Application of Markov-Switching Regression Model on Economic Variables

Similar documents
Brief Sketch of Solutions: Tutorial 2. 2) graphs. 3) unit root tests

AN EMPIRICAL ANALYSIS OF THE PUBLIC DEBT RELEVANCE TO THE ECONOMIC GROWTH OF THE USA

Brief Sketch of Solutions: Tutorial 1. 2) descriptive statistics and correlogram. Series: LGCSI Sample 12/31/ /11/2009 Observations 2596

Research Article The Volatility of the Index of Shanghai Stock Market Research Based on ARCH and Its Extended Forms

Forecasting the Philippine Stock Exchange Index using Time Series Analysis Box-Jenkins

SUSTAINABILITY PLANNING POLICY COLLECTING THE REVENUES OF THE TAX ADMINISTRATION

ESTIMATING MONEY DEMAND FUNCTION OF BANGLADESH

ANALYSIS OF CORRELATION BETWEEN THE EXPENSES OF SOCIAL PROTECTION AND THE ANTICIPATED OLD AGE PENSION

Empirical Analysis of Private Investments: The Case of Pakistan

POLYTECHNIC OF NAMIBIA SCHOOL OF MANAGEMENT SCIENCES DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE ECONOMETRICS. Mr.

LAMPIRAN. Null Hypothesis: LO has a unit root Exogenous: Constant Lag Length: 1 (Automatic based on SIC, MAXLAG=13)

A SEARCH FOR A STABLE LONG RUN MONEY DEMAND FUNCTION FOR THE US

ARCH modeling of the returns of first bank of Nigeria

The Demand for Money in China: Evidence from Half a Century

Financial Econometrics: Problem Set # 3 Solutions

Exchange Rate and Economic Performance - A Comparative Study of Developed and Developing Countries

An empirical study on the dynamic relationship between crude oil prices and Nigeria stock market

The Demand for Money in Mexico i

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

Exchange Rate and Economic Growth in Indonesia ( )

Notes on the Treasury Yield Curve Forecasts. October Kara Naccarelli

Thi-Thanh Phan, Int. Eco. Res, 2016, v7i6, 39 48

Balance of payments and policies that affects its positioning in Nigeria

The Effects of Oil Shocks on Turkish Macroeconomic Aggregates

A Threshold Multivariate Model to Explain Fiscal Multipliers with Government Debt

The Credit Cycle and the Business Cycle in the Economy of Turkey

Are Bitcoin Prices Rational Bubbles *

An Analysis of Stock Returns and Exchange Rates: Evidence from IT Industry in India

University of Pretoria Department of Economics Working Paper Series

IMPLICATIONS OF FINANCIAL INTERMEDIATION COST ON ECONOMIC GROWTH IN NIGERIA.

Determinants of Merchandise Export Performance in Sri Lanka

Empirical Analysis of the US Swap Curve Gough, O., Juneja, J.A., Nowman, K.B. and Van Dellen, S.

An Investigation of Effective Factors on Export in Iran

Factor Affecting Yields for Treasury Bills In Pakistan?

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Unemployment and Labour Force Participation in Italy

Donald Trump's Random Walk Up Wall Street

Lecture 9: Markov and Regime

ijcrb.webs.com INTERDISCIPLINARY JOURNAL OF CONTEMPORARY RESEARCH IN BUSINESS AUGUST 2012 VOL 4, NO 4

Do core inflation measures help forecast inflation? Out-of-sample evidence from French data

How can saving deposit rate and Hang Seng Index affect housing prices : an empirical study in Hong Kong market

Lecture 8: Markov and Regime

Government Tax Revenue, Expenditure, and Debt in Sri Lanka : A Vector Autoregressive Model Analysis

A study on the long-run benefits of diversification in the stock markets of Greece, the UK and the US

Current Account Balances and Output Volatility

MODELLING AND PREDICTING THE REAL MONEY DEMAND IN ROMANIA. Literature review

DOES GOVERNMENT SPENDING GROWTH EXCEED ECONOMIC GROWTH IN SAUDI ARABIA?

Econometric Models for the Analysis of Financial Portfolios

Fiscal Policy and Economic Growth Relationship in Nigeria

A Note on the Oil Price Trend and GARCH Shocks

THE IMPACT OF OIL REVENUES ON BUDGET DEFICIT IN SELECTED OIL COUNTRIES

ARDL Approach for Determinants of Foreign Direct Investment (FDI) in Pakistan ( ): An Empirical Study

Estimation, Analysis and Projection of India s GDP

Trade Liberalization, Financial Liberalization and Economic Growth: A Case Study of Pakistan

The Influence of Leverage and Profitability on Earnings Quality: Jordanian Case

Market Integration, Price Discovery, and Volatility in Agricultural Commodity Futures P.Ramasundaram* and Sendhil R**

Openness and Inflation

Trade Misinvoicing and Macroeconomic Outcomes in India

Analysis of the Influence of the Annualized Rate of Rentability on the Unit Value of the Net Assets of the Private Administered Pension Fund NN

EVIDENCES OF INTERDEPENDENCY IN THE POLICY RESPONSES OF MAJOR CENTRAL BANKS: AN ECONOMETRIC ANALYSIS USING VAR MODEL

Forecasting Volatility movements using Markov Switching Regimes. This paper uses Markov switching models to capture volatility dynamics in exchange

RISK SPILLOVER EFFECTS IN THE CZECH FINANCIAL MARKET

Structural Cointegration Analysis of Private and Public Investment

Impact of Some Selected Macroeconomic Variables (Money Supply and Deposit Interest Rate) on Share Prices: A Study of Dhaka Stock Exchange (DSE)

Indian Institute of Management Calcutta. Working Paper Series. WPS No. 797 March Implied Volatility and Predictability of GARCH Models

Equity Price Dynamics Before and After the Introduction of the Euro: A Note*

An Empirical Study on the Determinants of Dollarization in Cambodia *

Fall 2004 Social Sciences 7418 University of Wisconsin-Madison Problem Set 5 Answers

GARCH Models for Inflation Volatility in Oman

Estimating Egypt s Potential Output: A Production Function Approach

Department of Economics Working Paper

CHAPTER 5 MARKET LEVEL INDUSTRY LEVEL AND FIRM LEVEL VOLATILITY

INFORMATION EFFICIENCY HYPOTHESIS THE FINANCIAL VOLATILITY IN THE CZECH REPUBLIC CASE

The Effects of Oil Price Volatility on Some Macroeconomic Variables in Nigeria: Application of Garch and Var Models

An Examination of Seasonality in Indian Stock Markets With Reference to NSE

Conflict of Exchange Rates

Asian Economic and Financial Review SOURCES OF EXCHANGE RATE FLUCTUATION IN VIETNAM: AN APPLICATION OF THE SVAR MODEL

The Kalman Filter Approach for Estimating the Natural Unemployment Rate in Romania

POSITION AND INTEGRATION OF BALKAN STOCK MARKETS

Investment and financing constraints in Iran

Lampiran 1 : Grafik Data HIV Asli

The Great Moderation Flattens Fat Tails: Disappearing Leptokurtosis

State Switching in US Equity Index Returns based on SETAR Model with Kalman Filter Tracking

Why the saving rate has been falling in Japan

Econometrics II. Seppo Pynnönen. Spring Department of Mathematics and Statistics, University of Vaasa, Finland

THE CREDIT CYCLE and the BUSINESS CYCLE in the ECONOMY of TURKEY

Appendixes Appendix 1 Data of Dependent Variables and Independent Variables Period

AFRREV IJAH, Vol.3 (1) January, 2014

COINTEGRATION AND MARKET EFFICIENCY: AN APPLICATION TO THE CANADIAN TREASURY BILL MARKET. Soo-Bin Park* Carleton University, Ottawa, Canada K1S 5B6

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

How do stock prices respond to fundamental shocks?

Surasak Choedpasuporn College of Management, Mahidol University. 20 February Abstract

Cointegration and Price Discovery between Equity and Mortgage REITs

The Main Determinants of Inflation in Sri Lanka A VAR based Analysis. H. P. G. S. Ratnasiri. Abstract

An Empirical Analysis on the Relationship between Health Care Expenditures and Economic Growth in the European Union Countries

Analysis of the Relation between Treasury Stock and Common Shares Outstanding

COMMONWEALTH JOURNAL OF COMMERCE & MANAGEMENT RESEARCH AN ANALYSIS OF RELATIONSHIP BETWEEN GOLD & CRUDEOIL PRICES WITH SENSEX AND NIFTY

THE EFFECTIVENESS OF EXCHANGE RATE CHANNEL OF MONETARY POLICY TRANSMISSION MECHANISM IN SRI LANKA

Sustainability of Current Account Deficits in Turkey: Markov Switching Approach

FBBABLLR1CBQ_US Commercial Banks: Assets - Bank Credit - Loans and Leases - Residential Real Estate (Bil, $, SA)

Transcription:

Journal of Statistical and Econometric Methods, vol.5, no.2, 2016, 17-30 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2016 Application of Markov-Switching Regression Model on Economic Variables Umeh Edith Uzoma 1 and Anazoba Uchenna Florence 2 Abstract This study investigates the Markov-switching regression model on economic variable using time series data spanning from 1985-2014. The stock data are regime dependent and the two regime multivariate Markov switching vector autoregressive (MSVAR) model is used to examine the structure of the Nigeria stock index prices. It is found that MSVAR model with two regimes detect shifts in the return series and shows evidence of switching in the stock market return series. It is also found that the return series are well fitted by MSVAR model and filtered probabilities can be extracted from the data to evaluate the strength of moving from one state to another. Also, MSVAR model captures the sudden changes in the stock data using exogenous variable which is unobserved and follow a stochastic process. It is recommended that the investors on the stock market should be cautious because the stock market is unstable. 1 Department of Statistics, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. E-mails: editus2002@yahoo.com and eu.umeh@unizik.edu.ng 2 Department of Statistics, Nnamdi Azikiwe University, Awka, Anambra State Nigeria. E-mail: ucheboko@yahoo.com Article Info: Received : January 30, 2016. Revised : February 25, 2016. Published online : June 10, 2016.

18 Application of Markov-Switching Regression Model on Economic Variables Keywords: Markov-switching regression; Economic variables; Markov-switching vector autoregression; stock price JEL Classification: 62Jxx 1 Introduction Financial risks, if not well considered, can cause immense damages. Studies show that the stock market involves risks that have lead researchers to investigate methods and techniques to model the risks and fluctuations in the stock market [Suleiman (2011); Ifuero and Asein (2012)]. Financial risks can only be measured using economic variables. According to Kaun (2002), GDP growth rates typically fluctuate around a higher level and are more persistent during expansions, but they stay at a relatively lower level and less persistent during contractions. It would not be reasonable to expect a single, linear model to capture these distinct behaviors. This has captured the attention of many researchers, thus Krolzig (2003) used Markov-switching vector autoregressive model for the analysis of the Euro-zone business cycle. Ismail and Isa (2008) modeled nonlinear relationship among selected ASIAN stock markets. Olufisayo (2014) examined the relationship between changes in oil prices and stock market in Nigeria. In the above literatures; krolzig (2003), did regime inference in MSVAR models using filtering and smoothing, estimated the parameters and of transition probability but he did not find the expected duration of which is done in this paper to know the likely time for the stock data to switch. Ismail and Isa (2008) used MSVAR to model common trend of stock market index from three ASIAN countries where as Olufisayo (2014) used VECM in his work. Ismail and Isa (2008) and Olufisayo (2014) began their studies by describing the data and testing for stationarity using unit root test and stationary test. They used Johansen test to test for cointegration if the data appear stationary. Then, they tested for nonlinearity of the return series of the stock market index. Finally, Ismail and Isa

Umeh Edith Uzoma and Anazoba Uchenna Florence 19 (2008) estimated the MSVAR model and collected series for smoothing probabilities to identify common switching behavior in the series and Olufisayo (2014) used VECM to examine the relationship between changes in oil prices and stock market in Nigeria. But this work use MSVAR to analyze stock market index from NSE. The methodology used in this paper is different in that stability test is conducted on the VAR structure before estimating the MSVAR model and collected series for filtered probabilities to evaluate the strength of moving from one state to another. All these aspects of stock market regime have been largely ignored by existing studies in the case of Nigeria. The focus of this study is to investigate regime switch in the stock market price using the Markov Switching Regression Model. A 2-state Markov Switching Regression model on all share index stock prices is applied. This study investigates the nature of the VAR model of the all share index stock prize through the recursive algorithm approach, determines the time-varying probabilities and expected duration of each regime. 2 Methodology 2.1 Type and source of data Time series data on all share index of the Nigerian stock exchange were collected from the Nigerian stock exchange website for this study. The monthly data collected is for a period of 30 years (January 1985 December 2014) and for a total of 360 observations. This is done; in order to investigate the dynamics (fluctuations) in the Nigeria stock exchange market. 2.2 Analytical procedure The data sourced were analysed using both descriptive and inferential statistics. Descriptive statistics in the form of mean, standard error, sum squared

20 Application of Markov-Switching Regression Model on Economic Variables residual, standard deviation were used to summarize the features of the variables under study. Inferential statistics such as Augmented Dickey-Fuller test (ADF) and AR unit root test were employed. The ADF test was used to test for stationarity of the stock price data. AR unit root test was employed to know the stability of the VAR structure to avoid invalid results. The estimation of Markov switching VAR model is done by the maximum likelihood ratio method. The maximum of the likelihood of an MSVAR model results in an iterative process to obtain estimates of autoregressive parameters, the transition probabilities and the expected duration controlled by the unobserved states of a Markov chain. 2.3 Model specification The model of the Augmented Dickey-Fuller can be written as follows: X t = ρx t 1 + ε t (2.1) If one adds a constant and a trend to the model, the model writes: X t = ρx t 1 + α + β t + ε t (2.2) t = 1, 2..., where the ε t are independent identically distributed variables that follow a normal distribution; N(0, σ²) The test statistic is the τ statistic on the lagged dependent variable. The relevant root null hypothesis is if the absolute value of the calculated ADF statistic( τ ) is higher than the significant level, the series is not stationary and if the p-value is less than the significant level, the series is stationary. Differencing can be used to make a time series stationary. The differenced series can be written as, y tˊ = y t y t 1 (2.3) This is the first difference of y at period t. In testing for the unit root in the VAR model, we have to find the modulus of the eigenvalues of the matrix. It follows that the eigenvalues of are precisely the real numbers that satisfy the equation

Umeh Edith Uzoma and Anazoba Uchenna Florence 21 det( A λι) = 0 (2.4) If all the unit roots lie inside the unit circle and the modulus is less than one, the VAR structure is stable. Suppose that the random variable of interest y t follows a process that depends on the value of an unobserved discrete state variable s t. It is assumed that there are M possible regimes, and it is said to be in state or regime m in period t when s t = m, for m = 1,, M. The switching model assumes that there is a different regression model associated with each regime, and that the regression errors are normally distributed with variance that may depend on the regime. The first-order Markov assumption requires that the probability of being in a regime depends on the previous state, so that P ( s t = j s t 1 = i ) = p ij (t) (2.5) Typically, these probabilities are assumed to be time-invariant so that p ij (t) = p ij for all t, but this restriction is not required. We may write these probabilities in a transition matrix p (t) = p11() t p1m () t pm 1() t pmm () t (2.6) Where, the ij-th element represents the probability of transitioning from regime i in period t 1 to regime j in period t. As in Diebold et al (1994); p 11 (t) = p(s t = 1 s t 1 = 1, X t 1 ; β i ) = Also, exp ( X t 1ˊ β 1 ) 1+exp (X t 1ˊ β 1 ), p 1M (t) = (1 - p 11 (t)). p MM (t) = p(s t = M s t 1 = M, X t 1 ; β M ) = exp ( X t 1ˊ β M ) 1+exp (X t 1ˊ β M ), p M1 (t) = ( 1 - p MM (t) ). This study apply a two state Markov process which shows that M =2. The two transition probabilities are time-varying, evolving as logistic functions of

22 Application of Markov-Switching Regression Model on Economic Variables X t 1ˊβ i, i = 1,2, where the vector X t 1 contains economic variables that affect the state transition probabilities. The two sets of parameters governing the transition probabilities are a (2k x1) vector, β = (β 1ˊ, β 2ˊ). As in the simple switching model, the probabilities may be parameterized in terms of a multinomial logic. Note that since each row of the transition matrix specifies a full set of conditional probabilities, a separate multinomial specification for each row i of the matrix is defined thus, p ij ( G t 1, δ i ) = exp(g t 1,δ ij ) M s=1 exp( G t 1,δ is ) For, j = 1,, M and i = 1,, M with the normalizations δ im = 0. (2.7) The Markov property of the transition probabilities can be evaluated recursively, each step begins with filtered estimates of the regime probabilities for the previous period. Given filtered probabilities, P(s t 1 = m I t 1 ), the recursion may be broken down into four steps; as in E-views 9: M p( s t = m J t 1 ) = j=1 p( s t = m s t 1 = j). p(s t 1 = j J t 1 ) M = j=1 p jm (G t 1,δ j ). p(s t 1 = j J t 1 ) (2.8) equation (2.8) forms the one-step ahead predictions of the regime probabilities using basic rules of probability and the Markov transition matrix. f(y t, s t = m J t 1 ) = 1 ɸ ( σ m σ(m) y t μ t (m) ). p( s t = m J t 1 ) (2.9) These one-step ahead probabilities are used to form the one-step ahead joint densities of the data and regimes in period as giving by equation (2.9) above. The likelihood contribution for period is obtained by summing the joint probabilities across unobserved states to obtain the marginal distribution of the observed data: M L t (β, γ, σ, δ ) = f(y t, J t 1 ) = j=1 f ( y t, s t = j J t 1 ) (2.10) Finally, the probabilities are filtered using the results in Equation (2.7) to update one-step ahead predictions of the probabilities:

Umeh Edith Uzoma and Anazoba Uchenna Florence 23 p(s t = m J t ) = f( y t, s t = m J t 1 ) M j=1 f ( y t, s t = j J t 1 ) (2.11)These steps are repeated successively for each period, t = 1,,T. All that is required for implementation are the initial filtered probabilities, P(s 0 = m I 0 ), or alternately, the initial one-step ahead regime probabilities P(s 1 = m I 0 ). Given parameter estimates of the model, inference can be made on s t using all the information in the sample by using Hamilton (1989) filter. Thus, we can get the filtered regime probabilities of stock returns. 3 Results and Discussion Augmented Dickey-Fuller Unit Root/Stationarity Test Hypothesis: H 0 : There is a unit root in the series. H 1 : There is no unit root in the series. The series is stationary. Table 1: ADF unit root test of the original stock exchange price Dickey-Fuller test (ADF(stationary) / k: 1 / Stock Exchange Price): -2.1727 Tau (Critical value) -0.9368 p-value (one-tailed) 0.5052 Alpha 0.05 Conclusion: As the computed p-value is greater than the significance level (alpha = 0.05), the null hypothesis H 0 cannot be rejected, that concludes that there is a unit root in the series. The data is not stationary; therefore the data shall be differenced.

24 Application of Markov-Switching Regression Model on Economic Variables Table 2: ADF unit root test of the differenced stock exchange price Dickey-Fuller test (ADF(stationary) / k: 1 / Diff1): Tau (Observed value) -9.9288 Tau (Critical value) -0.9124 p-value (one-tailed) < 0.0001 Alpha 0.05 Conclusion: As the computed p-value is lower than the significance level (alpha = 0.05), the null hypothesis H 0 is rejected, accept the alternative hypothesis H 1, that there is no unit root in the series. The series is stationary. Vector Autoregressive Estimation Inverse Roots of AR Characteristic Polynomial 1.5 1.0 0.5 0.0-0.5-1.0-1.5-1.5-1.0-0.5 0.0 0.5 1.0 1.5 Figure 1: Graph showing Inverse Roots of VAR structure.

Umeh Edith Uzoma and Anazoba Uchenna Florence 25 Interpretation: Figure 1 shows the inverse roots of the characteristic AR polynomial; Lütkepohl (2005) and Hamilton (1994) both show that if the modulus of the eigenvalues of the matrix is strictly less than one and the roots lie inside the unit circle, the estimated VAR is stable. We were able to get roots for AR (1) and AR (2), since AR (3) and so on, appear invalid. If a root is real, it will lie on the horizontal axis; but if it is complex, if will be located at the point (x, y). Since no root lies outside the unit circle and the modulus is less than one, VAR satisfies the stability condition. Markov-switching Regression Analysis Table 3: Results of the analysis Coefficient Std. Error z-statistic Prob. Regime 1 C 29.65635 137.5556 0.215595 0.8293 Regime 2 C 11001.54 851.1930 12.92485 0.0000 Common coefficients AR(1) 0.206507 0.050999 4.049275 0.0001 AR(2) 0.310993 0.051094 6.086679 0.0000 LOG(SIGMA) 7.134001 0.037689 189.2863 0.0000

26 Application of Markov-Switching Regression Model on Economic Variables Table 4: Transition matrix parameters P11-C 5.179004 0.716148 7.231750 0.0000 P21-C 8.956865 62.86110 0.142487 0.8867 Mean dependent var 96.22813 S.D. dependent var 1562.039 S.E. of regression 1465.945 Sum squared resid 7.61E+08 Durbin-Watson stat 2.306951 Log likelihood -3082.869 Akaike info 17.21376 Schwarz criterion 17.28948 criterion Hannan-Quinn 17.24387 criter. Inverted AR Roots 0.67-0.46 Source: Authors computation. We see, from the upper part of table 3 the differences in the regime specific means (Regime 1: 29.65635, Regime 2: 11001.54), what Hamilton (1990) termed the fast and slow (in this case, the slow and fast) growth rates for the Nigeria stock market price for the period under study (1985 2014). We can also observe that regime 2 is significant (p<0.05), while regime 1 is not (p>0.05). This implies that the dynamics in the first regime is not substantial. The bottom section of table 4 shows the standard descriptive statistics for the equation. The unit roots are 0.67 and -0.46 which are real roots which means that they do not appear in conjugate pairs, they are roots on x-axis. Estimation equation: 1: Diff = 29.6563463707 + [AR(1)=0.20650713911, AR(2)=0.310992536816] 2: Diff = 11001.5405593 + [AR(1)=0.20650713911, AR(2)=0.310992536816]

Umeh Edith Uzoma and Anazoba Uchenna Florence 27 where Diff = Differenced Data Table 5: Transition probability 1 2 1 0.994398 0.005602 2 0.999871 0.000129 Expected durations: 1 2 178.5060 1.000129 Here, we see the transition probability matrix and the expected durations. The Transition probability is generated from the analysis run with E-views Statistical software version 9. The time-varying probabilities show considerable state dependence in the transition probabilities with a relatively higher probability of remaining in the origin regime, p (s t =1 s t 1 =1) is 0.994398 for the high output state and p (s t =2 s t 1 =2) is 0.000129 for the low output state. The corresponding expected durations in a regime are approximately 178.5 and 1.0 quarters, respectively, which imply that the stock market will remain in the origin state for a very long time before moving to the second state. Figure 2 displays the filtered estimates of the probabilities of being in the two regimes. Filtering is the process by which the probability estimates are updated. This is done in order to determine the likelihood of moving from one state to the other. This shows that the states are in the years 2008 and 2009.

28 Application of Markov-Switching Regression Model on Economic Variables Filtered Regime Probabilities 1.0 P(S(t)= 1) 0.8 0.6 0.4 0.2 0.0 1985 1990 1995 2000 2005 2010 1.0 P(S(t)= 2) 0.8 0.6 0.4 0.2 0.0 1985 1990 1995 2000 2005 2010 Figure 2: Chart showing the filtered estimates of the regime probabilities 4 Conclusions This study aimed at investigating regime switching in the stock market price using the Markov Switching Regression Model. Based on the results obtained from all the analyses, it concludes as follows; firstly, the study conclude that the Markov-Switching Regression model is a high-degree flexible model because it

Umeh Edith Uzoma and Anazoba Uchenna Florence 29 can capture regime shifts in the mean, in the variance and also the parameters of the vector autoregressive process. Secondly, it is found that the return series are well fitted by the MSVAR model and the filtered probabilities can be extracted. This is shown by the estimated parameters and the filtered probability plots of regime 1 and 2. Finally, it concludes that there is regime switching structure in the series. References [1] A.O. Olufisayo, The Relationship between Changes in Oil prices and Stock Market in Nigeria, European Journal of Sustainable Development, 3(2), (2014), 33-40. [2] C.M. Kuan, Lecture on the Markov switching models, Institute of Economics, Academia Sinica, Taipei 115, Taiwan, (2002). [3] F.X. Diebold, J.H. Lee and G.C. Weinbach, Regime Switching with Timevarying Transition Probabilities, In C.P. Hargreaves editor, Non stationary Time Series and co integration, Oxford University press, (1994), 283-302. [4] H. Lütkepohl, New Introduction to Multiple Time Series Analysis, Springer- Verlag, Berlin, 2005. [5] H.K. Suleiman, Stock return and the Volatility Persistence in the Nigerian Capital Market, Seminal Paper, Department of Accounting, Ahmed Bello University, Zaria, (2011). [6] H.M. Krolzig, Construction of Turning Point Chronologies with Markovswitching Autoregressive models: the Euro-zone business cycle, Department of Economics and Nuffield College, Oxford University, 2003. [7] J.D. Hamilton, A New Approach to the Economic Analysis of Non stationary Time Series and the Business Cycle, Econometrica, 57(2), (1989), 357-384.

30 Application of Markov-Switching Regression Model on Economic Variables [8] J.D. Hamilton, Analysis of Time Series Subject to Changes in Regime, Econometrica, 45, (1990), 39-70. [9] J.D. Hamilton, Time Series Analysis, Princeton University press, 1994. [10] M.T. Ismail and Z.B. Isa, Modeling Non-linear Relationship among Selected ASEAN Stock Markets, Data science, (2008), 533-545. [11] Nigeria Stock Exchange website. [12] O.O. Ifuero and I.E. Asein, Market Risk and Returns: Evidence from the Nigerian capital market, Asian Business Management, 4(4), (2012), 367-372.