Section 6.2 Transforming and Combining Random Variables. Linear Transformations

Similar documents
6.2.1 Linear Transformations

EDCC charges $50 per credit. Let T = tuition charge for a randomly-selected fulltime student. T = 50X. Tuit. T $600 $650 $700 $750 $800 $850 $900

Chapter 6: Random Variables

Chapter 6: Random Variables

CHAPTER 6 Random Variables

Section 7.4 Transforming and Combining Random Variables (DAY 1)

Chapter 6: Random Variables

SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017

AP Stats ~ Lesson 6B: Transforming and Combining Random variables

CHAPTER 6 Random Variables

AP Statistics Chapter 6 - Random Variables

Honors Statistics. Daily Agenda

Honors Statistics. 3. Review OTL C6#3. 4. Normal Curve Quiz. Chapter 6 Section 2 Day s Notes.notebook. May 02, 2016.

Stats CH 6 Intro Activity 1

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Honors Statistics. Daily Agenda

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

Chapter 7 Study Guide: The Central Limit Theorem

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

I. Standard Error II. Standard Error III. Standard Error 2.54

+ Chapter 7. Random Variables. Chapter 7: Random Variables 2/26/2015. Transforming and Combining Random Variables

Normal Model (Part 1)

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

CHAPTER 6 Random Variables

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

7 THE CENTRAL LIMIT THEOREM

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted

Chapter 6: Random Variables

Math 140 Introductory Statistics. First midterm September

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations

BIOL The Normal Distribution and the Central Limit Theorem

(a) salary of a bank executive (measured in dollars) quantitative. (c) SAT scores of students at Millersville University quantitative

8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions 8-1

Making Sense of Cents

Problem Set 08 Sampling Distribution of Sample Mean

CH 5 Normal Probability Distributions Properties of the Normal Distribution

Statistics 511 Supplemental Materials

4.2 Probability Distributions

Chapter 7: Random Variables

Math 227 Elementary Statistics. Bluman 5 th edition

Honors Statistics. Daily Agenda

Variance, Standard Deviation Counting Techniques

Some estimates of the height of the podium

22.2 Shape, Center, and Spread

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

WebAssign Math 3680 Homework 5 Devore Fall 2013 (Homework)

Exercise Set 1 The normal distribution and sampling distributions

HHH HHT HTH THH HTT THT TTH TTT

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

c) Why do you think the two percentages don't agree? d) Create a histogram of these times. What do you see?

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Chapter 2. Section 2.1

AP * Statistics Review

The Two-Sample Independent Sample t Test

STATISTICS - CLUTCH CH.9: SAMPLING DISTRIBUTIONS: MEAN.

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras

Examples of continuous probability distributions: The normal and standard normal

Expected Value of a Random Variable

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr.

Lecture 9. Probability Distributions. Outline. Outline

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

(j) Find the first quartile for a standard normal distribution.

Statistics, Their Distributions, and the Central Limit Theorem

Sec$on 6.1: Discrete and Con.nuous Random Variables. Tuesday, November 14 th, 2017

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Lecture 9. Probability Distributions

5.1 Mean, Median, & Mode

Introduction to Business Statistics QM 120 Chapter 6

Exam 1 Review. 1) Identify the population being studied. The heights of 14 out of the 31 cucumber plants at Mr. Lonardo's greenhouse.

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

CHAPTER 2 Describing Data: Numerical

Chapter 7 Sampling Distributions and Point Estimation of Parameters

The Normal Probability Distribution

Exam II Math 1342 Capters 3-5 HCCS. Name

Invitational Mathematics Competition. Statistics Individual Test

LECTURE 6 DISTRIBUTIONS

STAT 201 Chapter 6. Distribution

Test 7A AP Statistics Name: Directions: Work on these sheets.

MATH 264 Problem Homework I

Math 243 Lecture Notes

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

Section3-2: Measures of Center

Honors Statistics. 3. Discuss homework C2# Discuss standard scores and percentiles. Chapter 2 Section Review day 2016s Notes.

Uniform Probability Distribution. Continuous Random Variables &

Review of commonly missed questions on the online quiz. Lecture 7: Random variables] Expected value and standard deviation. Let s bet...

CHAPTER 6 Random Variables

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

Chapter 3. Lecture 3 Sections

Describing Data: One Quantitative Variable

The Normal Distribution

The Standard Deviation as a Ruler and the Normal Model. Copyright 2009 Pearson Education, Inc.

Econ 300: Quantitative Methods in Economics. 11th Class 10/19/09

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION

Chapter 3 Descriptive Statistics: Numerical Measures Part A

Exercise Questions. Q7. The random variable X is known to be uniformly distributed between 10 and

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

Chapter 6: Random Variables

Transcription:

Section 6.2 Transforming and Combining Random Variables Linear Transformations In Section 6.1, we learned that the mean and standard deviation give us important information about a random variable. In this section, we ll learn how the mean and standard deviation are affected by transformations on random variables. In Chapter 2, we studied the effects of linear transformations on the shape, center, and spread of a distribution of data. Recall: 1. Adding (or subtracting) a constant, a, to each observation: Adds a to measures of center and location. Does not change the shape or measures of spread. 2. Multiplying (or dividing) each observation by a constant b: Multiplies (divides) measures of center and location by b. Multiplies (divides) measures of spread by lbl. Does not change the shape of the distribution. Pete s Jeep Tours offers a popular half-day trip in a tourist area. There must be at least 2 passengers for the trip to run, and the vehicle will hold up to 6 passengers. Define X as the number of passengers on a randomly selected day. Mean: Standard Deviation:

Pete s Jeep Tours (Multiplying a random variable by a constant Pete charges $150 per passenger. Let C = the total amount of money that Pete collects on a randomly selected trip. Because the amount of money Pete collects from the trip is just $150 times the number of passengers, we can write C = 150X. From the probability distribution of X, we can see that the chance of having two people (X = 2) on the trip is 0.15. In that case, C = (150)(2) = 300. So one possible value of C is $300, and its corresponding probability is 0.15. If X = 3, then C = (150)(3) = 450, and the corresponding probability is 0.25. Thus, the probability distribution of C is: Mean: Standard Deviation: Histogram: How does multiplying or dividing by a constant affect a random variable? Effect on a Random Variable of Multiplying (Dividing) by a Constant Multiplying (or dividing) each value of a random variable by a number b: Multiplies (divides) measures of center and location (mean, median, quartiles, percentiles) by b. Multiplies (divides) measures of spread (range, IQR, standard deviation) by b. Does not change the shape of the distribution. Note: Multiplying a random variable by a constant b multiplies the variance by b 2. Pete s Jeep Tours (Effect of adding or subtracting a constant) It costs Pete $100 to buy permits, gas, and a ferry pass for each half-day trip. The amount of profit V that Pete makes from the trip is the total amount of money C that he collects from passengers minus $100. That is, V = C 100. If Pete has only two passengers on the trip (X = 2), then C = 300 and V = 200. From the probability distribution of C, the chance that this happens is 0.15. So the smallest possible value of V is $200; its corresponding probability is 0.15. If X = 3, then C = 450 and V = 350, and the corresponding probability is 0.25. The probability distribution of V is:

Mean: Standard Deviation: Histogram: How does adding or subtracting a constant affect a random variable? Effect on a Random Variable of Adding (or Subtracting) a Constant Adding the same number a (which could be negative) to each value of a random variable: Adds a to measures of center and location (mean, median, quartiles, percentiles). Does not change measures of spread (range, IQR, standard deviation). Does not change the shape of the distribution. CHECK YOUR UNDERSTANDING A large auto dealership keeps track of sales made during each hour of the day. Let X = the number of cars sold during the first hour of business on a randomly selected Friday. Based on previous records, the probability distribution of X is as follows: Cars sold: 0 1 2 3 Probability: 0.3 0.4 0.2 0.1 The random variable X has mean µ X = 1.1 and standard deviation σ X = 0.943. 1. Suppose the dealership s manager receives a $500 bonus from the company for each car sold. Let Y = the bonus received from car sales during the first hour on a randomly selected Friday. Find the mean and standard deviation of Y. 2. To encourage customers to buy cars on Friday mornings, the manager spends $75 to provide coffee and doughnuts. The manager s net profit T on a randomly selected Friday is the bonus earned minus this $75. Find the mean and standard deviation of T. Whether we are dealing with data or random variables, the effects of a linear transformation are the same. Effect on a Linear Transformation on the Mean and Standard Deviation If Y = a + bx is a linear transformation of the random variable X, then The probability distribution of Y has the same shape as the probability distribution of X. µ Y = a + bµ X. σ Y = b σ X (since b could be a negative number).

The Baby and the Bathwater (Linear Transformations) PROBLEM: One brand of bathtub comes with a dial to set the water temperature. When the babysafe setting is selected and the tub is filled, the temperature X of the water follows a Normal distribution with a mean of 34 o C and a standard deviation of 2 o C. (a) Define the random variable Y to be the water temperature in degrees Fahrenheit (recall that F = (9/5)C + 32) when the dial is set on babysafe. Find the mean and standard deviation of Y. (b) According to Babies R Us, the temperature of a baby s bathwater should be between 90 o F and 100 o F. Find the probability that the water temperature on a randomly selected day when the babysafe setting is used meets the Babies R Us recommendation. Show your work. Combining Random Variables How many total passengers can Pete and Erin expect ton a randomly selected day? Since Pete expects µ X = 3.75 and Erin expects µ Y = 3.10, they will average a total of 3.75 + 3.10 = 6.85 passengers per trip. We can generalize this result as follows Mean of the Sum of Random Variables For any two random variables X and Y, if T = X + Y, then the expected value of T is E(T) = µ T = µ X + µ Y In general, the mean of the sum of several random variables is the sum of their means. How much variability is there in the total number of passengers who go on Pete s and Erin s tours on a randomly selected day? To determine this, we need to find the probability distribution of T. The only way to determine the probability for any value of T is if X and Y are. DEFINITION: Independent random variables If knowing whether any event involving X alone has occurred tells us nothing about the occurrence of any event involving Y alone, and vice versa, then X and Y are independent random variables.

Probability models often assume independence when the random variables describe outcomes that appear unrelated to each other. You should always ask whether the assumption of independence seems reasonable. In our investigation, it is reasonable to assume X and Y are independent since the siblings operate their tours in different parts of the country. Pete s Jep Tours and Erin s Adventures (Sum of two random variables) Let T = X + Y, as before. Assume that X and Y are independent random variables. We ll begin by considering all the possible combinations of values of X and Y. Now we can construct the probability distribution by adding the probabilities for each possible value of T. For instance, P(T = 6) =. Value t i : 4 5 6 7 8 9 10 11 Probability p i : You can check that the probabilities add to 1. A histogram of the probability distribution is shown in the figure below.

The mean of T is: The variance of T is: The standard deviation of T is: As the preceding example illustrates, when we add two independent random variables, their variances add. Standard deviations do not add. Variance of the Sum of Random Variables For any two independent random variables X and Y, if T = X + Y, then the variance of T is: σ 2 T = In general, the variance of the sum of several independent random variables is the sum of their variances. Remember that you can add variances only if the two random variables are independent, and that you can NEVER add standard deviations! SAT Scores (The role of independence) A college uses SAT scores as one criterion for admission. Experience has shown that the distribution of SAT scores among its entire population of applicants is such that SAT Math score X: µ X = 519 µ X = 115 SAT Critical Reading score Y: µ y = 507 µ Y = 111 PROBLEM: What are the mean and standard deviation of the total score X + Y among students applying to this college?

Pete s and Erin s Tours (Rules for adding random variables) Earlier, we defined X = the number of passengers on Pete s trip, Y = the number of passengers on Erin s trip, and C = the amount of money that Pete collects on a randomly selected day. We also found the means and standard deviations of these variables: µ X = 3.75 µ Y = 3.10 µ C = 562.50 σ X = 1.090 σ Y = 0.943 σ C = 163.50 PROBLEM: (a) Erin charges $175 per passenger for her trip. Let G = the amount of money that she collects on a randomly selected day. Find the mean and standard deviation of G. (b) Calculate the mean and the standard deviation of the total amount that Pete and Erin collect on a randomly chosen day. CHECK YOUR UNDERSTANDING A large auto dealership keeps track of sales and lease agreements made during each hour of the day. Let X = the number of cars sold and Y = the number of cars leased during the first hour of business on a randomly selected Friday. Based on previous records, the probability distributions of X and Y are as follows: Cars sold x i : 0 1 2 3 Probability p i : 0.3 0.4 0.2 0.1 Mean: µ X = 1.1 Standard deviation: σ X = 0.943 Cars leased y i : 0 1 2 Probability p i : 0.4 0.5 0.1 Mean: µ Y = 0.7 Standard deviation: σ Y = 0.64 Define T = X + Y. 1. Find and interpret µ T. 2. Compute σ T assuming that X and Y are independent. Show your work. 3. The dealership s manager receives a $500 bonus for each car sold and a $300 bonus for each car leased. Find the mean and standard deviation of the manager s total bonus B. Show your work. Combining Normal Random Variables So far, we have concentrated on finding rules for means and variances of random variables. If a random variable is Normally distributed, we can use its mean and standard deviation to compute probabilities. An important fact about Normal random variables is that any sum or difference of independent Normal random variables is also Normally distributed.

Give Me Some Sugar! (Sums of Normal random variables) Mr. Starnes likes sugar in his hot tea. From experience, he needs between 85 and 9 grams of sugar in a cup of tea for he drink to taste right. While making his tea one morning, Mr. Starnes adds four randomly selected packets of sugar. Suppose the amount of sugar in these packets follows a Normal distribution with mean 2.17 grams and standard deviation 0.08 grams. STATE: PLAN: DO: CONCLUDE: Put a Lid on It! (Differences of Normal random variables) The diameter C of a randomly selected large drink cup at a fast-food restaurant follows a Normal distribution with eman of 3.96 inches and a standard deviation of 0.01 inches. The diameter L of a randomly selected large lid at this restaurant follows a Normal distribution with mean 3.98 inches and standard deviation 0.02 inches. For a lid to fit on a cup, the value of L has to be bigger than the value of C, but not by more than 0.06 inches. STATE: PLAN: DO: CONCLUDE: Simulating with randnorm (Calculator)