Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations.

Similar documents
Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

Chapter 8: The Binomial and Geometric Distributions


The Binomial and Geometric Distributions. Chapter 8

CHAPTER 6 Random Variables

***SECTION 8.1*** The Binomial Distributions

Binomial Random Variable - The count X of successes in a binomial setting

STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions

Section Distributions of Random Variables

What is the probability of success? Failure? How could we do this simulation using a random number table?

AP Statistics Ch 8 The Binomial and Geometric Distributions

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic.

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES

Chapter 8.1.notebook. December 12, Jan 17 7:08 PM. Jan 17 7:10 PM. Jan 17 7:17 PM. Pop Quiz Results. Chapter 8 Section 8.1 Binomial Distribution

CHAPTER 6 Random Variables

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables

OCR Statistics 1. Discrete random variables. Section 2: The binomial and geometric distributions. When to use the binomial distribution

5.2 Random Variables, Probability Histograms and Probability Distributions

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS

guessing Bluman, Chapter 5 2

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations

Section Distributions of Random Variables

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Math 14 Lecture Notes Ch. 4.3

The Binomial Probability Distribution

Part 10: The Binomial Distribution

6.3: The Binomial Model

CHAPTER 6 Random Variables

DO NOT POST THESE ANSWERS ONLINE BFW Publishers 2014

The Binomial Distribution

Binomial Distributions

Probability & Statistics Chapter 5: Binomial Distribution

2) There is a fixed number of observations n. 3) The n observations are all independent

(c) The probability that a randomly selected driver having a California drivers license

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain.

Section 6.3 Binomial and Geometric Random Variables

Chapter 8. Binomial and Geometric Distributions

4.1 Probability Distributions

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Distribution Distribute in anyway but normal

Statistics Chapter 8

1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys?

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Record on a ScanTron, your choosen response for each question. You may write on this form. One page of notes and a calculator are allowed.

STA 6166 Fall 2007 Web-based Course. Notes 10: Probability Models

Chapter 4 and 5 Note Guide: Probability Distributions

PROBABILITY DISTRIBUTIONS

Problem Set 07 Discrete Random Variables

***SECTION 7.1*** Discrete and Continuous Random Variables

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Chapter 11. Data Descriptions and Probability Distributions. Section 4 Bernoulli Trials and Binomial Distribution

If X = the different scores you could get on the quiz, what values could X be?

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1

X P(X=x) E(X)= V(X)= S.D(X)= X P(X=x) E(X)= V(X)= S.D(X)=

Binomial and multinomial distribution

Chpt The Binomial Distribution

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!!

The Binomial Distribution

What do you think "Binomial" involves?

Geometric Distributions

Honors Statistics. Aug 23-8:26 PM. 1. Collect folders and materials. 2. Continue Binomial Probability. 3. Review OTL C6#11 homework

The Binomial Distribution

AP Statistics Review Ch. 6

5.4 Normal Approximation of the Binomial Distribution

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables

Chapter 6 Section 3: Binomial and Geometric Random Variables

8.4: The Binomial Distribution

Probability Distributions. Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION


MATH 264 Problem Homework I

Chapter 4 and Chapter 5 Test Review Worksheet

Probability Models. Grab a copy of the notes on the table by the door

Section 8.4 The Binomial Distribution

Binomial Distributions

6. THE BINOMIAL DISTRIBUTION

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables

Simple Random Sample

Chapter 7 1. Random Variables

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

Name Period AP Statistics Unit 5 Review

Theoretical Foundations

Section M Discrete Probability Distribution

Section Random Variables

Math 243 Section 4.3 The Binomial Distribution

Chapter 3. Discrete Probability Distributions

Binomial Random Variables. Binomial Random Variables

Math Week in Review #10. Experiments with two outcomes ( success and failure ) are called Bernoulli or binomial trials.

30 Wyner Statistics Fall 2013

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution!

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

8.1 Binomial Situations

Binomial Probabilities The actual probability that P ( X k ) the formula n P X k p p. = for any k in the range {0, 1, 2,, n} is given by. n n!

Fall 2015 Math 141:505 Exam 3 Form A

Transcription:

Chapter 8 Notes Binomial and Geometric Distribution Often times we are interested in an event that has only two outcomes. For example, we may wish to know the outcome of a free throw shot (good or missed), the sex of a newborn (boy or girl), the result of a coin toss (heads or tails) or the outcome of a criminal trial (guilty or not). If these situations meet four conditions, we say it is a binomial setting. The Binomial Setting 1. Each observation falls into just one of two categories, which are generally referred to as success or failure. 2. There is a fixed number n of observations. 3. All n observations are independent. (Knowing the outcome tells us nothing about the other observations) 4. The probability of success, called p, is the same for each observation. For example, if you draw a card from a deck, there are four possible suits (hearts, diamonds, clubs, or spades). If we want to know about drawing a heart, we can define a success as drawing a heart and a failure as drawing anything else. If we have a binomial setting, we refer to the probability distribution of X as a binomial distribution, B(n, p) where n is the number of observations and p is the probability of success. Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations. C k n n n! = = k k!( n k)! Binomial Probability: If X has a binomial distribution with n observations and probability p of success on each observation, the possible values of X are 0, 1,2,3,,n. If k is any one of these values, then n k n k X = k) = p ( 1 p) k The Probability Distribution Function (pdf) assigns a probability to each value of X. On your calculator, you can use binompdf (n, p, X). Example: Assume an inspector is examining switches. These switches are 10% faulty. If the inspector examines 10 of the switches, what is the probability that 2 switches are faulty? X =2). 1. Using the formula, n = 10, k = 2, p =.10, then 2 8 P ( X = 2) = (.10) (.90) =.1937102445 2 Using binompdf (10,.1, 2) =.1937102445

What is the probability that at most 2 switches are faulty? Using the formula, X 2) = X = 0) + X = 1) + ( X = 2) X = 0) = (.10) 0 1 =.3487 +.3874 +.1937 =.9298 Using the calculator, binomcdf (n, p, X) is the cumulative density function of the binomial distribution. So, binomcdf (10,.1, 2) =.9298091736. 2 (.10) 2 (. ) 8 0 (.90) 10 + X = 1) = (.10) 1 (.90) 9 + X = 2) = 90 Binomial mean and standard deviation: If a certain widget has a 75% chance of functioning correctly, then how many should work out of a lot of 100? Logically 75 should work. In fact, the formula for the mean of a binomial distribution is µ = np The standard deviation is: σ = np( 1 p) So here: µ = 100 (.75) = 75 Standard deviation: σ = 100 (.75)(.25) = 4. 33

Geometric Distribution In case of the binomial distribution, the number of trials was predetermined. Sometimes, however, we wish to know the number of trials needed before a certain outcome occurs. For example, we wish to play until we win, or until we lose; you roll dice until you get an 11; a mechanic waits for the first plane to arrive at the airport that needs repair; a basketball player shoots until he makes it. These situations fall under the geometric distribution. The Geometric Setting 1. Each event falls into just one of two categories, which are generally referred to as a success or failure. 2. The probability of success, call it p, is the same for each observation. 3. The observations are all independent. 4. The variable of interest is the number of trials required to obtain the first success. Geometric Formulas: If X has a geometric distribution with probability p of success and (1- p) of failure on each observation, the possible values of X are 1, 2, 3, If n is any one of these values, then the probability that the first success will occur on the nth trial is n 1 P X = n = 1 p ( ) ( ) p Example: On the leeward side of the island of Oahu in the small village of Nanakuli, about 80% of the residents are of Hawaiian ancestry (The Honolulu Advertiser). Suppose you fly to Hawaii and visit Nanakuli. What is the probability that the first villager you meet is Hawaiian? What is the probability that you do not meet a Hawaiian until the third villager? 1 1 0 Using the formula, P ( X = 1) = (1.8) (.80) = (.2) (.80) =. 80. That should be logical. 2 P ( X = 3) = (.2) (.80) =.032 Using the calculator, geompdf(p,x)=geompdf(.8,1) =.8 Using the calculator, geompdf(.8, 3) =.032 What is the probability that you will meet at most three people to produce an Hawaiian person? Using the formula, P ( X 3) = X = 1) + PX = 2) + X = 3) 0 1 2 = (.2) (.8) + (.2) (.8) + (.2) (.8) =. 8 +.16 +.032 =. 992 Using your calculator, geomcdf (p,x) = geomcdf(.8,3) =.992 How many people should you expect to meet before you meet the first Hawaiian? Geometric Distribution Mean: If X is a geometric random variable with probability p of success on each trial, the 1 expected number of trials necessary to reach the first success is µ =. p

1 Using the formula, µ = = 1. 25..80 What is the probability that it takes more than three people before you meet an Hawaiian? Furthermore, it can be shown that the probability that it takes more than n trials before we see the first success is X > n) = ( 1 p) n. P X 3 = Using the formula, ( > 3) = ( 1.8). 008

AP Statistics Chapter 8 Problems 1. The Los Angeles Times (Dec. 13, 1992) reported that 80% of airline passengers prefer to sleep on long flights rather than watch movies, read, etc. Consider randomly selecting 25 passengers from a particular long flight. Define a random variable X and answer the following questions. a) What is the probability that exactly 12 of those selected passengers prefer sleeping? b) What is the probability that all passengers selected prefer to sleep on the long flight? c) What is the probability that at least 20 passengers refer sleeping on the long flight? d) What is the average number of passengers that prefer sleeping on the long flight and calculate and interpret the standard deviation of X. 2. Sophie is a dog who loves to play catch. Unfortunately, she is not very good, and the probability that she catches a ball is 10%. Define X to be the number of tosses until Sophie catches the ball. a) What is the probability that Sophie will catch the ball on her second try? b) What is the probability that it will take more than three tosses for Sophie to catch her first ball? c) What is the expected number of tosses before Sophie will catch her first ball? 3. You are to take a multiple choice exam consisting of 100 questions with five possible responses to each. Suppose you did not study and decided to guess randomly on each question. Let X = the number of correct answers. a) What is your expected score on the exam? b) Compute and interpret the standard deviation of X. c) If 60% is passing, what is the probability you will pass the exam by guessing? 4. Suppose 15% of the cereal boxes contain a prize. You are determined to buy cereal boxes until you win a prize. a) What is the probability you will have to buy at most 2 boxes? b) What is the probability you will have to buy exactly 4 boxes? c) What is the probability you will have to buy more than 4 boxes? d) What is the average number of boxes you will need to buy before you get a prize?