Cooperative Game Theory

Similar documents
Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India October 2012

Lecture 1 Introduction and Definition of TU games

A Core Concept for Partition Function Games *

The Core of a Strategic Game *

Econ 618: Topic 11 Introduction to Coalitional Games

MATH 121 GAME THEORY REVIEW

Elements of Economic Analysis II Lecture XI: Oligopoly: Cournot and Bertrand Competition

Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002

Games of Incomplete Information ( 資訊不全賽局 ) Games of Incomplete Information

Game Theory Fall 2003

General Examination in Microeconomic Theory SPRING 2014

PAULI MURTO, ANDREY ZHUKOV

CMSC 474, Introduction to Game Theory 20. Shapley Values

Competitive Outcomes, Endogenous Firm Formation and the Aspiration Core

OPPA European Social Fund Prague & EU: We invest in your future.

(a) Describe the game in plain english and find its equivalent strategic form.

Topics in Contract Theory Lecture 3

Microeconomics Comprehensive Exam

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 5 Games and Strategy (Ch. 4)

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India October 2012

Game Theory with Applications to Finance and Marketing, I

Lecture 5 Leadership and Reputation

Problem Set 3: Suggested Solutions

Microeconomics II. CIDE, MsC Economics. List of Problems

Equivalence Nucleolus for Partition Function Games

NASH PROGRAM Abstract: Nash program

Outline. Risk and Decision Analysis 5. Game Theory. What is game theory? Outline. Scope of game theory. Two-person zero sum games

Game Theory. Wolfgang Frimmel. Repeated Games

Game Theory Notes: Examples of Games with Dominant Strategy Equilibrium or Nash Equilibrium

Cooperative Game Theory. John Musacchio 11/16/04

Solutions of Bimatrix Coalitional Games

Microeconomics of Banking: Lecture 5

Economics 502 April 3, 2008

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India October 2012

While the story has been different in each case, fundamentally, we ve maintained:

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016

Econ 101A Final exam May 14, 2013.

Lecture 9: Basic Oligopoly Models

CUR 412: Game Theory and its Applications, Lecture 12

CUR 412: Game Theory and its Applications, Lecture 4

Subgame Perfect Cooperation in an Extensive Game

ECONS 424 STRATEGY AND GAME THEORY HANDOUT ON PERFECT BAYESIAN EQUILIBRIUM- III Semi-Separating equilibrium

Game theory and applications: Lecture 1

HE+ Economics Nash Equilibrium

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

Consistent solutions for cooperative games with externalities

Multiunit Auctions: Package Bidding October 24, Multiunit Auctions: Package Bidding

On Existence of Equilibria. Bayesian Allocation-Mechanisms

GAME THEORY. Department of Economics, MIT, Follow Muhamet s slides. We need the following result for future reference.

CUR 412: Game Theory and its Applications, Lecture 9

Advanced Microeconomics

Outline for today. Stat155 Game Theory Lecture 19: Price of anarchy. Cooperative games. Price of anarchy. Price of anarchy

Microeconomic Theory II Preliminary Examination Solutions Exam date: August 7, 2017

Shapley Allocation, Diversification and Services in Operational Risk

preferences of the individual players over these possible outcomes, typically measured by a utility or payoff function.

Coalitional games with veto players: myopic and farsighted behavior

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

Coalition Formation in the Airport Problem

Strategy -1- Strategy

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

Topics in Contract Theory Lecture 1

Sequential Rationality and Weak Perfect Bayesian Equilibrium

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours

Duopoly models Multistage games with observed actions Subgame perfect equilibrium Extensive form of a game Two-stage prisoner s dilemma

M.Phil. Game theory: Problem set II. These problems are designed for discussions in the classes of Week 8 of Michaelmas term. 1

January 26,

CUR 412: Game Theory and its Applications, Lecture 4

Microeconomic Theory II Spring 2016 Final Exam Solutions

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2

Single-Parameter Mechanisms

Agenda. Game Theory Matrix Form of a Game Dominant Strategy and Dominated Strategy Nash Equilibrium Game Trees Subgame Perfection

1 Shapley-Shubik Model

Solution to Tutorial 1

ECON 803: MICROECONOMIC THEORY II Arthur J. Robson Fall 2016 Assignment 9 (due in class on November 22)

Solution to Tutorial /2013 Semester I MA4264 Game Theory

Outline for today. Stat155 Game Theory Lecture 13: General-Sum Games. General-sum games. General-sum games. Dominated pure strategies

Yao s Minimax Principle

Microeconomics II Lecture 8: Bargaining + Theory of the Firm 1 Karl Wärneryd Stockholm School of Economics December 2016

Game Theory: Global Games. Christoph Schottmüller

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2015

MA300.2 Game Theory 2005, LSE

ECO 463. SequentialGames

Microeconomics of Banking: Lecture 3

Introduction to Game Theory

Introduction to Political Economy Problem Set 3

Economic Management Strategy: Hwrk 1. 1 Simultaneous-Move Game Theory Questions.

EXTENSIVE AND NORMAL FORM GAMES

SI 563 Homework 3 Oct 5, Determine the set of rationalizable strategies for each of the following games. a) X Y X Y Z

Evolutionary voting games. Master s thesis in Complex Adaptive Systems CARL FREDRIKSSON

Introduction to Game Theory

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3

Chapter 3. Dynamic discrete games and auctions: an introduction

CMPSCI 240: Reasoning about Uncertainty

Microeconomic Theory II Preliminary Examination Solutions Exam date: June 5, 2017

General Examination in Microeconomic Theory SPRING 2011

Introduction to game theory LECTURE 2

Microeconomic Theory II Preliminary Examination Solutions

EC 202. Lecture notes 14 Oligopoly I. George Symeonidis

ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves

Transcription:

Cooperative Game Theory Non-cooperative game theory specifies the strategic structure of an interaction: The participants (players) in a strategic interaction Who can do what and when, and what they know when they do it The payoffs of players as a function of the choices of all players Solution concepts (Dominance, Rationalisability, Nash, Perfectness etc) were strategically based (sometimes incorporating notions of beliefs) A focus on single-player deviations In contrast, cooperative game theory specifies no such strategic structure, just: The participants (players) in a given interaction What each subset of players (or coalition ) can jointly achieve Cooperative solution concepts focus on the deviations of coalitions of players and are based on what payoffs players can achieve rather than what they do LECTURE 8 COOPERATIVE GAMES 1

Cooperative Games with Transferable Utility So: define TU and NTU cooperative games, the core, the Shapley value, and some examples Cooperative Games A cooperative game with transferable utility is G = N, v where: 1 N is the set of players with typical player i 2 A payoff function v(s), defined for every collection of players S N Very simple! S is a coalition and hence these are sometimes referred to as coalitional games v(s) is sometimes called the worth of coalition S Some examples of such games are: 1 Treasure Hunting The players are a group of treasure seekers The worth of each coalition is the amount of treasure that it can carry 2 Intra-Firm Bargaining The players are a firm and a group of workers The worth is either their outside option (for workers) or the amount that can be produced in the firm 3 Production The players are a group of people owning endowments of inputs and production technologies The worth is the amount of output that can be produced given these constraints LECTURE 8 COOPERATIVE GAMES 2

Superadditivity and Cohesiveness Throughout this lecture restrict to games which are cohesive: Cohesiveness A game with transferable utility G = N, v is cohesive if v(n) v(s) for every partition S of N S S The whole is greater than the sum of its parts More generally, each whole might be greater than the sum of its parts This is a condition called superadditivity Formally: Superadditivity A game with transferable utility G = N, v is superadditive if v(s S ) v(s) + v(s ) for all coalitions S and S where S S = Clearly, a superadditive game is cohesive Cooperative (or coalitional) games simply define what each group of individuals can jointly achieve How to predict what each player will get? Note Recall that a partition of a set is any exhaustive collection of its subsets that contain no elements in common LECTURE 8 COOPERATIVE GAMES 3

The Core A payoff profile is a vector of payoffs x = (x i ) i N It is said to be S-feasible if x i = v(s), i S and x is feasible if the same is true when setting S = N Two equivalent definitions: The Core The core of a TU game G = N, v is the set of feasible payoff profiles x such that there is no S N where y is S-feasible and y i > x i for all i S The core is robust to deviations by coalitions of players Indeed, it is robust to all such deviations Therefore the following provides an equivalent definition for the core The core of a TU game G = N, v is the set of feasible payoff profiles x where x i v(s) for every coalition S N i S LECTURE 8 COOPERATIVE GAMES 4

A Treasure Hunt An expedition of n people discover some treasure in the mountains Each pair can carry out a single piece of treasure Players These are N = {1, 2,, n}, the treasure seekers Payoffs The worth of a coalition S N is { S /2 if S is even, v(s) = ( S 1)/2 if S is odd Suppose that n = N is even, and n 4 If there are unequal payoffs, then the two players with the lowest payoffs may deviate and obtain more The core is payoffs of 1 2 for everyone Suppose that n = N 3 is odd If all players receive something, then n 1 could choose to abandon the nth and increase their payoffs Any zero-payoff player can form a coalition with the lowest positive payoff player, and obtain a better payoff for both The core is empty! LECTURE 8 COOPERATIVE GAMES 5

Intra-Firm Bargaining There is a firm and a pool of n workers Workers have a reservation wage of w Production with i workers yields revenue, net of non-labour costs, of F (i) The marginal product of the ith employee is F (i) = F (i) F (i 1) Assume that this is decreasing in i, so that this represents a concave production function Writing this as a cooperative game with transferable utility, G = N, v : Players These are N = Firm {n workers} Payoffs The worth of a coalition S N is v(s) = 0 S = {Firm}, i w S = {i workers}, F (i) S = {Firm} {i workers} LECTURE 8 COOPERATIVE GAMES 6

The Core in Intra-Firm Bargaining So, x i w Otherwise a single worker could deviate and receive their reservation wage x i F (n), otherwise the remaining n 1 workers (and the firm) could abandon i, form a coalition together, and thus receive F (n 1) > F (n) x i This is sufficient Suppose that k workers are removed from the coalition N, then it follows that k x i k F (n) F (n) F (n k) i=1 The core contains payoffs where firm receives F (n) n i=1 x i and worker i receives x i such that n x i F (n) and w x i F (n) i=1 Workers are paid above their reservation wage, w, but below their marginal productivity F (n) The core may not be a unique payoff profile, and may be empty (eg the treasure hunt) LECTURE 8 COOPERATIVE GAMES 7

Values in Cooperative Games The core has some problems in cooperative games with transferable utility: Sometimes the core is empty, and sometimes it is large It does not consider the credibility of deviating coalitions Look for a cooperative solution which exists, is unique, and is robust to credible deviations A value is function that assigns a unique feasible payoff profile to every game G = N, v Write ψ(n, v) for the value of game G, where ψ i (N, v) is the payoff assigned to player i Other (non-value based) possibilities for credible solutions are vnm stable sets, the bargaining set, the kernel, and the nucleolus Here, focus on the Shapley value, where: A player is paid their marginal contribution to a coalition, but this contribution depends on their position in the coalition, so pay them their expected marginal contribution The Shapley value incorporates the property that gains from participation are balanced LECTURE 8 COOPERATIVE GAMES 8

Motivating the Shapley Value Returning to the Intra-Firm Bargaining game, consider a firm and a single worker Denote by π(i) and w(i) the payoff the firm and worker respectively get from a coalition of i workers and the firm Alone the worker earns a payoff of w and the firm earns π(0) = 0 Together, the firm can produce F (1) = F (1) Thus, gains from trade are: Gain from Trade = F (1) w Splitting the gains from trade 50:50 (balanced gains) yields: π(1) = F (1) 2 w 2 and w(1) = F (1) 2 + w 2 Notice that π(1) π(0) = w(1) w = ( F (1) w)/2: Split the gains More generally, this is a balanced contributions requirement for coalition building LECTURE 8 COOPERATIVE GAMES 9

A Firm with Two Workers Suppose that a second worker becomes available, and, as a result, if both workers are hired they receive a wage w(2) The payoff to the firm of hiring i people is π(i) = F (i) iw(i) Now π(2) π(1) = [F (2) 2w(2)] [F (1) w(1)], = F (2) 2w(2) + w(1) For balanced gains to negotiating parties, this must equal w(2) w So, F (2) 2w(2) + w(1) = w(2) w, 3w(2) = F (2) + w(1) + w, [ ] F (1) + w = F (2) + + w, 2 [ ] [ ] 1 1 w(2) = F (2) + F (1) + w 3 3 2 2 LECTURE 8 COOPERATIVE GAMES 10

Three Workers and a Firm The gains for a firm retaining its ith employee, and to the i workers, are respectively π(i) π(i 1) = F (i) iw(i) + (i 1)w(i 1) and w(i) w Balanced contributions yields (i + 1)w(i) = F (i) + w + (i 1)w(i 1) Suppose i = 3: [ ] 1 w(3) = F (3) + w4 4 + 24 {[ ] [ ] 13 1 F (2) + F (1) + w }, 3 2 2 = 3 F (3) 4 3 + 2 F (2) 4 3 + 1 F (1) 4 3 + w 2 Iterating this argument, the general formula for a firm with n workers yields: w(n) = 1 n(n + 1) n j F (j) + w 2 j=1 LECTURE 8 COOPERATIVE GAMES 11

The Shapley Value Suppose i is the last member of a coalition S, what is their marginal contribution? m i (S) = v(s) }{{} value with i v(s\{i}) }{{} value without i where i S N Now arrange all of the agents at random Consider the following arrangement: Suppose that the group S occurs first, with player i at the end ( S 1)! arrangements of others in S before i, ( N S )! arrangements of remainder There are N! ways of arranging people in total, so probability that i is marginal to S is p i (S) = ( S 1)!( N S )!/ N! The Shapley Value The Shapley value of a game G = N, v is given by ψ(n, v) where ψ i (N, v) = S:i S p i (S)m i (S) = S:i S ( S 1)!( N S )! N! [v(s) v(s\{i})] LECTURE 8 COOPERATIVE GAMES 12

Balanced Contributions Marginal contribution story is one way to interpret the Shapley value There are (many) others Define a subgame G S = S, v S of G = N, v, to be the cooperative game with transferable utility where S N and v S (T ) = v(t ) for all T S Then: Balanced Contributions A value ψ has balanced-contributions if for all G = N, v, and i, j N ψ i (N, v) ψ i ( N\{j}, v N\{j}) = ψ j (N, v) ψ j (N\{i}, v N\{i}) The payoff I lose if you leave the game is equal to the payoff you lose if I leave the game The Shapley value is the unique value with balanced contributions Can also provide an axiomatic foundation for Shapley value and foundation based on objections and counter-objections Rather than examine these here, consider further applications of the Shapley value LECTURE 8 COOPERATIVE GAMES 13

The Shapley Value for a Worker Calculate Shapley value for players in intra-firm bargaining game Arrange players randomly Suppose the firm comes after the worker in the line up of participants This happens half of the time: the expected marginal contribution is w/2 There is a possibility that the worker is marginal to a coalition involving the firm The probability that the worker takes position j + 1 is 1/(n + 1) There are n remaining places, and j places before the worker The probability that the firm takes one of the places before the worker is j/n In this case, the worker adds to the working firm a contribution of F (j) This yields an expected contribution of 1/(n + 1) j/n F (j) Thus the Shapley value for a worker in the intra-firm bargaining game is ψ worker (N, v) = w 2 + 1 n(n + 1) n j F (j) j=1 LECTURE 8 COOPERATIVE GAMES 14

The Shapley Value for the Firm A firm takes one out of the n + 1 positions in the line up of players It takes any particular position j + 1 with probability 1/(n + 1) Suppose it takes position j + 1: There are j workers before it The workers are no longer earning their outside wage, a loss of j w Its membership of the coalition enables production to take place, yielding F (j) Hence the marginal contribution of the firm is F (j) j w The Shapley value for the firm in the intra-firm bargaining game is thus ψ firm (N, v) = 1 n + 1 n [F (j) j w] j=0 Note It is possible to apply the definition given earlier directly to find Shapley values In this case that would involve a good deal of algebra (there are a lot of coalitions S to consider) It is often easier to use shortcuts such as the above LECTURE 8 COOPERATIVE GAMES 15

Bargaining Firms versus Neoclassical Firms A neoclassical firm with j employees makes profits π neo (j) = F (j) j w Hence the bargaining firm enjoys the average neoclassical profits, or ψ firm = 1 n + 1 n π neo (j) 1 n j=0 n 0 π neo (j)dj Suppose the bargaining firm chose scale (n) optimally First-order conditions imply ψ firm (n) = 1 n π neo(n) 1 n π n 2 neo (j) dj = 0 ψ firm (n) = π neo (n) 0 But of course, the neoclassical firm would choose scale (n) to set π neo (n) = 0 marginal cuts the average at its maximum (standard economics intuition) so: The falling The bargaining firm over-hires labour (to bid down the bargained wage) LECTURE 8 COOPERATIVE GAMES 16

The Shapley Value and Labour Over-Hire Firm Size n Profitability π neo (n) ψ firm (n) LECTURE 8 COOPERATIVE GAMES 17

A Voting Game A corporation has four stockholders, holding respectively 10, 20, 30, and 40 shares of stock A decision is settled by any coalition of shareholders holding a simple majority of the shares Players The players are the stockholders: N = {1, 2, 3, 4} Payoffs The worth of each coalition S N is v(s) = 0 except for: v(2, 4) = v(3, 4) = v(1, 2, 3) = v(1, 2, 4) = v(1, 3, 4) = v(2, 3, 4) = v(1, 2, 3, 4) = 1 These coalitions might be described as winning coalitions Such games are called simple What is the core of this game? What is the Shapley value? The core is empty Consider any payoff profile where each player receives a positive amount A coalition S where S = 3 such that v(s) = 1 could do better for its members If only three members receive a positive amount, a coalition S where S = 2 such that v(s) = 1 could do better But now player 4 can do better by switching to the other two-member coalition such that v(s) = 1 Can player 4 receive 1? No 1,2, and 3 could group together to receive 1 LECTURE 8 COOPERATIVE GAMES 18

The Shapley Value of the Voting Game Start with ψ 1 Notice that player 1 is part of a winning coalition S such that S\{1} is losing only for S = {1, 2, 3} So v(s) v(s\{1}) 0 only for S = {1, 2, 3} Now S = 3 and N = 4, so the Shapley value (for player 1) is: ψ 1 (N, v) = S 2 N :1 S ( S 1)!( N S )! N! [v(s) v(s\{1})] = 2!1! 4! = 1 12 Winning coalitions that would lose if player 2 were removed are {2, 4}, {1, 2, 3}, {1, 2, 4} Thus: ψ 2 (N, v) = 1 12 + 1 12 + 1 12 = 1 4 Calculate ψ 3 and ψ 4 similarly As a result, the Shapley value is the payoff vector: ψ(n, v) = ( 1 12, 1 4, 1 4, 5 ) 12 LECTURE 8 COOPERATIVE GAMES 19

General Cooperative Games Notice that simply thinking about the shares of stock each of the players have gives a vector ( 1 10, 2 10, 3 10, 4 10 ) The Shapley value is a measure of the voting power the players actually have Finally, cooperative games can be generalised for the non-transferable utility case: NTU Cooperative Games A cooperative game G = N, X, V, {u i } i N consists of: 1 Players A set of players N with a typical player i 2 Consequences A set X of consequences (or outcomes) 3 Consequence Function V (S) maps each coalition S to a subset of consequences 4 Payoffs A payoff function u i for each player i, defined over the set of consequences TU cooperative games may be written as NTU cooperative games Exchange and production economies may be written in this form, as can bargaining games (eg Nash bargaining), and more NEXT WEEK: PÉTER ESŐ AND VINCE CRAWFORD ENJOY THE REST OF THE COURSE! LECTURE 8 COOPERATIVE GAMES 20