdt + d b j,k t dw k t k=1 ) volatility matrix invertible assume b j,k t h k t Eckhard Platen AMAMEF07, Bedelow 39

market price of risk θ t = (θ 1 t,..., θd t ) = b 1 t (a t r t 1) assume θ k t < h k t Eckhard Platen AMAMEF07, Bedelow 40

portfolio d S δ t = δ j t S j t j=0 fraction ds δ t = Sδ t π j δ,t = δj t S j t S δ t ( ) r t dt + π δ,t b t (θ t dt + dw t ) assume π j δ,t 0 Eckhard Platen AMAMEF07, Bedelow 41

Growth Optimal Portfolio ds δ t = S δ t ( + r t dt + d k=m+1 m θ k t (θk t dt + dw k t ) k=1 θ k t 1 θ k t (h k t ) 1 2 ( θ k t dt + dw k t ) lim sup T ( 1 S δ T ln T S0 δ ) lim sup T ( 1 S δ T ln T S δ 0 ) Eckhard Platen AMAMEF07, Bedelow 42

sequence of diversified portfolios (DPs) π j δ,t K 2 d 1 2 +K 1 assume sequence of markets regular : k {1, 2,..., d} E ( (ˆσ k (d) (t))2) K Eckhard Platen AMAMEF07, Bedelow 43

tracking rate d R δ (d) (t) = d π j δ,t σj,k (d) (t) k=1 j=0 2 R δ (d) (t) = 0 Diversification Theorem For any DP lim d Rδ (d) (t) P = 0 for all t R + model independent Eckhard Platen AMAMEF07, Bedelow 44

References Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hyperbolae. Scand. J. Statist. 5, 151 157. Barndorff-Nielsen, O. (1995). Normal-Inverse Gaussian processes and the modelling of stock returns. Technical report, University of Aarhus. 300. Blattberg, R. C. & N. Gonedes (1974). A comparison of the stable and Student distributions as statistical models for stock prices. J. Business 47, 244 280. Eberlein, E. & U. Keller (1995). Hyperbolic distributions in finance. Bernoulli 1, 281 299. Fergusson, K. & E. Platen (2006). On the distributional characterization of log-returns of a world stock index. Appl. Math. Finance 13(1), 19 38. Fernholz, E. R. (2002). Stochastic Portfolio Theory, Volume 48 of Appl. Math. Springer. Heath, D., S. R. Hurst, & E. Platen (2001). Modelling the stochastic dynamics of volatility for equity indices. Asia-Pacific Financial Markets 8, 179 195. Hurst, S. R. & E. Platen (1997). The marginal distributions of returns and volatility. In Y. Dodge (Ed.), L 1 -Statistical Procedures and Related Topics, Volume 31 of IMS Lecture Notes - Monograph Series, pp. 301 314. Institute of Mathematical Statistics Hayward, California. Eckhard Platen AMAMEF07, Bedelow 45

Kelly, J. R. (1956). A new interpretation of information rate. Bell Syst. Techn. J. 35, 917 926. Le, T. & E. Platen (2006). Approximating the growth optimal portfolio with a diversified world stock index. J. Risk Finance 7(5), 559 574. Madan, D. & E. Seneta (1990). The variance gamma (V.G.) model for share market returns. J. Business 63, 511 524. Markowitz, H. & N. Usmen (1996a). The likelihood of various stock market return distributions, Part 1: Principles of inference. J. Risk & Uncertainty 13(3), 207 219. Markowitz, H. & N. Usmen (1996b). The likelihood of various stock market return distributions, Part 2: Empirical results. J. Risk & Uncertainty 13(3), 221 247. McNeil, A., R. Frey, & P. Embrechts (2005). Quantitative Risk Management. Princeton University Press. Platen, E. (2005). Diversified portfolios with jumps in a benchmark framework. Asia-Pacific Financial Markets 11(1), 1 22. Platen, E. & D. Heath (2006). A Benchmark Approach to Quantitative Finance. Springer Finance. Springer. Platen, E. & Sidorowicz (2007). Empirical evidence on Student-t log-returns of diversified world stock indices. Technical report, University of Technology, Sydney. QFRC Research Paper 194. Eckhard Platen AMAMEF07, Bedelow 46

Praetz, P. D. (1972). The distribution of share price changes. J. Business 45, 49 55. Eckhard Platen AMAMEF07, Bedelow 47