Efficient provision of a public good

Similar documents
Microeconomics (Public Goods Ch 36 (Varian))

1. Externalities 2. Private Solutions to Externalities 3. Government Solutions to Externalities 4. Public Goods 5. Common Pool Resource Goods 9. 9.

Topic 5: Externalities and Public Goods (Ch. 18 K&R)

Microeconomics (Externalities Ch 34 (Varian))

Energy & Environmental Economics

David Besanko and Ronald Braeutigam. Prepared by Katharine Rockett

5. Markets and the Environment

Problem Set 3: Suggested Solutions

Advanced Microeconomic Theory EC104

5.2 Definitions. pure public good. pure private good. commons: tendency of overusing. nonexcludability. nonrivalry. excludable & rivalry

Econ 428. Fall Answer Sheet Midterm 1

Topics in Informational Economics 2 Games with Private Information and Selling Mechanisms

David Besanko and Ronald Braeutigam. Prepared by Katharine Rockett. Microeconomics, 2 nd Edition. Chapter 17: Externalities and Public Goods

Externalities 1 / 40

EC476 Contracts and Organizations, Part III: Lecture 3

Department of Economics ECO 431 FINAL EXAM KEY. This question asks you to apply the Weitzman model of policy choice under uncertainty.

Exercises Solutions: Oligopoly

Externalities : (d) Remedies. The Problem F 1 Z 1. = w Z p 2

Externalities 1 / 40

ECON6021: Externality, Public Goods, Property Rights

Lecture 12: Public goods

ECO410H: Practice Questions 2 SOLUTIONS

Game Theory Lecture #16

Economics Honors Exam 2008 Solutions Question 1

Externalities and Public Goods

MARKET FAILURE 1: EXTERNALITIES. BUS111 MICROECONOMICS Lecture 8

MB (polluter) MC (pollutee) Water Pollution. Full pollution. Zero pollution

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

Econ 101A Final exam May 14, 2013.

ECO303: Intermediate Microeconomic Theory Benjamin Balak, Spring 2008

Introduction to mechanism design. Lirong Xia

AS/ECON 2350 S2 N Answers to Mid term Exam July time : 1 hour. Do all 4 questions. All count equally.

Econ 101A Final exam May 14, 2013.

2. 4. Market failures and the rationale for public intervention (Stiglitz ch.4, 7, 8; Gruber ch.5,6,7, Rosen 5,6)

Economics 313: Intermediate Microeconomics II. Sample Final Examination. Version 2. Instructor: Dr. Donna Feir

Introduction. The Backward Bending Supply of Credit

Public Goods. Slide 1

Benefits and damages, uniformly mixing flow pollutant

Econ 210, Final, Fall 2015.

Chapter 33: Public Goods

Introduction to mechanism design. Lirong Xia

2. 4. Market failures and the rationale for public intervention (Stiglitz ch.4, 7, 8; Gruber ch.5,6,7, Rosen 5,6)

Economics 431 Final Exam 200 Points. Answer each of the questions below. Round off values to one decimal place where necessary.

We have seen that the role of government in promoting efficiency is to intervene in the pricing mechanism of good that create externalities.

x. The saver is John Riley 7 December 2016 Econ 401a Final Examination Sketch of answers 1. Choice over time Then Adding,

Externalities and Property Rights. Chapter 10. Learning Objectives

Externalities and Property Rights. Chapter 10. McGraw-Hill/Irwin. Copyright 2013 by The McGraw-Hill Companies, Inc. All rights reserved.

Multiunit Auctions: Package Bidding October 24, Multiunit Auctions: Package Bidding

2. 4. Market failures and the rationale for public intervention (Stiglitz ch.4, 7, 8; Gruber ch.5,6,7, Rosen 5,6)

Simon Fraser University Spring 2014

Today. Applications of NE and SPNE Auctions English Auction Second-Price Sealed-Bid Auction First-Price Sealed-Bid Auction

Externalities. Public Economics, 20 June, Muneta Yokomatsu Disaster Prevention Research Institute

Lecture 4. ECON 4910, Environmental Economics Spring This lecture

Public Sector Economics Test Questions Randall Holcombe Fall 2017

Games of Incomplete Information ( 資訊不全賽局 ) Games of Incomplete Information

Suggested solutions to the 6 th seminar, ECON4260

Game Theory Problem Set 4 Solutions

January 26,

Fall, 2007 Environmental Economics Phil Graves st. 1 Midterm, A EC3545 U. of Colorado

Externalities Chapter 34

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

Lecture. Lecture 8(ii) Office Hours Today: 1:30-3: Hanson. Public Goods. Consumer Theory. 1. Budget Constraint

March 30, Why do economists (and increasingly, engineers and computer scientists) study auctions?

Static Games and Cournot. Competition

Eco AS , J. Sandford, spring 2019 March 9, Midterm answers

Oligopoly Games and Voting Games. Cournot s Model of Quantity Competition:

Econ 323 Microeconomic Theory. Practice Exam 2 with Solutions

Economics Honors Exam 2009 Solutions: Microeconomics, Questions 1-2

Closed book/notes exam. No computer, calculator, or any electronic device allowed.

Notes on Auctions. Theorem 1 In a second price sealed bid auction bidding your valuation is always a weakly dominant strategy.

ECON Microeconomics II IRYNA DUDNYK. Auctions.

Externality and Corrective Measures

Externalities (Chapter 34)

Econ 323 Microeconomic Theory. Chapter 10, Question 1

3. Which of the following is a disadvantage of the command-and-control approach to the problem of pollution?

2010 Pearson Education Canada

Bayesian Nash Equilibrium

Recap First-Price Revenue Equivalence Optimal Auctions. Auction Theory II. Lecture 19. Auction Theory II Lecture 19, Slide 1

Topics in Contract Theory Lecture 1

ECON 1001 B. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

103midterm2. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Intermediate public economics 5 Externalities Hiroaki Sakamoto

ECON 3020 Intermediate Macroeconomics

2014/2015, week 6 The Ramsey model. Romer, Chapter 2.1 to 2.6

In the Name of God. Sharif University of Technology. Graduate School of Management and Economics

Externalities: Problems and Solutions

DUOPOLY. MICROECONOMICS Principles and Analysis Frank Cowell. July 2017 Frank Cowell: Duopoly. Almost essential Monopoly

Answers to Microeconomics Prelim of August 24, In practice, firms often price their products by marking up a fixed percentage over (average)

Rationalizable Strategies

Introduction. Introduction. Pollution: A Negative Externality. Introduction. In this chapter, look for the answers to these questions: Externalities

Solutions to Exercises in Environmental economics. Spring 2015

Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002

Auctions. N i k o l a o s L i o n i s U n i v e r s i t y O f A t h e n s. ( R e v i s e d : J a n u a r y )

ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100

Chapter 19 Optimal Fiscal Policy

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours

SPECTRUM MARKETS. Randall Berry, Michael Honig Department of EECS Northwestern University. DySPAN Conference, Aachen, Germany

ECON 340/ Zenginobuz Fall 2011 STUDY QUESTIONS FOR THE FINAL. x y z w u A u B

Microeconomics II Lecture 8: Bargaining + Theory of the Firm 1 Karl Wärneryd Stockholm School of Economics December 2016

Final Exam (100 Points Total)

Transcription:

Public Goods Once a pure public good is provided, the additional resource cost of another person consuming the good is zero. The public good is nonrival in consumption. Examples: lighthouse national defense streets (if noncongested) radio broadcast

Public Goods public good publicly provided good Public provision: The good is paid for by the state. Schooling (up to high school) is a publicly provided good, but not a public good! (why?) Classification as a public good is not unchangeable; it depends on market conditions and technology. Example: Streets during rush hour/ streets off-peak Excludability Prerequisite for collecting payments: Public goods which are excludable could in principle be provided by the private sector (example: Pay-TV). Public goods which are nonexcludable certainly cannot (example: National defense).

Efficient provision of a public good Indivisible public good (i.e. either provided completely or not; e.g., radio broadcast). A s willingness to pay: $ 20 B s willingness to pay: $ 10 When should the public good be provided? If the cost of producing the good is smaller than A s and B s joint willingness to pay =$ 30. Different from the case of private goods! Private goods: One unit should be provided to A if and only if the cost of producing one unit is smaller than 20$, and one unit should be provided to B if and only if it is smaller than 10$. Both people can consume the same unit of the p.g. simultaneously. For public goods, we sum demand curves vertically.

Continuous public goods: Variable quantity (or quality) Educated guess: efficient provision of a public goods requires that the sum of each person s valuation of the last unit is equal to the marginal cost of production of the last unit: MB A + MB B = MC General equilibrium framework with public goods. g i : contribution of player i to the public good G = g 1 + g 2 total amount of the public good provided. U i (G, x i ) = U i (g 1 + g 2, w i g i ) Pareto optimum maximize weighted sum of the two individuals utilities:

Continuous public goods max a 1 U 1 (g 1 + g 2, w 1 g 1 ) + a 2 U 2 (g 1 + g 2, w 2 g 2 ) g 1,g 2 First order conditions U 1 a 1 G a U 1 U 2 1 + a 2 x 1 G = 0 a 1 U 1 G + a 2 U 2 G a 2 a 1 U 1 x 1 = a 2 U 2 x 2. Rewrite FOC as U 2 x 2 = 0 U 1 a 1 G + a U 2 2 G = a U 1 1 x 1 a 1 U 1 G + a 2 U 2 G = a 2 U 2 x 2

6 Continuous public goods U 1 a 1 G + a U 2 2 G = a U 1 1 x 1 a 1 U 1 G + a 2 Divide first equation by a 1 U 1 x 1 : U 1 G U 1 x 1 + a 2 U 2 G = U a 1 1 x 1 U 2 G = a 2 U 1 G U 1 x 1 + U 2 x 2 U 2 G U 2 x 2 = 1. Sum of marginal rates of substitution must equal the marginal cost of the public good.

7 Private provision of public goods, Example 1 Suppose all of you are players in the following game: Everyone has two feasible actions, to contribute or not to contribute. If you contribute, you have to pay 1$, but for every player in the room (including yourself), there is a 80c benefit. Evidently, it would be very beneficial if all players would contribute, but the unique Nash equilibrium is that no one contributes (why?) Player 2 contribute don t contr. Player 1 contribute (0.6,0.6) (-0.2,0.8) don t contr. (0.8,-0.2) (0,0)

Private provision of public goods, Example 2 A s marginal benefit: MB A = 10 X B s marginal benefit: MB B = 8 X. The cost of providing one unit of the public good is 4. (MC = 4) Efficient quantity: MB A + MB B = 18 2X = 4 = MC. X = 7.

Private provision of public goods, Example 2 What is the Nash equilibrium? A s marginal benefit: MB A = 10 X B s marginal benefit: MB B = 8 X. Claim: A provides 6 units of the public good and B provides 0 is a NE. Check: 1. Assume g B = 0 the best A can do is to buy X such that his own MB is equal to the marginal cost, hence to choose g A = 6 as contribution. 2. Assume g A = 6 B s marginal benefit is 2, and therefore he will not buy additional units for which he would have to pay 4 per unit. This is in fact the unique NE. The player with the higher marginal benefit pays everything, the other player just benefits and pays nothing.

Efficient provision of an indivisible public good Problem: How could the state find out how much of the public good to supply, if individual demand functions are unknown (for the state; of course, people know their utility). Indivisible good, costs 1 (if provided) A: v A (0, 1) B: v B (0, 1) Efficiency: The good should be provided if and only if v A + v B > 1. Can the efficient allocation be implemented even if the state does not know the individuals WTP in the beginning?

11 A non-truthful mechanism A possible mechanism: 1. Both people are asked about their type ( m A, m B ) m 2. If m A + m B > 1, the good is provided; A pays A m A +m B, B pays m B m A +m B If both people tell the truth, this mechanism implements the social optimum. However, will people tell the truth?

12 A non-truthful mechanism Consider A with type v A, and suppose that B tells the truth. If A reports to be of type m, A s expected utility is 1 1 m [ v A m m + v B Take the derivative with respect to m: [ v A ] m 1 f (1 m) m + 1 m 1 m ] f (v B )dv B v B (m + v B ) 2 f (v B)dv B Evaluated at m = v A, the first term is zero and hence the derivative is negative It is better to set m < v A.

Clarke Groves Mechanism Mechanism 1. Both people announce m A and m B as their willingness to pay (they can, of course, lie) 2. If m A + m B > 1, the good is provided and A pays (1 m B ), B pays (1 m A ). 3. If m A + m B < 1, the good is not provided and no payments are made. Observation: The report m A affects A s payoff only if it changes whether the good is provided; the price A has to pay (if the good is provided) is independent of m A and depends only on B s report!

Truthful revelation Suppose A knew B s report, and v A + m B > 1. Then announcing m A = v A is optimal for A (why?). Now suppose v A + m B < 1. Then announcing m A = v A is again optimal for A (why?). This is true for every value of m B : Announcing m A = v A is a (weakly) dominant strategy for A! In particular, this is completely independent of whether B told the truth. The same argument holds for B. Under this mechanism, both people announce the truth and the efficient solution can be implemented.

Intuition 1 m B : Net social cost of the public good for A (if B told the truth). Do you want to buy the PG if you have to pay these net social cost? Yes, if v A > 1 m B No, if v A < 1 m B Reporting m A = v A to the CG-mechanism implements exactly this policy.

Who pays? Sum of the payments by A and B: 1 m B + 1 m A = 2 (m A + m B ). Whenever the PG is provided, (m A + m B ) > 1, so payments by A and B are never sufficient to cover the cost of the PG ( no budget balance ). A third party ( state ) has to put in some money. However: One could charge from both people an additional lump sum payment (i.e., the same amount, whether or not the good is provided) to offset this.

Externalities Externality: decisions of one economic agent directly affect the utility of another economic agent. Very much related to public goods Distinction is unclear; sometimes based on whether the provision of the good in question is made consciously (public good), or whether the good arises as a by-product of some other activity (externality). Also, public goods are usually good while externalities may be positive or negative.

Pecuniary vs. non-pecuniary externalities Pecuniary vs. non-pecuniary externalities: Does the action affect another agent by changing market prices or directly? Example: Case 1: I pollute the environment by driving my car; my action harms other people directly Case 2: I go to an auction; my presence will lead (in expectation) to higher prices and therefore harms the other bidders In Case 1, the state corrects this externality by levying a tax on gas. Should they also levy a tax on auction bidders? In the following, we restrict ourselves to non-pecuniary externalities

19 Example: Pollution A s factory pollutes a river and causes harm to B s fishing firm p MSC p MC MD x x p: market price for A s product MD: marginal damage caused to B s firm. MC: A s (private) marginal costs MSC: marginal social costs (MC + MD) x

Example: Pollution Possibilities to restore the optimum: Mergers: A and B merge their two firms and therefore internalize the externality: If the merged firm maximizes profits, it will choose the socially efficient level of output (why?) Important reason why firms exist; however, it is apparently not beneficial to merge the whole economy into a single big firm, so there are limits to this solution ( Williamson s puzzle )

21 Example: Pollution Pigou taxes: State raises a unit tax on A s production. This tax must be equal to the difference between the MSC and A s private MC, i.e. to the MD (evaluated at the social optimum). The tax forces A to internalize his external effect. p MSC MC + t p MC MD x x x

22 Example: Pollution Property assignment 1: B receives the property right to have a clean river. As effective owner of the river, B can sell the right to emit a certain level of pollution to A. p MSC p MC MD x x x

Example: Pollution Start from zero pollution: If A gets the efficient amount of pollution rights, how much is willing to pay for that right? How much does B need to be compensated for her losses? A bilateral trade can realize all welfare gains.

24 Example: Pollution Property assignment 2: A has the right to pollute the river. p MSC p MC MD x x x

Example: Pollution Start from A s privately optimal pollution level: How much would B be willing to pay in order to convince A to only produce the efficient level of pollution? Which payment would A at least require to accept that proposal? A bilateral trade can realize all welfare gains.

Coase theorem The equivalence of Property assignment 1 and 2 in terms of achieving an efficient outcome is known as the Theorem (Coase Theorem) If property rights are clearly assigned to one party and can be enforced, then the efficient level of pollution will be realized; for this, it does not matter who (A or B) receives the property rights.

Coase theorem, remarks 1. While efficiency will be achieved in both arrangements, both A and B clearly prefer property rights assignments to themselves (A prefers Property assignment 1, and B prefers Property assignment 2) 2. Limits to private deals: The example presents a very simple case of an externality, because there are only 2 parties involved. In more realistic pollution examples, there are many polluters and many people who suffer from pollution (for car pollution, these groups even largely coincide!). For large groups, it will be much more difficult to reach an efficient agreement through multilateral bargaining. 3. Using Pigou taxes and property assignments simultaneously to achieve efficiency is not a good idea! If the parties involved can bargain with each other, don t use Pigou taxes.

Positive externalities Positive externalities: Someone else benefits from that action. Example: Research. Suppose that when a firm does research, other firms benefit by learning the results. (not patentable research) p MSB p MC x MEB x x

The problem of the commons Commons : in the middle ages, a meadow which belonged to all farmers of a community together; every farmer could decide how many cows to graze on the commons. In general: Resource that is non-excludable, but rival. We will show: Inefficient arrangement commons disappeared later as an institution. Example: The price of a cow is 5. Cows produce milk, which has a price of 1. x i : number of cows of farmer i. X = n i=1 x i A cow produces 20 1 10X units of milk: More cows less grass per cow less milk per cow.

30 The problem of the commons Cooperative solution: Maximize the joint profit max X [20 1 10 X 5]X Condition for optimality: 15 2 10X = 0, X = 75. Noncooperative solution (what actually happens): Given the other farmers decisions, farmer i maximizes his profit: max xi [20 1 10 (x 1 + x 2 + + x i + + x n ) 5]x i Condition for an optimum (differentiation wrt x i ): 15 1 10 (x 1 + x 2 + + 2x i + + x n ) = 0 Symmetry: In an equilibrium, it is plausible that every farmer will have the same number x of cows on the meadow. 15 1 150 (n + 1)x = 0 x = 10 n + 1

The problem of the commons n 1 2 4 9 X 75 100 120 135 150 PPC 7.5 5 3 1.5 0 TP 562.5 500 360 202.5 0 PPC: Profit per cow = 20 1 10 X 5. TP: total profit Other examples: Congested streets Fishing in oceans Greenhouse gases/global warming