Discrete Random Variables

Similar documents
Statistics 511 Additional Materials

Shifting our focus. We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why?

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Discrete Random Variables

Discrete Random Variables

Statistical Methods in Practice STAT/MATH 3379

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Discrete Probability Distribution

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Chapter 3 - Lecture 5 The Binomial Probability Distribution

4 Random Variables and Distributions

Discrete Random Variables

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Stat511 Additional Materials

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

Chapter 4 Continuous Random Variables and Probability Distributions

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

Chapter 16. Random Variables. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT 111 Recitation 3

Section Random Variables and Histograms

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

Statistics for Business and Economics

Statistics for Business and Economics: Random Variables (1)

Probability Distributions

GETTING STARTED. To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop

MLLunsford 1. Activity: Mathematical Expectation

Probability Distributions

Lecture 18 Section Mon, Feb 16, 2009

Lecture 18 Section Mon, Sep 29, 2008

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

A useful modeling tricks.

Statistics 6 th Edition

5.2 Random Variables, Probability Histograms and Probability Distributions

STA Module 3B Discrete Random Variables

Statistics, Measures of Central Tendency I

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

variance risk Alice & Bob are gambling (again). X = Alice s gain per flip: E[X] = Time passes... Alice (yawning) says let s raise the stakes

Statistics vs. statistics

Chapter 7: Random Variables

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Statistical analysis and bootstrapping

Lecture 9. Probability Distributions. Outline. Outline

Introduction to Statistics I

Section Distributions of Random Variables

Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems.

Bayes s Rule Example. defective. An MP3 player is selected at random and found to be defective. What is the probability it came from Factory I?

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Business Statistics 41000: Probability 3

Sampling Distribution

Chapter 2: Random Variables (Cont d)

2011 Pearson Education, Inc

Lecture 9. Probability Distributions

MA : Introductory Probability

Section M Discrete Probability Distribution

Statistics, Their Distributions, and the Central Limit Theorem

LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 4 Continuous Random Variables and Probability Distributions

Probability Distributions for Discrete RV

Chapter 4 and 5 Note Guide: Probability Distributions

Section Introduction to Normal Distributions

The Normal Probability Distribution

Chapter 6. The Normal Probability Distributions

11.5: Normal Distributions

Section 8.1 Distributions of Random Variables

Chapter 7 1. Random Variables

1 Describing Distributions with numbers

Data Science Essentials

Random variables. Discrete random variables. Continuous random variables.

The topics in this section are related and necessary topics for both course objectives.

4: Probability. What is probability? Random variables (RVs)

Introduction to Business Statistics QM 120 Chapter 6

MA131 Lecture 8.2. The normal distribution curve can be considered as a probability distribution curve for normally distributed variables.

Simple Random Sample

CSC Advanced Scientific Programming, Spring Descriptive Statistics

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations

4.2 Bernoulli Trials and Binomial Distributions

Business Statistics 41000: Probability 4

Probability: Week 4. Kwonsang Lee. University of Pennsylvania February 13, 2015

STT315 Chapter 4 Random Variables & Probability Distributions AM KM

The Uniform Distribution

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

We use probability distributions to represent the distribution of a discrete random variable.

Uniform Probability Distribution. Continuous Random Variables &

30 Wyner Statistics Fall 2013

VIDEO 1. A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled.

STA Rev. F Learning Objectives. What is a Random Variable? Module 5 Discrete Random Variables

Sampling and sampling distribution

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

Transcription:

Discrete Random Variables In this chapter, we introduce a new concept that of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can be thought of as the value that is assigned to the outcome of an experiment. There are different RVs depending upon the type of quantity that we are trying to model. In this chapter we will introduce some random variables for experiments whose outcome is a whole number. In the next chapter we will discuss random variables whose values are any number within an interval. Both of these chapters focus on numeric random variables. That is, the outcomes that the experiment in question produces are numbers. Sample and Population notation Before we begin with random variables, it is important that we specify some new notation that differentiates the data analysis that we were doing in Chapters 1 through 3 and what we will do throughout the rest of the course. We are going to differentiate between the population mean and the sample mean. The population mean is the mean or average of all the elements of the population. The sample mean is the average for a subset of that population. Thus we need notation to demarcate between these two ideas. For a variable X, the population mean we will use the Greek symbol mu with a subscript of x, µ x. For the sample mean, we have already seen that we will use the symbol x with a bar over it or x. We will do the same for the standard deviation. For a variable X, the population standard deviation will be the Greek letter sigma with a subscript of x, σ x. The sample standard deviation will be denoted by the letter s with a subscript of x, s x. Quantity Population Parameter Sample Statistic Mean µ x x Standard Deviation σ x s x Example Suppose that the population is made up of 25 students in a Stat 101 lab and the variable that we are interested in is the number of siblings for each student, call it Y. y:4,3,1,1,5,2,2,4,0,2,1,2,3,0,2,4,4,6,0,0,1,3,3,1,3 The population mean µ y is 2.28 and the population standard deviation is σ y = 1.646. If we take a sample from this population of 5 individuals, we might get 1,2,2,3,0. The mean of this sample is y =1.6 and the standard deviation is s y =1.14. If another samples is drawn then we might get 4, 1, 0, 2, 4. The mean of this sample is y =2.1 and the standard deviation is s y = 1.79 Random Variables Definition: A random variable or RV is a variable whose value is determined by the outcome of an experiment. Examples: W = the number of tomatoes that a plant will produce I = the inflation rate for the U.S. in the fourth quarter of this year Page 1 of 5

Z = the number of people who vote in the next presidential election T = number of tablets in a bottle of aspirin K = number of potatoes in a 5 pound bag of potatoes B = time between phone calls for a computer helpline There are two types of random variables discrete and continuous. Definition: A random variable is called discrete if it can only take a countable number of values. In the list of RVs above, W, Z, T, and K are all discrete random variables. Definition: A random variable is called continuous if it can take values inside an interval. In the list of RVs above, I and B are continuous random variables. Definition: A probability distribution (sometimes simply called a distribution) is the mechanism that assigns probabilities to each value that the random variable can assume. Discrete Random Variables In this chapter we will focus on discrete random variables. Notation: For a discrete RV X, we will use as shorthand P(X=x) to represent the probability that the variable X takes the value x. Often we will make this even shorter and simply write p(x). For a six-sided die with the values {1, 2, 3, 4, 5, 6} on it s faces, let X be the value that appears on the face when the die is rolled. Then p(2) or P(X=2) represents the probability that X will be 2. Rules There are two rules for all discrete probability distributions: 1. 0 P(X=x) 1 for each value of x. 2. Σ P(X=x) = 1 These rules imply that each event has a probability between 0 and 1 and that if we add up all the possible events their sum must be 1. We can use several methods for describing the distribution of a random variable X 1. Table For the table each possible value that the RV may take is listed and below it is listed the probability associated with that value. Page 2 of 5

y 2 3 4 P(Y=y) 0.3 0.2 0.5 From this table we can see that the probability that the RV Y takes the value 3 is 0.2 or P(Y=3) =0.2. We can also note that P(Y=2) = 0.3. 2. Line graph The second possible way to represent a distribution is through a line graph. For a line graph each possible value that the RV can take is listed on the x-axis. Vertical lines are drawn up from each possible value so that the height of those lines corresponds to the probability of that value. For the RV X The line graph for this distribution of X looks like the following: P(X=x) 0.30 0.10 1 2 3 4 5 w 3. Formula Lastly we can use a formula to describe the distribution of a random variable. Under this method, if we know certain quantities, usually called parameters, then we can calculate the probability of a particular value for the RV. P(X=x) = v(1-v) x-1 for x = 1, 2, 3,... If we know what v is we can then calculate the probabilities for each value of x. In this example the parameter we would need to know would be v. Theoretical Mean (Expected Value) of a Discrete Probability Distribution If we know the probability distribution of a discrete random variable, we can compute its theoretical mean (also called the population mean) directly. There is no need to obtain a random sample, calculate the sample mean, and then use the sample mean to estimate the theoretical (or population) mean. E(X) = µ = Σ(x * p(x)) Page 3 of 5

E(X) = µ = Σ(x * p(x)) = 2*0.4 + 3*0.1+ 4 * 0.2 + 5*0.3 = 3.4 Theoretical Standard Deviation of a Discrete Probability Distribution If we know the probability distribution of a discrete random variable, we can compute its theoretical variance and theoretical standard deviation directly. VAR(X) = σ 2 = Σ(x µ) 2 * p(x) An alternate formula for computing the theoretical variance is VAR(X) = σ 2 = [ Σx 2 * p(x) ] µ 2 The theoretical standard deviation is the square root of the theoretical variance. S.D(X) = σ = Σ(x µ) 2 * p(x) or [ Σx 2 * p(x) ] µ 2 VAR(X) = σ 2 = Σ(x µ) 2 * p(x) = (2 3.4) 2 * 0.4 + (3 3.4) 2 *0.1+ (4 3.4) 2 * 0.2 + (5 3.4) 2 * 0.3 = 0.784 + 0.016 + 0.072 + 0.768 =1.64 Page 4 of 5

So the theoretical standard deviation is Σ(x µ) 2 * p(x) = 1.64 =1.2806 Using the alternate formulas for theoretical variance and theoretical standard deviation, we will obtain the same answers as above. VAR(X) = σ 2 = [ Σx 2 * p(x) ] µ 2 = 2 2 * 0.4 + 3 2 * 0.1+ 4 2 *0.2 + 5 2 * 0.3 3.4 2 =1.6 + 0.9 + 3.2 + 7.5 11.56 =1.64 and = 1.64 =1.2806 [ Σx 2 * p(x) ] µ 2 The Cumulative Distribution Function of a Discrete Random Variable The Cumulative Distribution Function (CDF) of a Discrete Random Variable specifies the probability that a random variable X is less than or equal to some specified value x. The CDF is usually indicated by F(x) and is defined as F(x) = P(X x) and is computed as F(x) = Σ t x P(X = t) we could add another row to this table for the CDF of W F(x) 0.4 0.5 0.7 1.0 Page 5 of 5