Recap First-Price Revenue Equivalence Optimal Auctions. Auction Theory II. Lecture 19. Auction Theory II Lecture 19, Slide 1

Similar documents
Optimal Auctions. Game Theory Course: Jackson, Leyton-Brown & Shoham

Auctions. Michal Jakob Agent Technology Center, Dept. of Computer Science and Engineering, FEE, Czech Technical University

Auctions. Michal Jakob Agent Technology Center, Dept. of Computer Science and Engineering, FEE, Czech Technical University

Mechanism Design and Auctions

Mechanism Design and Auctions

March 30, Why do economists (and increasingly, engineers and computer scientists) study auctions?

Notes on Auctions. Theorem 1 In a second price sealed bid auction bidding your valuation is always a weakly dominant strategy.

Auctions Introduction

Game Theory Lecture #16

Auction Theory: Some Basics

1 Theory of Auctions. 1.1 Independent Private Value Auctions

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

Problem Set 3: Suggested Solutions

Microeconomic Theory II Preliminary Examination Solutions Exam date: June 5, 2017

Bayesian games and their use in auctions. Vincent Conitzer

Independent Private Value Auctions

Games of Incomplete Information ( 資訊不全賽局 ) Games of Incomplete Information

Chapter 3. Dynamic discrete games and auctions: an introduction

Auctions. Agenda. Definition. Syllabus: Mansfield, chapter 15 Jehle, chapter 9

Consider the following (true) preference orderings of 4 agents on 4 candidates.

Up till now, we ve mostly been analyzing auctions under the following assumptions:

Day 3. Myerson: What s Optimal

Strategy -1- Strategic equilibrium in auctions

October An Equilibrium of the First Price Sealed Bid Auction for an Arbitrary Distribution.

EconS Games with Incomplete Information II and Auction Theory

Auctions 1: Common auctions & Revenue equivalence & Optimal mechanisms. 1 Notable features of auctions. use. A lot of varieties.

Auction. Li Zhao, SJTU. Spring, Li Zhao Auction 1 / 35

Auction Theory Lecture Note, David McAdams, Fall Bilateral Trade

Auctioning one item. Tuomas Sandholm Computer Science Department Carnegie Mellon University

Auctions: Types and Equilibriums

Lecture #6: Auctions: Theory and Applications. Prof. Dr. Sven Seuken

Parkes Auction Theory 1. Auction Theory. Jacomo Corbo. School of Engineering and Applied Science, Harvard University

Algorithmic Game Theory

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012

Auctions. Episode 8. Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto

ECON Microeconomics II IRYNA DUDNYK. Auctions.

Elements of auction theory. This material is not part of the course, but is included here for those who are interested

Lecture 6 Applications of Static Games of Incomplete Information

CS269I: Incentives in Computer Science Lecture #14: More on Auctions

1 Auctions. 1.1 Notation (Symmetric IPV) Independent private values setting with symmetric riskneutral buyers, no budget constraints.

Mechanism Design and Auctions

Revenue Equivalence and Mechanism Design

CUR 412: Game Theory and its Applications, Lecture 4

We examine the impact of risk aversion on bidding behavior in first-price auctions.

Games with Private Information 資訊不透明賽局

Applicant Auction Conference

Auctions That Implement Efficient Investments

Multiunit Auctions: Package Bidding October 24, Multiunit Auctions: Package Bidding

CUR 412: Game Theory and its Applications, Lecture 4

by open ascending bid ("English") auction Auctioneer raises asking price until all but one bidder drops out

Subjects: What is an auction? Auction formats. True values & known values. Relationships between auction formats

Game Theory Problem Set 4 Solutions

CS 573: Algorithmic Game Theory Lecture date: March 26th, 2008

Matching Markets and Google s Sponsored Search

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

Revenue Equivalence Theorem (RET)

ECO 426 (Market Design) - Lecture 8

KIER DISCUSSION PAPER SERIES

Auctions. Microeconomics II. Auction Formats. Auction Formats. Many economic transactions are conducted through auctions treasury bills.

Microeconomic Theory III Spring 2009

Strategy -1- Strategy

Bayesian Nash Equilibrium

Recalling that private values are a special case of the Milgrom-Weber setup, we ve now found that

Auction Theory - An Introduction

Auctions in the wild: Bidding with securities. Abhay Aneja & Laura Boudreau PHDBA 279B 1/30/14

Microeconomic Theory II Preliminary Examination Solutions

2 Comparison Between Truthful and Nash Auction Games

CS364B: Frontiers in Mechanism Design Lecture #18: Multi-Parameter Revenue-Maximization

Auction Theory for Undergrads

Auctioning a Single Item. Auctions. Simple Auctions. Simple Auctions. Models of Private Information. Models of Private Information

Corporate Control. Itay Goldstein. Wharton School, University of Pennsylvania

Mechanism Design: Groves Mechanisms and Clarke Tax

Today. Applications of NE and SPNE Auctions English Auction Second-Price Sealed-Bid Auction First-Price Sealed-Bid Auction

Agent-Based Systems. Agent-Based Systems. Michael Rovatsos. Lecture 11 Resource Allocation 1 / 18

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2

Problem Set 3: Suggested Solutions

Auction is a commonly used way of allocating indivisible

Exercises on Auctions. What are the equilibrium bidding functions a * 1 ) = ) = t 2 2. ) = t 1 2, a 2(t 2

Topics in Contract Theory Lecture 6. Separation of Ownership and Control

Simon Fraser University Spring 2014

ECON20710 Lecture Auction as a Bayesian Game

The Vickrey-Clarke-Groves Mechanism

Lecture 5: Iterative Combinatorial Auctions

Internet Trading Mechanisms and Rational Expectations

Notes for Section: Week 7

1 Theory of Auctions. 1.1 Independent Private Value Auctions

Comparative Cheap Talk

Stochastic Games and Bayesian Games

1 Intro to game theory

Ad Auctions October 8, Ad Auctions October 8, 2010

A Systematic Presentation of Equilibrium Bidding Strategies to Undergradudate Students

April 29, X ( ) for all. Using to denote a true type and areport,let

Revenue Equivalence and Income Taxation

Auction Theory. Philip Selin. U.U.D.M. Project Report 2016:27. Department of Mathematics Uppsala University

Auctions. Economics Auction Theory. Instructor: Songzi Du. Simon Fraser University. November 17, 2016

October 9. The problem of ties (i.e., = ) will not matter here because it will occur with probability

CS711: Introduction to Game Theory and Mechanism Design

CS711 Game Theory and Mechanism Design

Signaling in an English Auction: Ex ante versus Interim Analysis

Auction types. All Pay Auction: Everyone writes down a bid in secret. The person with the highest bid wins. Everyone pays.

Transcription:

Auction Theory II Lecture 19 Auction Theory II Lecture 19, Slide 1

Lecture Overview 1 Recap 2 First-Price Auctions 3 Revenue Equivalence 4 Optimal Auctions Auction Theory II Lecture 19, Slide 2

Motivation Auctions are any mechanisms for allocating resources among self-interested agents resource allocation is a fundamental problem in CS increasing importance of studying distributed systems with heterogeneous agents currency needn t be real money, just something scarce Auction Theory II Lecture 19, Slide 3

Intuitive comparison of 5 auctions Intuitive Comparison of 5 auctions English Dutch Japanese 1 st -Price 2 nd -Price Duration Info Revealed #bidders, increment 2 nd -highest val; bounds on others starting price, clock speed winner s bid #bidders, increment all val s but winner s fixed none fixed none Jump bids yes n/a no n/a n/a Price Discovery yes no yes no no Regret no yes no yes no Fill in regret after the fun game How should agents bid in these auctions? Auction Theory II Lecture 19, Slide 4

Second-Price proof Theorem Truth-telling is a dominant strategy in a second-price auction. Proof. Assume that the other bidders bid in some arbitrary way. We must show that i s best response is always to bid truthfully. We ll break the proof into two cases: 1 Bidding honestly, i would win the auction 2 Bidding honestly, i would lose the auction Auction Theory II Lecture 19, Slide 5

English and Japanese auctions A much more complicated strategy space extensive form game bidders are able to condition their bids on information revealed by others in the case of English auctions, the ability to place jump bids intuitively, though, the revealed information doesn t make any difference in the IPV setting. Auction Theory II Lecture 19, Slide 6

English and Japanese auctions A much more complicated strategy space extensive form game bidders are able to condition their bids on information revealed by others in the case of English auctions, the ability to place jump bids intuitively, though, the revealed information doesn t make any difference in the IPV setting. Theorem Under the independent private values model (IPV), it is a dominant strategy for bidders to bid up to (and not beyond) their valuations in both Japanese and English auctions. Auction Theory II Lecture 19, Slide 6

Lecture Overview 1 Recap 2 First-Price Auctions 3 Revenue Equivalence 4 Optimal Auctions Auction Theory II Lecture 19, Slide 7

First-Price and Dutch Theorem First-Price and Dutch auctions are strategically equivalent. In both first-price and Dutch, a bidder must decide on the amount he s willing to pay, conditional on having placed the highest bid. despite the fact that Dutch auctions are extensive-form games, the only thing a winning bidder knows about the others is that all of them have decided on lower bids e.g., he does not know what these bids are this is exactly the thing that a bidder in a first-price auction assumes when placing his bid anyway. Note that this is a stronger result than the connection between second-price and English. Auction Theory II Lecture 19, Slide 8

Discussion So, why are both auction types held in practice? First-price auctions can be held asynchronously Dutch auctions are fast, and require minimal communication: only one bit needs to be transmitted from the bidders to the auctioneer. How should bidders bid in these auctions? Auction Theory II Lecture 19, Slide 9

Discussion So, why are both auction types held in practice? First-price auctions can be held asynchronously Dutch auctions are fast, and require minimal communication: only one bit needs to be transmitted from the bidders to the auctioneer. How should bidders bid in these auctions? They should clearly bid less than their valuations. There s a tradeoff between: probability of winning amount paid upon winning Bidders don t have a dominant strategy any more. Auction Theory II Lecture 19, Slide 9

Analysis Theorem In a first-price auction with two risk-neutral bidders whose valuations are drawn independently and uniformly at random from [0, 1], ( 1 v1, 1 v2) is a Bayes-Nash 2 2 equilibrium strategy profile. Proof. Assume that bidder 2 bids 1 v2, and bidder 1 bids s1. From the fact that v2 2 was drawn from a uniform distribution, all values of v 2 between 0 and 1 are equally likely. Bidder 1 s expected utility is E[u 1] = 1 0 u 1dv 2. (1) Note that the integral in Equation (1) can be broken up into two smaller integrals that differ on whether or not player 1 wins the auction. E[u 1] = 2s1 0 u 1dv 2 + 1 2s 1 u 1dv 2 Auction Theory II Lecture 19, Slide 10

Analysis Theorem In a first-price auction with two risk-neutral bidders whose valuations are drawn independently and uniformly at random from [0, 1], ( 1 v1, 1 v2) is a Bayes-Nash 2 2 equilibrium strategy profile. Proof (continued). We can now substitute in values for u 1. In the first case, because 2 bids 1 v2, 1 2 wins when v 2 < 2s 1, and gains utility v 1 s 1. In the second case 1 loses and gains utility 0. Observe that we can ignore the case where the agents have the same valuation, because this occurs with probability zero. E[u 1] = 2s1 0 (v 1 s 1)dv 2 + 1 2s 1 (0)dv 2 2s 1 = (v 1 s 1)v 2 0 = 2v 1s 1 2s 2 1 (2) Auction Theory II Lecture 19, Slide 10

Analysis Theorem In a first-price auction with two risk-neutral bidders whose valuations are drawn independently and uniformly at random from [0, 1], ( 1 v1, 1 v2) is a Bayes-Nash 2 2 equilibrium strategy profile. Proof (continued). We can find bidder 1 s best response to bidder 2 s strategy by taking the derivative of Equation (2) and setting it equal to zero: s 1 (2v 1s 1 2s 2 1) = 0 2v 1 4s 1 = 0 s 1 = 1 2 v1 Thus when player 2 is bidding half her valuation, player 1 s best strategy is to bid half his valuation. The calculation of the optimal bid for player 2 is analogous, given the symmetry of the game and the equilibrium. Auction Theory II Lecture 19, Slide 10

More than two bidders Very narrow result: two bidders, uniform valuations. Still, first-price auctions are not incentive compatible hence, unsurprisingly, not equivalent to second-price auctions Theorem In a first-price sealed bid auction with n risk-neutral agents whose valuations are independently drawn from a uniform distribution on the same bounded interval of the real numbers, the unique symmetric equilibrium is given by the strategy profile ( n 1 n v 1,..., n 1 n v n). proven using a similar argument, but more involved calculus a broader problem: that proof only showed how to verify an equilibrium strategy. How do we identify one in the first place? Auction Theory II Lecture 19, Slide 11

Lecture Overview 1 Recap 2 First-Price Auctions 3 Revenue Equivalence 4 Optimal Auctions Auction Theory II Lecture 19, Slide 12

Revenue Equivalence Which auction should an auctioneer choose? To some extent, it doesn t matter... Theorem (Revenue Equivalence Theorem) Assume that each of n risk-neutral agents has an independent private valuation for a single good at auction, drawn from a common cumulative distribution F (v) that is strictly increasing and atomless on [v, v]. Then any auction mechanism in which the good will be allocated to the agent with the highest valuation; and any agent with valuation v has an expected utility of zero; yields the same expected revenue, and hence results in any bidder with valuation v making the same expected payment. Auction Theory II Lecture 19, Slide 13

Revenue Equivalence Proof Proof. Consider any mechanism (direct or indirect) for allocating the good. Let u i(v i) be i s expected utility given true valuation v i, assuming that all agents including i follow their equilibrium strategies. Let P i(v i) be i s probability of being awarded the good given (a) that his true type is v i; (b) that he follows the equilibrium strategy for an agent with type v i; and (c) that all other agents follow their equilibrium strategies. u i(v i) = v ip i(v i) E[payment by type v i of player i] (1) From the definition of equilibrium, for any other valuation ˆv i that i could have, u i(v i) u i(ˆv i) + (v i ˆv i)p i(ˆv i). (2) To understand Equation (2), observe that if i followed the equilibrium strategy for a player with valuation ˆv i rather than for a player with his (true) valuation v i, i would make all the same payments and would win the good with the same probability as an agent with valuation ˆv i. However, whenever he wins the good, i values it (v i ˆv i) more than an agent of type ˆv i does. The inequality must hold because in equilibrium this deviation must be unprofitable. Auction Theory II Lecture 19, Slide 14

Revenue Equivalence Proof Proof (continued). Consider ˆv i = v i + dv i, by substituting this expression into Equation (2): u i(v i) u i(v i + dv i) + dv ip i(v i + dv i). (3) Likewise, considering the possibility that i s true type could be v i + dv i, Combining Equations (4) and (5), we have u i(v i + dv i) u i(v i) + dv ip i(v i). (4) P i(v i + dv i) ui(vi + dvi) ui(vi) dv i P i(v i). (5) Taking the limit as dv i 0 gives du i dv i = P i(v i). Integrating up, vi u i(v i) = u i(v) + P i(x)dx. (6) x=v Auction Theory II Lecture 19, Slide 14

Revenue Equivalence Proof Proof (continued). Now consider any two efficient auction mechanisms in which the expected payment of an agent with valuation v is zero. A bidder with valuation v will never win (since the distribution is atomless), so his expected utility u i(v) = 0. Because both mechanisms are efficient, every agent i always has the same P i(v i) (his probability of winning given his type v i) under the two mechanisms. Since the right-hand side of Equation (6) involves only P i(v i) and u i(v), each agent i must therefore have the same expected utility u i in both mechanisms. From Equation (1), this means that a player of any given type v i must make the same expected payment in both mechanisms. Thus, i s ex ante expected payment is also the same in both mechanisms. Since this is true for all i, the auctioneer s expected revenue is also the same in both mechanisms. Auction Theory II Lecture 19, Slide 14

First and Second-Price Auctions The k th order statistic of a distribution: the expected value of the k th -largest of n draws. For n IID draws from [0, v max ], the k th order statistic is n + 1 k n + 1 v max. Auction Theory II Lecture 19, Slide 15

First and Second-Price Auctions The k th order statistic of a distribution: the expected value of the k th -largest of n draws. For n IID draws from [0, v max ], the k th order statistic is n + 1 k n + 1 v max. Thus in a second-price auction, the seller s expected revenue is n 1 n + 1 v max. Auction Theory II Lecture 19, Slide 15

First and Second-Price Auctions The k th order statistic of a distribution: the expected value of the k th -largest of n draws. For n IID draws from [0, v max ], the k th order statistic is n + 1 k n + 1 v max. Thus in a second-price auction, the seller s expected revenue is n 1 n + 1 v max. First and second-price auctions satisfy the requirements of the revenue equivalence theorem every symmetric game has a symmetric equilibrium in a symmetric equilibrium of this auction game, higher bid higher valuation Auction Theory II Lecture 19, Slide 15

Applying Revenue Equivalence Thus, a bidder in a FPA must bid his expected payment conditional on being the winner of a second-price auction this conditioning will be correct if he does win the FPA; otherwise, his bid doesn t matter anyway if v i is the high value, there are then n 1 other values drawn from the uniform distribution on [0, v i ] thus, the expected value of the second-highest bid is the first-order statistic of n 1 draws from [0, v i ]: n + 1 k v max = n + 1 (n 1) + 1 (1) (n 1) + 1 (v i ) = n 1 n v i This provides a basis for our earlier claim about n-bidder first-price auctions. However, we d still have to check that this is an equilibrium The revenue equivalence theorem doesn t say that every revenue-equivalent strategy profile is an equilibrium! Auction Theory II Lecture 19, Slide 16

Lecture Overview 1 Recap 2 First-Price Auctions 3 Revenue Equivalence 4 Optimal Auctions Auction Theory II Lecture 19, Slide 17

Optimal Auctions So far we have only considered efficient auctions. What about maximizing the seller s revenue? she may be willing to risk failing to sell the good even when there is an interested buyer she may be willing sometimes to sell to a buyer who didn t make the highest bid Mechanisms which are designed to maximize the seller s expected revenue are known as optimal auctions. Auction Theory II Lecture 19, Slide 18

Optimal auctions setting independent private valuations risk-neutral bidders each bidder i s valuation drawn from some strictly increasing cumulative density function F i (v) (PDF f i (v)) we allow F i F j : asymmetric auctions the seller knows each F i Auction Theory II Lecture 19, Slide 19

Designing optimal auctions Definition (virtual valuation) Bidder i s virtual valuation is ψ i (v i ) = v i 1 F i(v i ) f i (v i ). Definition (bidder-specific reserve price) Bidder i s bidder-specific reserve price r i is the value for which ψ i (r i ) = 0. Auction Theory II Lecture 19, Slide 20

Designing optimal auctions Definition (virtual valuation) Bidder i s virtual valuation is ψ i (v i ) = v i 1 F i(v i ) f i (v i ). Definition (bidder-specific reserve price) Bidder i s bidder-specific reserve price r i is the value for which ψ i (r i ) = 0. Theorem The optimal (single-good) auction is a sealed-bid auction in which every agent is asked to declare his valuation. The good is sold to the agent i = arg max i ψ i (ˆv i ), as long as v i > ri. If the good is sold, the winning agent i is charged the smallest valuation that he could have declared while still remaining the winner: inf{vi : ψ i(vi ) 0 and j i, ψ i(vi ) ψ j(ˆv j )}. Auction Theory II Lecture 19, Slide 20

Analyzing optimal auctions Optimal Auction: winning agent: i = arg max i ψ i (ˆv i ), as long as v i > r i. i is charged the smallest valuation that he could have declared while still remaining the winner, inf{v i : ψ i(v i ) 0 and j i, ψ i(v i ) ψ j(ˆv j )}. Is this VCG? Auction Theory II Lecture 19, Slide 21

Analyzing optimal auctions Optimal Auction: winning agent: i = arg max i ψ i (ˆv i ), as long as v i > r i. i is charged the smallest valuation that he could have declared while still remaining the winner, inf{v i : ψ i(v i ) 0 and j i, ψ i(v i ) ψ j(ˆv j )}. Is this VCG? No, it s not efficient. Auction Theory II Lecture 19, Slide 21

Analyzing optimal auctions Optimal Auction: winning agent: i = arg max i ψ i (ˆv i ), as long as v i > r i. i is charged the smallest valuation that he could have declared while still remaining the winner, inf{v i : ψ i(v i ) 0 and j i, ψ i(v i ) ψ j(ˆv j )}. Is this VCG? No, it s not efficient. How should bidders bid? Auction Theory II Lecture 19, Slide 21

Analyzing optimal auctions Optimal Auction: winning agent: i = arg max i ψ i (ˆv i ), as long as v i > r i. i is charged the smallest valuation that he could have declared while still remaining the winner, inf{v i : ψ i(v i ) 0 and j i, ψ i(v i ) ψ j(ˆv j )}. Is this VCG? No, it s not efficient. How should bidders bid? it s a second-price auction with a reserve price, held in virtual valuation space. neither the reserve prices nor the virtual valuation transformation depends on the agent s declaration thus the proof that a second-price auction is dominant-strategy truthful applies here as well. Auction Theory II Lecture 19, Slide 21

Analyzing optimal auctions Optimal Auction: winning agent: i = arg max i ψ i (ˆv i ), as long as v i > r i. i is charged the smallest valuation that he could have declared while still remaining the winner, inf{v i : ψ i(v i ) 0 and j i, ψ i(v i ) ψ j(ˆv j )}. What happens in the special case where all agents valuations are drawn from the same distribution? Auction Theory II Lecture 19, Slide 22

Analyzing optimal auctions Optimal Auction: winning agent: i = arg max i ψ i (ˆv i ), as long as v i > r i. i is charged the smallest valuation that he could have declared while still remaining the winner, inf{v i : ψ i(v i ) 0 and j i, ψ i(v i ) ψ j(ˆv j )}. What happens in the special case where all agents valuations are drawn from the same distribution? a second-price auction with reserve price r satisfying r 1 Fi(r ) f i(r ) = 0. Auction Theory II Lecture 19, Slide 22

Analyzing optimal auctions Optimal Auction: winning agent: i = arg max i ψ i (ˆv i ), as long as v i > r i. i is charged the smallest valuation that he could have declared while still remaining the winner, inf{v i : ψ i(v i ) 0 and j i, ψ i(v i ) ψ j(ˆv j )}. What happens in the special case where all agents valuations are drawn from the same distribution? a second-price auction with reserve price r satisfying r 1 Fi(r ) f i(r ) = 0. What happens in the general case? Auction Theory II Lecture 19, Slide 22

Analyzing optimal auctions Optimal Auction: winning agent: i = arg max i ψ i (ˆv i ), as long as v i > r i. i is charged the smallest valuation that he could have declared while still remaining the winner, inf{v i : ψ i(v i ) 0 and j i, ψ i(v i ) ψ j(ˆv j )}. What happens in the special case where all agents valuations are drawn from the same distribution? a second-price auction with reserve price r satisfying r 1 Fi(r ) f i(r ) = 0. What happens in the general case? the virtual valuations also increase weak bidders bids, making them more competitive. low bidders can win, paying less however, bidders with higher expected valuations must bid more aggressively Auction Theory II Lecture 19, Slide 22