Research Article The Volatility of the Index of Shanghai Stock Market Research Based on ARCH and Its Extended Forms

Similar documents
An Empirical Research on Chinese Stock Market Volatility Based. on Garch

The Analysis of ICBC Stock Based on ARMA-GARCH Model

Modelling Stock Market Return Volatility: Evidence from India

MODELING EXCHANGE RATE VOLATILITY OF UZBEK SUM BY USING ARCH FAMILY MODELS

Chapter 4 Level of Volatility in the Indian Stock Market

Indian Institute of Management Calcutta. Working Paper Series. WPS No. 797 March Implied Volatility and Predictability of GARCH Models

An Empirical Research on Chinese Stock Market and International Stock Market Volatility

Study on Dynamic Risk Measurement Based on ARMA-GJR-AL Model

Empirical Analysis of GARCH Effect of Shanghai Copper Futures

Oil Price Effects on Exchange Rate and Price Level: The Case of South Korea

Modelling Stock Returns Volatility on Uganda Securities Exchange

Econometric Models for the Analysis of Financial Portfolios

INFORMATION EFFICIENCY HYPOTHESIS THE FINANCIAL VOLATILITY IN THE CZECH REPUBLIC CASE

Modeling the volatility of FTSE All Share Index Returns

Volatility Clustering of Fine Wine Prices assuming Different Distributions

An Empirical Analysis of Effect on Copper Futures Yield. Based on GARCH

Exchange Rate Risk of China's Foreign Exchange Reserve Assets An Empirical Study Based on GARCH-VaR Model

Forecasting Stock Index Futures Price Volatility: Linear vs. Nonlinear Models

Volatility Analysis of Nepalese Stock Market

MODELING VOLATILITY OF BSE SECTORAL INDICES

Empirical Study on Short-Term Prediction of Shanghai Composite Index Based on ARMA Model

GARCH Models. Instructor: G. William Schwert

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Conditional Heteroscedasticity

BESSH-16. FULL PAPER PROCEEDING Multidisciplinary Studies Available online at

MODELING ROMANIAN EXCHANGE RATE EVOLUTION WITH GARCH, TGARCH, GARCH- IN MEAN MODELS

Financial Econometrics

GARCH Models for Inflation Volatility in Oman

International Journal of Business and Administration Research Review. Vol.3, Issue.22, April-June Page 1

Modelling Inflation Uncertainty Using EGARCH: An Application to Turkey

St. Theresa Journal of Humanities and Social Sciences

Volatility in the Indian Financial Market Before, During and After the Global Financial Crisis

Investment Opportunity in BSE-SENSEX: A study based on asymmetric GARCH model

ANALYSIS OF THE RELATIONSHIP OF STOCK MARKET WITH EXCHANGE RATE AND SPOT GOLD PRICE OF SRI LANKA

The Impact of Falling Crude Oil Price on Financial Markets of Advanced East Asian Countries

ANALYSIS OF THE RETURNS AND VOLATILITY OF THE ENVIRONMENTAL STOCK LEADERS

Brief Sketch of Solutions: Tutorial 2. 2) graphs. 3) unit root tests

Prerequisites for modeling price and return data series for the Bucharest Stock Exchange

Evidence of Market Inefficiency from the Bucharest Stock Exchange

Applying asymmetric GARCH models on developed capital markets :An empirical case study on French stock exchange

Brief Sketch of Solutions: Tutorial 1. 2) descriptive statistics and correlogram. Series: LGCSI Sample 12/31/ /11/2009 Observations 2596

The Effect of 9/11 on the Stock Market Volatility Dynamics: Empirical Evidence from a Front Line State

Financial Econometrics: Problem Set # 3 Solutions

Research on the Forecast and Development of China s Public Fiscal Revenue Based on ARIMA Model

Research on the GARCH model of the Shanghai Securities Composite Index

Modelling Stock Indexes Volatility of Emerging Markets

Appendixes Appendix 1 Data of Dependent Variables and Independent Variables Period

Modeling Exchange Rate Volatility using APARCH Models

Volatility Model for Financial Market Risk Management : An Analysis on JSX Index Return Covariance Matrix

The Great Moderation Flattens Fat Tails: Disappearing Leptokurtosis

Market Risk Management for Financial Institutions Based on GARCH Family Models

The Efficient Market Hypothesis Testing on the Prague Stock Exchange

A Study on the Relationship between Monetary Policy Variables and Stock Market

Donald Trump's Random Walk Up Wall Street

Global Volatility and Forex Returns in East Asia

ARCH and GARCH models

Implied Volatility v/s Realized Volatility: A Forecasting Dimension

ESTABLISHING WHICH ARCH FAMILY MODEL COULD BEST EXPLAIN VOLATILITY OF SHORT TERM INTEREST RATES IN KENYA.

ANALYSIS OF ECONOMIC TIME SERIES Analysis of Financial Time Series. Nonlinear Univariate and Linear Multivariate Time Series. Seppo PynnÄonen, 2003

Estimating and forecasting volatility of stock indices using asymmetric GARCH models and Student-t densities: Evidence from Chittagong Stock Exchange

RISK SPILLOVER EFFECTS IN THE CZECH FINANCIAL MARKET

Recent analysis of the leverage effect for the main index on the Warsaw Stock Exchange

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

Forecasting the Philippine Stock Exchange Index using Time Series Analysis Box-Jenkins

Intaz Ali & Alfina Khatun Talukdar Department of Economics, Assam University

RESEARCH ON INFLUENCING FACTORS OF RURAL CONSUMPTION IN CHINA-TAKE SHANDONG PROVINCE AS AN EXAMPLE.

Empirical Analysis of Private Investments: The Case of Pakistan

Analysis of the Influence of the Annualized Rate of Rentability on the Unit Value of the Net Assets of the Private Administered Pension Fund NN

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

AN EMPIRICAL ANALYSIS OF THE PUBLIC DEBT RELEVANCE TO THE ECONOMIC GROWTH OF THE USA

Volume 37, Issue 2. Modeling volatility of the French stock market

Comovement of Asian Stock Markets and the U.S. Influence *

THE DYNAMICS OF PRECIOUS METAL MARKETS VAR: A GARCH-TYPE APPROACH. Yue Liang Master of Science in Finance, Simon Fraser University, 2018.

Forecasting Volatility in the Chinese Stock Market under Model Uncertainty 1

Research Article Estimating Time-Varying Beta of Price Limits and Its Applications in China Stock Market

A Study of Stock Return Distributions of Leading Indian Bank s

Risk Analysis of Shanghai Inter-Bank Offered Rate - A GARCH-VaR Approach

The Credit Cycle and the Business Cycle in the Economy of Turkey

IMPACT OF MACROECONOMIC VARIABLE ON STOCK MARKET RETURN AND ITS VOLATILITY

THE INFLATION - INFLATION UNCERTAINTY NEXUS IN ROMANIA

Financial Time Series Analysis (FTSA)

A Study on the Performance of Symmetric and Asymmetric GARCH Models in Estimating Stock Returns Volatility

Effect of Stock Index Futures Trading on Volatility and Performance of Underlying Market: The case of India

Forecasting the Volatility in Financial Assets using Conditional Variance Models

Stock Price Volatility in European & Indian Capital Market: Post-Finance Crisis

Forecasting Volatility of USD/MUR Exchange Rate using a GARCH (1,1) model with GED and Student s-t errors

Open Access Asymmetric Dependence Analysis of International Crude Oil Spot and Futures Based on the Time Varying Copula-GARCH

A Note on the Oil Price Trend and GARCH Shocks

Does currency substitution affect exchange rate uncertainty? the case of Turkey

Conditional Heteroscedasticity and Testing of the Granger Causality: Case of Slovakia. Michaela Chocholatá

Changes in Macroeconomic Policies and Volatility of Chinese Stock Market

Modelling Rates of Inflation in Ghana: An Application of Arch Models

The Effects of Oil Price Volatility on Some Macroeconomic Variables in Nigeria: Application of Garch and Var Models

Financial Econometrics Lecture 5: Modelling Volatility and Correlation

Interbank Market Interest Rate Risk Measure An Empirical Study Based on VaR Model

Modelling and Forecasting Volatility of Returns on the Ghana Stock Exchange Using GARCH Models

Trends in currency s return

Model Construction & Forecast Based Portfolio Allocation:

Stock Market Reaction to Terrorist Attacks: Empirical Evidence from a Front Line State

POLYTECHNIC OF NAMIBIA SCHOOL OF MANAGEMENT SCIENCES DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE ECONOMETRICS. Mr.

Transcription:

Discrete Dynamics in Nature and Society Volume 2009, Article ID 743685, 9 pages doi:10.1155/2009/743685 Research Article The Volatility of the Index of Shanghai Stock Market Research Based on ARCH and Its Extended Forms Hao Liu, 1 Zuoquan Zhang, 1 and Qin Zhao 2 1 School of Science, Beijing Jiaotong University, Beijing 100044, China 2 School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China Correspondence should be addressed to Zuoquan Zhang, zqzhang@bjtu.edu.cn Received 19 October 2009; Accepted 28 December 2009 Recommended by Guang Zhang The proposed ARCH and its extension model have brought a powerful tool for the study of stock market volatility as well as verify that a high risk brings high-yield and the leverage effect of stock market. This paper gives modeling analysis by using the ARCH group models; in the last ten years Shanghai s index returns, concluded that there are significant high-yield associated with high-risk phenomenon and the leverage effect in the domestic securities market. The previous studies in fitting return series of ARMA models, mostly with low accuracy have a very subjective observation autocorrelation and partial autocorrelation function method, and even directly use random walk model. That will inevitably have some impact on the accuracy of the model. While this paper adopts the Pandit-Wu formulaic modeling method, the ARMA model is built on a strong theoretical foundation. Copyright q 2009 Hao Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. ARCH Model and Its Extended Forms Autoregressive conditional Heteroscedasticity Mode1 was raised by Engle in 1982 1. The model sets up yield obedience to the conditional expectation of the error term to be zero. The conditional variance obedience to the numbers of previous period yields square error function of the conditions of normal distribution. Its nature coincides with characteristics such as volatility clustering and heteroscedasticity of financial market. Bollerslev 1986 extended ARCH models, introduced an infinite period of entry error term in the variance explained, and got the generalized ARCH model GARCH 2 ; Engle, Lilien, and Robbins explained the expected return in the introduction of ARCH models residual variance items in 1987 3 and obtained ARCH-M model. Black 1976 4

2 Discrete Dynamics in Nature and Society discovered that the volatility of the leverage effect first, that is, the unanticipated price decreases bad news and the unexpected price increases good news on the impact of the extent of fluctuations is nonsymmetrical. In response to this phenomenon, Glosten et al. 1993 5, Zakoian 1990 6, and Nelson 1991 7 revised the traditional ARCH model proposed two nonsymmetrical models: TARCH and the EGARCH 8. ARCH The research process of ARCH model considers of σt 2 to be the residual variance ε t of the regression equation that meets σt 2 ω α 1 ε 2 t 1. It consists of two parts: a constant and the former moment of residuals squared. Usually ε 2 t 1 is called ARCH item. In general, the variance can be dependent on any number of lagged error term, that is, σt 2 α 0 α 1 ε 2 t 1 α p εt p 2, recorded as ARCH p model. GARCH The most commonly used GARCH model is GARCH 1,1 model that meets σt 2 ω α 1 ε 2 t 1 β 1 σ 2 t 1. Given conditional variance equation has three components: the constant term, using the mean equation, the lagged squared residuals to measure the volatility obtained from the previous information ε 2 t 1 ARCH items, and the last forecast variance σ2 t 1 GARCH items. GARCH-M Using conditional variance denotes the expected risk model which is known as the ARCH mean regression model ARCH-M. The expression Y t X t γ ρσt 2 ε t, σt 2 ω α 1 ε 2 t 1 α p εt p 2 where the parameter ρ is measured in terms of variance of σ2 t can be observed in the risk of fluctuations in the expected degree of influence on Y t. TARCH The conditional variance in this model is set as follows: σ 2 t ω α 1 ε 2 t 1 γ 1ε 2 t 1 I t 1 β 1σ 2 t 1, where I t 1 is a dummy variable, when ε t 1 < 0, I t 1 1; otherwise, I t 1 0. As long as γ 1 / 0, there exists an asymmetric effect. EGARCH The conditional variance equation in the EGARCH model is set as follows: ln σ 2 t ω β ln σ 2 t 1 α ε t 1/σ t 1 2/π γ ε t 1 /σ t 1. The left is the logarithm of conditional variance which means that the lever effect is exponential, rather than secondary; so the predictive value of conditional variance certain is nonnegative. The existence of leverage effect is tested through the hypothesis γ < 0. As long as γ / 0, the effect of shocks exist is nonsymmetries.

Discrete Dynamics in Nature and Society 3 0.1 0.05 0 0.05 0.1 500 1000 1500 2000 R Figure 1 2. The Empirical Analysis 2.1. Data Acquisition and Finishing The paper used data from the Shanghai Securities each day at Shanghai Composite Index closing. The Shanghai Composite Index, since July 15, 1991, with a sample of all stocks listed on the Shanghai Stock Exchange stocks, in general, reflects the stock price movements of the Shanghai Stock Exchange. It has gradually become a barometer of China s economy. Data time spans from January 4, 2000 to September 11, 2009, a total of 2341 observations. At the same time, the definition of day yield on closing price of the first-order difference of the natural logarithm is expressed as r i ln p i ln p i 1. where r i denotes the day s rate of return, and p i denotes the day s closing price. 2.2. The Test Data 2.2.1. Normality Tests Figure 1 shows the daily rate of return of the Shanghai Index, the Fluctuations Show timevarying volatility, and sudden and clustering characteristics. Figure 2 indicated its frequency chart and statistics characteristics. We can see that the partial degrees 0.073892, sample distribution is left skewed peak degrees are 6.982480, significantly higher than peak 3 of the normal distribution, and therefore has a clear pike apex and thick tail phenomenon, and JB value is 1548.493, indicating that the distribution of return series shows the nonnormality 9. 2.2.2. Smooth Test Do the ADF test to return series {r i }, assuming that yields fluctuate up-down on 0; so to calculate the ADF statistic on the assumption that the regression equation does not contain

4 Discrete Dynamics in Nature and Society Table 1 t-statistic Prob. Augmented Dickey-Fuller test statistic 47.69910 0.0001 Test critical values 1% level 2.565951 5% level 1.940959 10% level 1.616608 500 400 300 200 100 0 0.05 0 0.05 Figure 2 Series: R Sample 1 2341 Observations 2340 Mean Median Maximum Minimum Std. dev. Skewness Kurtosis Jarque-Bera Probability 0.000322 0.000777 0.094008 0.092562 0.017395 0.073892 6.982480 1548.493 0 the constant term and time trend items, calculated by the ADF statistic which is less than 1% significance level under the critical value, it rejected the hypothesis of existing the unit root, indicating that the sequence is stationary series 10 ;seetable 1. 2.3. ARMA Model Fitting of Return Series Based on the fact that {r i } is a stationary series, we use Pandit-Wu model to fit the ARMA 2n, 2n 1 model: Pandit-Wu modeling approach is based on Box-Jenkins method; proven and further development in 1977 proposed a new method of system modeling; this approach is not a function identification counted as sample partial autocorrelation function. It is based on the following understanding: any sequence can always use an ARMA n, n 1 model to represent, while the AR n, MA m, and ARMA m, n are a special case. The modeling idea can be summarized as follows: increasing the order of the model gradually, fitting the higher-order ARMA n, n 1 model, and a further increasing the order of the model and the remaining sum of squares that no longer significantly decrease. Main steps are as follows: 1 on the model of zero-mean, 2 from n 1, start and gradually increase the model order, fitting ARMA 2n, 2n 1 model, until the F test showed that the model order to increase the number of remaining squares is no longer significantly reduced. 3 model of the adaptive test, 4 find the optimal model 11.

Discrete Dynamics in Nature and Society 5 Table 2 F-statistic 0.042488 Probability 0.958402 Obs R-squared 0.085434 Probability 0.958182 0.1 0.05 0 0.05 0.1 500 1000 1500 2000 R residuals Figure 3 Through the fitting, ARMA 8,7 model and ARMA 6,5 model have no significant differences: F 0.689486 0.689920 /4 0.689920/ 2430 8 8 7 0.3785 <F 0.01 4, 3.32. 2.1 So choose ARMA 6,5 model. Again ARMA, 6,5 p 2, the residual autocorrelation test, see Table 2. Clearly, there is no significant residual autocorrelation, another model of the coefficient is significant. So this model is appropriate. The use of 6,5 model regression to {r i } is r t 0.000309 0.264845r t 1 0.047856r t 2 0.243321r t 3 0.758743r t 4 0.379365r t 5 0.028096r t 6 ε t 0.274071ε t 1 0.061145ε t 2 0.229173ε t 3 2.2 0.810033ε t 4 0.410553ε t 5. 2.4. The ARCH Group Model-Building of Return Series Analysis residuals graphs of the regression result Figure 3. Note the phenomenon of fluctuations in these clusters: fluctuations in some of the longer period of time is very small and in some other longer period of time is very large, indicating the error term may have a condition of heteroscedasticity. Therefore, its ARCH LM test of conditional heteroscedasticity has been got in the lag order of p 3 Table 3.

6 Discrete Dynamics in Nature and Society Table 3 F-statistic 35.22275 Probability 0.000000 Obs R-squared 101.2521 Probability 0.000000 Table 4 Variance equation C 3.79E 06 7.15E 07 5.291596 0.0000 RESID 1 2 0.110112 0.009052 12.16377 0.0000 GARCH 1 0.884263 0.008639 102.3603 0.0000 R-squared 0.014862 Mean dependent var 0.000314 Adjusted R-squared 0.008915 S.D. dependent var 0.017347 S.E. of regression 0.017269 Akaike info criterion 5.526109 Sum squared resid 0.691589 Schwarz criterion 5.489121 Log likelihood 6463.969 F-statistic 2.498929 Durbin-Watson stat 2.015616 Prob F-statistic 0.001566 P-value is 0, so reject the original hypothesis, indicating the residual sequence existing ARCH effect. 2.4.1. GARCH (1,1) Model As can be seen in Table 4, the variance equation in the ARCH and GARCH is significant, while AIC value and the SC values are smaller, indicating that GARCH 1,1 model can better fit the data. Then make the ARCH LM test to this equation heteroscedasticity. That can get the results of the lagging order of the residual sequence when p 3seeTable 5. At this time the accompanied probability is 0.82, accepting the null hypothesis that there is no ARCH effect in the series that shows the use of GARCH 1,1 model eliminating the conditional heteroscedasticity of residual sequence. In addition, the variance equation in the ARCH and GARCH coefficient entries equal to 0.994375 is less than 1, to meet the parameters of constraints; as the coefficient is very close to 1, indicating that the impact on conditional variance is persistent. It means that all future projections have an important role. 2.4.2. GARCH-M Model In Table 6, the return rate equation including the terms of the standard deviation σ t is in order to integrate the risk measurement in the process of revenue generation, which is the basis of many capital pricing theories the meaning of Mean-variance assumptions. In this assumption, the coefficient ρ of conditional standard deviation should be positive. The result is exactly the case, the conditional standard deviation which has larger expected value associated with high rates of return. Estimated coefficient of the equation is less than 1, to meet stable condition. The conditional standard deviation coefficient in the equation is 0.083511, indicating that market is expected to increase the risk of a percentage point; that will lead to a corresponding increase in yield of 0.083511 percent.

Discrete Dynamics in Nature and Society 7 Table 5 F-statistic 0.311432 Probability 0.817141 Obs R-squared 0.935528 Probability 0.816847 Table 6 Coefficient Std. Error z-statistic Prob. @SQRT GARCH 0.083511 0.052562 1.588815 0.1121 C 0.000625 0.000701 0.891278 0.3728 AR 1 0.199086 0.351060 0.567099 0.5706 AR 2 0.124659 0.050907 2.448740 0.0143 AR 3 0.174735 0.062016 2.817584 0.0048 AR 4 0.785433 0.052558 14.94409 0.0000 AR 5 0.199962 0.293003 0.682457 0.4949 AR 6 0.046151 0.023580 1.957159 0.0503 MA 1 0.216611 0.349176 0.620347 0.5350 MA 2 0.146851 0.043255 3.394974 0.0007 MA 3 0.159767 0.056709 2.817310 0.0048 MA 4 0.815284 0.052174 15.62612 0.0000 MA 5 0.231638 0.299560 0.773261 0.4394 Variance equation C 3.97E 06 7.56E 07 5.251923 0.0000 RESID 1 2 0.114202 0.009615 11.87704 0.0000 GARCH 1 0.879996 0.009193 95.72147 0.0000 2.4.3. TARCH and EARCH Model In the TARCH model see Table 7, the coefficient of leverage effect γ 1 0.055381, indicating the stock price, has leverage effect: the same amount of bad news generate greater volatility than good news. When appears the good news, ε t 1 > 0, then I t 1 0, so the impact will only bring about a stock price index of 0.076231 times, while a bad news, ε t 1 < 0, I t 1 1, then the bad news will bring 0.055381 0.076231 0.131612 times impact. The bad news generates greater volatility than the same amount of good news. The results also can be confirmed in EARCH models. In the EARCH model see Table 8, the estimated value of α is 0.218522; the estimated value of nonsymmetric key γ is 0.040285. When ε t 1 > 0, the information on the logarithm of conditional variance will bring 0.218522 0.040285 0.178237 times impact; when ε t 1 < 0, it will bring 0.218522 0.040285 1 0.258807 times impact to logarithm of conditional variance. 3. Conclusion 3.1. Model of Comparative Analysis From the test results, rates of return series do have a heteroscedastic phenomenon. In the GARCH 1,1 model, the ARCH item and GARCH item of variance equation are significant, while the AIC value and the SC value are smaller, indicating it can fit data better. GARCH-M

8 Discrete Dynamics in Nature and Society Table 7: TARCH. Variance equation C 3.74E 06 7.01E 07 5.332952 0.0000 RESID 1 2 0.076231 0.010432 7.307341 0.0000 RESID 1 2 RESID 1 < 0 0.055381 0.012945 4.278287 0.0000 GARCH 1 0.889139 0.008770 101.3873 0.0000 Table 8: EARCH. Variance equation C 13 0.348419 0.039287 8.868469 0.0000 C 14 0.218522 0.017791 12.28297 0.0000 C 15 0.040285 0.008560 4.706245 0.0000 C 16 0.977814 0.003808 256.8123 0.0000 model and TARCH, EARCH models measure market from the high-risk brings high-yield and leverage effect of the stock market. All of them have achieved good results, indicating that the use of ARCH group models to market research is appropriate 12. 3.2. Empirical Results This paper uses time series analysis method on the Shanghai index; last decade, the daily rate of return was analyzed and found showing the left side and the distribution form of pike apex and the thick trail, not subject to normal, and there is a self-related phenomena, can be used 6,5 model fitting. When fitting ARCH group model, we found that its variance has a strong volatility clustering and continuity. Rates of return and the risk of changes in the same direction; high-risk for high returns; high-yield associated with high-risk, which indicate investors concern on marketing a higher degree. The fast transmission of information, with the risk of change, will have an impact on yields, reflecting investor a certain preference for the risk; the domestic securities market exists significant leverage effect and bad news roles were clearly stronger than good news effect showing that our investors are often more sensitive to the decline of stocks as a result of avoiding risk. Acknowledgment The article is sponsored by the 973 National Fund of China 2010CB832704. References 1 R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, vol. 50, no. 4, pp. 987 1007, 1982. 2 T. Bollerslev, Generalised autosive conditional, Econometrics, no. 31, pp. 307 327, 1986. 3 R. F. Engle, D. M. Lilien, and R. P. Robins, Estimating time varying risk premia in the term structure: the ARCH-M model, Econometrica, vol. 55, pp. 391 407, 1987. 4 F. Black, Studies of stock market volatility changes, Proceedings of the American Statistical Association, Business and Economic Statistics Section, pp. 177 181, 1976.

Discrete Dynamics in Nature and Society 9 5 L. R. Glosten, R. Jagannathan, and D. Runkle, On the relation between the expected value and the volatility of the nominal excess return on stocks, Finance, vol. 48, pp. 1779 1801, 1993. 6 J.-M. Zakoian, Threshold heteroskedastic models, Economic Dynamics and Control, vol. 18, no. 5, pp. 931 955, 1994. 7 D. B. Nelson, Conditional heteroskedasticity in asset returns: a new approach, Econometrica, vol. 59, no. 2, pp. 347 370, 1991. 8 D. Jin, Stock Market Volatility and Control Research of China, University of Finance and Economics Press, Shanghai, China, 2003. 9 T. Gao, Econometric Methods and Modeling Applications and Examples of Eviews, Tsinghua University Press, Beijing, China, 2006. 10 T. Jing, Empirical research of ARCH model in China s Stock Market, M.S. thesis, Hunan University, Hunan, China, SO5212001:1-2. 11 Z. Wang and Y. Hu, Applying Time Series Analysis, Science Press, Beijing, China, 2007. 12 Y. Zhao, Shanghai stock market volatility characteristics in returns Empirical Study using of ARCH models.

Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization