CFA Review Materials: Using the HP 12C Financial Calculator By David Cary, PhD, CFA LA Edited by Klaas Kuperus, MORAVIA Education Spring 2016

Similar documents
HP12 C CFALA REVIEW MATERIALS USING THE HP-12C CALCULATOR. CFALA REVIEW: Tips for using the HP 12C 2/9/2015. By David Cary 1

CFALA/USC REVIEW MATERIALS USING THE TI-BAII PLUS CALCULATOR. Using the TI-BA2+

CFALA/USC REVIEW MATERIALS USING THE TI-BAII PLUS CALCULATOR

Quick Guide to Using the HP12C

Calculator Keystrokes (Get Rich Slow) - Hewlett Packard 12C

Texas Instruments 83 Plus and 84 Plus Calculator

Finance 2400 / 3200 / Lecture Notes for the Fall semester V.4 of. Bite-size Lectures. on the use of your. Hewlett-Packard HP-10BII

Hewlett Packard 17BII Calculator

Graphing Calculator Appendix

hp calculators HP 12C Platinum Internal Rate of Return Cash flow and IRR calculations Cash flow diagrams The HP12C Platinum cash flow approach

HP 12c Platinum Financial Calculator

Introduction to the Hewlett-Packard (HP) 10B Calculator and Review of Mortgage Finance Calculations

hp calculators HP 12C Platinum Net Present Value Cash flow and NPV calculations Cash flow diagrams The HP12C Platinum cash flow approach

HOME EQUITY CONVERSION MORTGAGE Using an HP12C to Calculate Payments to Borrowers

Mathematics questions will account for 18% of the ASP exam.

Chapter 2 Time Value of Money ANSWERS TO END-OF-CHAPTER QUESTIONS

Formulas, Symbols, Math Review, and Sample Problems

FILE - AMORT ON BA II PLUS

2018 CFA Exam Prep. IFT High-Yield Notes. Quantitative Methods (Sample) Level I. Table of Contents

Mathematics of Time Value

Calculator Advanced Features. Capital Budgeting. Contents. Net Present Value (NPV) Net Present Value (NPV) Net Present Value (NPV) Capital Budgeting

TI-83 Plus Workshop. Al Maturo,

Important Information

Full file at

3. Time value of money. We will review some tools for discounting cash flows.

H Edition 4 HP Part Number 0012C hp 12c financial calculator. user's guide. Downloaded from manuals search engine

Manual for SOA Exam FM/CAS Exam 2.

hp 12c financial calculator user's guide H Edition 5 HP Part Number 0012C-90001

3. Time value of money

3.1 Simple Interest. Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time

Casio 9750G PLUS Calculator

Our Own Problems and Solutions to Accompany Topic 11

Copyright 2016 by the UBC Real Estate Division

FINANCE FOR EVERYONE SPREADSHEETS

FINANCIAL DECISION RULES FOR PROJECT EVALUATION SPREADSHEETS

CFA. Fundamentals. 2 nd Edition

MNF2023 GROUP DISCUSSION. Lecturer: Mr C Chipeta. Tel: (012)

Finding the Sum of Consecutive Terms of a Sequence

hp calculators HP 20b Loan Amortizations The time value of money application Amortization Amortization on the HP 20b Practice amortizing loans

HP 17bII+ Financial Calculator

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS

Variance, Standard Deviation Counting Techniques

Developmental Math An Open Program Unit 12 Factoring First Edition

REVIEW MATERIALS FOR REAL ESTATE FUNDAMENTALS

FV N = PV (1+ r) N. FV N = PVe rs * N 2011 ELAN GUIDES 3. The Future Value of a Single Cash Flow. The Present Value of a Single Cash Flow

Chapter 11: Capital Budgeting: Decision Criteria

Chapter Review Problems

Introductory Financial Mathematics DSC1630

Capital Budgeting Decision Methods

-5y 4 10y 3 7y 2 y 5: where y = -3-5(-3) 4 10(-3) 3 7(-3) 2 (-3) 5: Simplify -5(81) 10(-27) 7(9) (-3) 5: Evaluate = -200

MSM Course 1 Flashcards. Associative Property. base (in numeration) Commutative Property. Distributive Property. Chapter 1 (p.

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers:

4. D Spread to treasuries. Spread to treasuries is a measure of a corporate bond s default risk.

Pre-Algebra, Unit 7: Percents Notes

The time value of money and cash-flow valuation

The following points highlight the three time-adjusted or discounted methods of capital budgeting, i.e., 1. Net Present Value

Analyzing Accumulated Change: More Applications of Integrals & 7.1 Differences of Accumulated Changes


Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1

Chapter Outline. Problem Types. Key Concepts and Skills 8/27/2009. Discounted Cash Flow. Valuation CHAPTER

Chapter 2 Time Value of Money

Things to Learn (Key words, Notation & Formulae)

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Appendix 4B Using Financial Calculators

Analyzing Accumulated Change: More Applications of Integrals & 7.1 Differences of Accumulated Changes

Time Value of Money Menu

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6)

Problem Set 4 Answers

Personal Finance Amortization Table. Name: Period:

Mathematics of Finance

hp calculators HP 17bII+ Frequently Asked Questions

(AA12) QUANTITATIVE METHODS FOR BUSINESS

The Time Value. The importance of money flows from it being a link between the present and the future. John Maynard Keynes

Page Points Score Total: 100

Finance 197. Simple One-time Interest

All In One MGT201 Mid Term Papers More Than (10) BY

Important Concepts LECTURE 3.2: OPTION PRICING MODELS: THE BLACK-SCHOLES-MERTON MODEL. Applications of Logarithms and Exponentials in Finance

Corporate Financial Management

Year 0 $ (12.00) Year 1 $ (3.40) Year 5 $ Year 3 $ Year 4 $ Year 6 $ Year 7 $ 8.43 Year 8 $ 3.44 Year 9 $ (4.

When Is Factoring Used?

QUANTITATIVE INVESTMENT ANALYSIS WORKBOOK

Section 7.1 Common Factors in Polynomials

5.1 Exponents and Scientific Notation

Economic Evaluation. Objectives of Economic Evaluation Analysis

A CLEAR UNDERSTANDING OF THE INDUSTRY

CSC Advanced Scientific Programming, Spring Descriptive Statistics

Chapter 6 Confidence Intervals

MTH 110-College Algebra

STA Module 3B Discrete Random Variables

Tutorial letter 101/3/2016

Monetary Economics Measuring Asset Returns. Gerald P. Dwyer Fall 2015

2-4 Completing the Square

Equalities. Equalities

ACCTG101 Revision MODULES 10 & 11 LITTLE NOTABLES EXCLUSIVE - VICKY TANG

Free ebooks ==>

Time Value of Money. Chapter 5 & 6 Financial Calculator and Examples. Five Factors in TVM. Annual &Non-annual Compound

Chapter 8 Net Present Value and Other Investment Criteria Good Decision Criteria

Chapter 11 Cash Flow Estimation and Risk Analysis ANSWERS TO END-OF-CHAPTER QUESTIONS

Ti 83/84. Descriptive Statistics for a List of Numbers

MA 1125 Lecture 05 - Measures of Spread. Wednesday, September 6, Objectives: Introduce variance, standard deviation, range.

Transcription:

CFA Review Materials: Using the HP 12C Financial Calculator By David Cary, PhD, CFA LA Edited by Klaas Kuperus, MORAVIA Education Spring 2016

CFA Exam acceptable calculators The following HP calculators are accepted in CFA exams: HP 12C RPN only HP 12C 30th Anniversary HP 12C Platinum RPN and Algebraic HP 12C Platinum 25th Anniversary The newer models give the choice of using the Algebra format for entering data into formulas by [f] [ALG] or using the RPN format by [f] [RPN]. The older models only offer RPN. Where appropriate both are discussed in these notes.

Basic Setup To set number of decimal places being shown: To show 2 places: Use [f] [2], 0.00 To show 4 places: Use [f] [4], 0.0000 etc. To clear the memories: [CLX] clears the display and X-Register. [f] CLEAR [ ] clears Statistics Registers, stack registers and display. [f] CLEAR [FIN] clears Financial Registers. [f] CLEAR [REG] clears data storage, fiancial, stack, last X and display. [CHS] changes the number in the display from positive to negative or from negative to positive.

Order of Operations In the rules of algebra, calculations should be done in the following order: Items in parantheses, exponents and roots, multiplication and division and finally addition and substraction. For items in equal levels, go from left to right. For example, the correct order for 2 x 3 + 4 x 5 should be 2 x 3 = 6, 4 x 5 = 20 and then 6 + 20 = 26. BUT, the [ALG] method in your calculator will probably chain the calculations in left to right order and do 2 x 3 = 6, 6 + 4 = 10, 10 x 5 = 50, Not the right answer. There are several methods to get the right answer, relatively efficiently, with examples: 1. Using [ALG] and your calculator memories 2. Using [ALG] and parentheses 3. Using [RPN]

Using RPN or ALG The original HP 12C used RPN. If you understand how to use this, it is very efficient in calculations. The newer calculators offer both RPN and ALG. ALG is more like what most other (scientific) calculators use. Example: calculate 2+3x5 RPN: 2 [ENTER] 3 {ENTER] 5 [x] [+] This multiplies 3 and 5 first and then adds 2 to get the correct answer, 17, ALG: if you just enter 2+3x5 you will get the answer 25 as it does the calculations in order presented: 2+3=5, 5x5=25. In order to get the correct answer you can either: 1. Use memories: 2 [STO] [1], 3x5=15 [STO] [2], [RCL][1] + [RCL][2]=17 or 2. Use parentheses 2+(3x5): 2+[g][STO] 3 [x] 5 [g][rcl]=17 and 3. For this example, do 3x5 first and add 2. But this won t work for 2x3+4x5.

Using Memories Your calculator has 10 easily accessible memories: #0 to #9. You can store numbers in a memory by pressing [STO][n] where [n] is the number of the memory where you want to store the number. For example: 3 [STO][1] will store the number 3 in memory #1. You can recall a stored number by pressing [RCL][n] where [n] again is the number of the memory you want to recall. For example: [RCL][1] will give the value 3 (assuming you stored is as described in the previous step). You don t need to clear memories as when you store a number it over-writes any value that may have been there before.

Adding, Subtracting, Multiplying and Dividing to Memories The following steps can also be done with memories, but be careful. One missed step will mess up the numbers. 3 [STO][1] puts 3 in memory #1 (assume each step below is done in sequence). Then if you press 4 [STO][+] 1, the value in #1 will be 7.00 (3+4=7) Then if you press 4 [STO][-] 1, the value in #1 will be 3.00 (7-4=3) Then if you press 4 [STO][x] 1, the value in #1 will be 12.00 (3x4=12) and Then if you press 4 [STO][ ] 1, the value in #1 will be 3.00 (12 4=3).

Calculating Means and Covariances of 2- Asset Portfolio Example form D. Cary s Level 1 CFALA review lecture notes, SS2, Reading 8: 1 2 W 75% 25% R 20% 12% Var 625 196 Covar 120 The question is to find the expected return r p and the variance s p2 (and standard deviation) of this portfolio. Before doing the calculations, look at the numbers carefully. A weight of 75% will be entered as 0.75 A return of 20% can be entered as 20 and the answer will be in % value or as 0.20 and the answer will be in decimal value 0.00. Note if they give you Variance or Standard Deviation. For part of the equations used you might need variance and other parts might need standard deviation. Also note if they give you covariance or correlation of the two assets. Remember that covariance = correlation x s 1 x s 2. The following pages use s 12 to denote covariance.

Using ALG: Calculating Means and Covariances of 2-Asset Portfolio 1. Using memories: r p =r 1 x w 1 + r 2 x w 2 1: 0.75 x 20 = 15 [STO][1] (stores first step in #1) 2: 0.25 x 12 = 3 [STO[2] (stores second step in #2) 3: [RCL][1] + [RCL[2] = 18 (adds #1 and #2 to get the answer. 1 2 W 75% 25% R 20% 12% Var 625 196 Covar 120 s p2 =w 12 x s 1 2 + w 2 2 x s 2 2 + 2 x w 1 x w 2 x s 12 1: 0.75[x²] x 625 = 351.56 [STO][1] 2: 0.25[x²] x 196 = 12.25 [STO[2] 3: 2 x 0.75 x 0.25 x 120 = 45.00 [STO[3] 4: [RCL[1] + [RCL][2] + [RCL][3] = 408.81 (=the variance) 5: [ x] = 20.22 (the standard deviation = 20.22%) Remember if they give you the standard deviations, you have to square them to get the variance for the first two parts of the equation, just like you squared the weights. If they give you the correlation, you have to multiply by the standard deviations to get covariance for the third part.

Using ALG: Calculating Means and Covariances of 2-Asset Portfolio 2. Using parentheses: r p =r 1 x w 1 + r 2 x w 2 0.75 x 20 + (0.25 x 12) = 18 The parentheses are [g][sto] and [g][rcl]. They are not needed for the first calculation since it s multiplication. 1 2 W 75% 25% R 20% 12% Var 625 196 Covar 120 s p2 =w 12 x s 1 2 + w 2 2 x s 2 2 + 2 x w 1 x w 2 x s 12 Note: it s recommended using memories for the variance calculation as there are several steps and it could be easy to hit a wrong button. But if using parentheses here are the steps: 0.75[x²] x 625 + (0.25[x²] x 196) + (2 x 0.75 x 0.25 x 120) = 408.81 [ x] = 20.22 (the standard deviation = 20.22%) Remember if they give you the standard deviations, you have to square them to get the variance for the first two parts of the equation, just like you squared the weights. If they give you the correlation, you have to multiply by the standard deviations to get covariance for the third part.

Using RPN: Calculating Means and Covariances of 2-Asset Portfolio 3. Using RPN: r p =r 1 x w 1 + r 2 x w 2 0.75[ENTER] 20[x] 0.25 [ENTER] 12 [x][+] 18 You have to be careful to enter everything correctly. 1 2 W 75% 25% R 20% 12% Var 625 196 Covar 120 s p2 =w 12 x s 1 2 + w 2 2 x s 2 2 + 2 x w 1 x w 2 x s 12 Note: it s recommended using memories for the variance calculation as there are several steps and it could be easy to hit a wrong button. But if using RPN here are the steps: 1: 0.75[x²] [ENTER] 625 [x] 351.56 [STO][1] 2: 0.25{x²] {ENTER] 196 12.25 [STO][2] 3: 2 [ENTER] 0.75 [x] 0.25 [x] 120 [x] 45.00. [STO][3] 4: [RCL] [1][ENTER][RCL][2] + [RCL][3]+ 408.81 (the variance) 5: [ x] = 20.22 (the standard deviation = 20.22%)

Calculator Hints P/Y & BEG Changing the number of per year can be done on the HP 12C, but in a number of steps. Prefered is to change both the number of periods and the interest rate per period. For example, if you have 6% per year compounded monthly for 5 years, use N=12x5=60 and I=6 12=0.5. Calculator Hints BEG mode is for Annuities Due where the payment is at the beginning of each period: To go into BEG mode, use [g][7] To go back to END mode, use [g][8]

(PV of) Uneven Cash Flows To find the PV (or FV) of uneven cash flows, find the PV (or FV) of each cash flow and add them together. Or use your calculator functions and save a lot of time! For example: Find PV of receiving $100 at the end of year 1, $200 at the end of year 2, $400 at the end of year 3 and $600 at the end of year 4, using 10% and then add all those up. Or... Key strokes Explanation Display [f][reg] Clears memory registers 0 [g][cfo] Initial outflow = 0 0.0000 0.0000 100 [g] [CFJ] Enter CF1 100.0000 200 [g] [CFJ] Enter CF2 200.0000 400 [g] [CFJ] Enter CF3 400.0000 600 [g] [CFJ] Enter CF4 600.0000 10 [i] Enters I% 10.0000 [f][npv] Calculate NPV 966.5323 CF 0 =0, CF 1 =100, CF 2 =200, CF 3 =400, CF 4 =600, I=10%

NPV, IRR example Assume a project costs $1000. It will generate cash flows of $100, $200, $400, $600 for the next 4 years. The discount rate is 10%. Calculate NPV and IRR. Key strokes Explanation Display [f][reg] 1000 [CHS][g][Cfo] Clears memory registers Initial outflow = - 1000 0.0000-1000.0000 100 [g] [CFJ] Enter CF1 100.0000 200 [g] [CFJ] Enter CF2 200.0000 400 [g] [CFJ] Enter CF3 400.0000 600 [g] [CFJ] Enter CF4 600.0000 10 [i] Enters I% 10.0000 [f][npv] Calculate NPV -33.4677 [f][irr] Calculate IRR 8.7871 CF 0 =-1000, CF 1 =100, CF 2 =200, CF 3 =400, CF 4 =600, I=10% NPV = -33.47 IRR = 8,79%

Viewing and/or Correcting Cash Flow inputs for NPV and IRR After entering the Cash Flows for an NPV or IRR calculation, you can see the values by using the [RCL] key. Example: [RCL] 0 Shows CF 0 [RCL] 1 Shows CF 1 [RCL] 2 Shows CF 2 [RCL] 3 Shows CF 3 Etc. You can correct a CF input using the [STO] key. For example, assume you had entered 10 for CF 1, but it should have been 10. [RCL] 1 10 100 [STO]1 100 [RCL] 1 100 You can repeat for any other incorrect cash flows. Note: on the exam they may try a trick: Assume the cash flows are CF 0 =-1000, CF 1 =100, CF 2 =200, CF 3 =0, CF 4 =400, CF 5 =500. You must enter CF3 as 0 or the remaining cash flows will be for the wrong periods and you will get the wrong answer!

Practice Problem Year S&P 2008 13,5% 2009-1,2% 2010-35,6% 2011 32,4% 2012 16,5% 2013 3,8% 2014 3,0% Calculate the following: 1. Mean 2. Standard Deviation 3. Coefficient of Variation 4. Sharpe Ratio

Calculating Mean and Standard Deviation HP 12C On Screen [f][ ] or [f][reg] 0.0000 Clears memories 13.5 [ +] 1.0000 Enters 1 st value 1.2 [CHS] [ +] 2.0000 Enters 2 nd value 35.6 [CHS] [ +] 3.0000 Enters 3 rd value 32.4 [ +] 4.0000 Enters 4 th value 16.5 [ +] 5.0000 Enters 5 th value 3.8 [ +] 6.0000 Enters 6 th value [g][0] 4.9000 Mean [g][.] s 22.9932 Standard Deviation If asked for the Mean Absolute Deviation: No shortcut! Year S&P S&P - Mean 2008 13,50% 8.60% 2009-1.20% 6.10% 2010-35.60% 40.50% 2011 32.40% 27.50% Mean = r = 4.90 % Standard Deviation = s = 22.99% Coefficient of Variation = s/r CV = 22.99/4.90% = 4.69 Sharpe = (r-r f )/s (4.90% - 3.0%)/ 22.99% = 0.083 2012 16.50% 11.60% 2013 3.80% 1.10% Sum 29.40% 95.4% Mean 4.90% Median 8.65% 6 MAD 15.90%

Using ALG: Geometric and Harmonic Mean Using the Statistics Function for the calculation is after these slides. Data: 3, 3, 4, 6, 22 Geometric Mean (RPN) KEYS DISPLAY 3 [ENTER] 3.0000 3 [x] 9.0000 4 [x] 36.0000 6 [x] 216.0000 22 [x] 4,752.0000 5 [1/x] [x y ] 5.4372 Harmonic Mean (RPN) KEYS DISPLAY 3 [1/x] [ENTER] 0.3333 3 [1/x] [+] 0.6667 4 [1/x] [+] 0.9167 6 [1/x] [+] 1.0833 22 [1/x] [+] 1.1288 5 [1/x] [x y ] 5 [ ] 0.2258 Calculate NPV [1/x] 4.4295

The next slides show how to use the built-in statisctic functions to do Geometric and Harmonic Average calculations. Without saying which is easier, they are included for you to compare both.

Using the Statistics Function to calculate Geometric Mean Data: 3, 3, 4, 6, 22 (Works for both ALG and RPN!) Keys Display Keys Display Comments [f] [ ] 0.0000 Clear memories 3 [g][ln] 1.0986 [ +] 1.000 Converts to Log, Enters 1 st value. 3 [g][ln] 1.0986 [ +] 2.000 Converts to Log, Enters 1 st value. 4 [g][ln] 1.3863 [ +] 3.000 Converts to Log, Enters 1 st value. 6 [g][ln] 1.7918 [ +] 4.000 Converts to Log, Enters 1 st value. 22 [g][ln] 3.0910 [ +] 5.000 Converts to Log, Enters 1 st value. [g][x] 5.4372 Converts the average of the logs to the answer! Note: converting the numbers to logs, calculating the average, then using ex is mathematically the same as multiplying the numbers and taking the root.

Using the Statistics Function to calculate Harmonic Mean Data: 3, 3, 4, 6, 22 (Works for both ALG and RPN!) Keys Display Keys Display Comments [f] [ ] 0.0000 Clear memories 3 [1/x] 0.3333 [ +] 1.000 Converts to reciprocal, Enters 1 st value. 3 [1/x] 0.3333 [ +] 2.000 Converts to reciprocal, Enters 2 nd value. 4 [1/x] 0.2500 [ +] 3.000 Converts to reciprocal, Enters 3 rd value. 6 [1/x] 0.1667 [ +] 4.000 Converts to reciprocal, Enters 4 th value. 22 [1/x] 0.0455 [ +] 5.000 Converts to reciprocal, Enters 5 th value. [g][x] 0.2258 Gets average of recipocals [1/x] 5.4372 The reciprocal of the average repciprocal. The answer!

Tree Diagram Assume there is a 60% probability that interest rates will decrease and if they do, there is a 25% chance that EPS = $2.60 and a 75% chance that EPS = $2.45. Also, there is a 40% probability that interest rates will be stable and if so, there is a 60% probability that EPS = $2.20 and a 40% probability that EPS = $2.00. EPS = $2.60 EPS = $2.45 EPS = $2.20 EPS = $2.00 Expected value if rates decrease: 0.25 x 2.60 + 0.75 x 2.45 = $2.4875 Expected value if stable rates: 0.60 x 2.20 + 0.4 x 2.00 = $2.12

Decision Tree (ALG mode) Keys (Using memories) Display Comments 0.60 x 0.25 x 2.60=[STO][1] 0.3900 Top Branch 0.60 x 0.75 x 2.45=[STO][2] 1.1025 2 nd Branch 0.40 x 0.60 x 2.20=[STO][3] 0.5280 3 rd Branch 0.40 x 0.40 x 2.00=[STO][4] 3.0000 Bottom Branch [RCL][1] + [RCL][2] + [RCL][3] + [RCL][4] = 2.3405 Answer Note: Quick answer check for reasonableness, values between 2.60 and 2.00, answer is about in the middle, that is reasonable! Note 2: There is a weighted average statistical mode for the calculator, [g][6] but I think using the memories, as above or next slide, is actually faster for this type of problem and probably less chance of making an error.

Decision Tree (RPN mode) Keys (Using memories) Display Comments 0.60 [ENTER] 0.25 x 2.60 x [STO][1] 0.3900 Top Branch 0.60 [ENTER] 0.75 x 2.45 x [STO][2] 1.1025 2 nd Branch 0.40 [ENTER] 0.60 x 2.20 x [STO][3] 0.5280 3 rd Branch 0.40 [ENTER] 0.40 x 2.00 x [STO][4] 0.3200 Bottom Branch [RCL][1][ENTER] [RCL][2] + [RCL][3] + [RCL][4] + 2.3405 Answer Note: Quick answer check for reasonableness, values between 2.60 and 2.00, answer is about in the middle, that is reasonable! Note 2: There is a weighted average statistical mode for the calculator, [g][6] but I think using the memories, as above or next slide, is actually faster for this type of problem and probably less chance of making an error.

Factorial, Combinations and Permutations N Factorial is when you multiply N x (N-1) x (N-2) x... X 2 x 1 = N! There is a built-in function in your calculator to do this: [g][3] = [n!], To get 5!: 5 [g][3] 120 This can be useful for combination calculations: To select a subset of 3 items out of 5: 5C 3 = 5! / ((5-3!)(3!) = 10 Using RPN: 5[g][3][ENTER] 2[g][3][ ] 3 [g][3][ ] gives the answer of 10 Using ALG: 5[g][3][ ] 2[g][3] [ ] 3[g][3] [=] gives the answer of 10

Factorial, Combinations and Permutations This can also be useful for permutation calculations: To select and rank a subset of 3 items out of 5: 5P 3 = 5! / (5-3!) = 60 Using RPN: 5[g][3][ENTER] 2[g][3][ ] gives the answer of 60 Using ALG: 5[g][3][ ] 2[g][3] gives the answer of 60

Contact information and ordering For all questions about the HP calculators, contact De Rekenwinkel at: De Rekenwinkel Watermanstraat 112 7324 AK APELDOORN (NL) +31 55 301 77 30 info@derekenwinkel.nl Order the HP 12c from www.rekenwinkel.nl at special CFA discounted prices!