NOTES ON CALCULUS AND UTILITY FUNCTIONS

Similar documents
BOSTON UNIVERSITY SCHOOL OF MANAGEMENT. Math Notes

QUADRATIC. Parent Graph: How to Tell it's a Quadratic: Helpful Hints for Calculator Usage: Domain of Parent Graph:, Range of Parent Graph: 0,

It is a measure to compare bonds (among other things).

Common Core Algebra L clone 4 review R Final Exam

Algebra with Calculus for Business: Review (Summer of 07)

Survey of Math Chapter 21: Savings Models Handout Page 1

Foundational Preliminaries: Answers to Within-Chapter-Exercises

EQ: What is Price Elasticity of Supply?

MLC at Boise State Logarithms Activity 6 Week #8

Chapter 1 Microeconomics of Consumer Theory

Name Date

BARUCH COLLEGE MATH 2003 SPRING 2006 MANUAL FOR THE UNIFORM FINAL EXAMINATION

Quadratic Modeling Elementary Education 10 Business 10 Profits

Chapter 2 Rocket Launch: AREA BETWEEN CURVES

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

In the short run, at least, the demand for gasoline is quite inelastic with respect to its own price.

x x x1

Eastern Mediterranean University Faculty of Business and Economics Department of Economics Fall Semester. ECON 101 Mid term Exam

Piecewise-Defined Functions

Worksheet A ALGEBRA PMT

Topic #1: Evaluating and Simplifying Algebraic Expressions

MATH20330: Optimization for Economics Homework 1: Solutions

Unit 8 Notes: Solving Quadratics by Factoring Alg 1

THEORETICAL TOOLS OF PUBLIC FINANCE

Go for the Curve! Comparing Linear and Exponential Functions. Lesson 5.1 Assignment

Name: Common Core Algebra L R Final Exam 2015 CLONE 3 Teacher:

Section 4: Rates in Real Life

Section 3.1 Relative extrema and intervals of increase and decrease.

LECTURE NOTES ON MICROECONOMICS

Modelling Economic Variables

Lecture 05 Production

Mathematics (Project Maths Phase 2)

TN 2 - Basic Calculus with Financial Applications

Chapter 7 1. Random Variables

Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 1

2.2 Contextualizing Linear Functions

Introduction to Functions Section 2.1

Income and Substitution Effects in Consumer Goods Markest

LINES AND SLOPES. Required concepts for the courses : Micro economic analysis, Managerial economy.

Economics 602 Macroeconomic Theory and Policy Problem Set 3 Suggested Solutions Professor Sanjay Chugh Spring 2012

Chapter 4. Determination of Income and Employment 4.1 AGGREGATE DEMAND AND ITS COMPONENTS

Chapter 11 Online Appendix:

Lesson Exponential Models & Logarithms

Lecture Notes #3 Page 1 of 15

MICROECONOMICS - CLUTCH CH. 4 - ELASTICITY.

Math of Finance Exponential & Power Functions

Practice Problems: First-Year M. Phil Microeconomics, Consumer and Producer Theory Vincent P. Crawford, University of Oxford Michaelmas Term 2010

(Note: Please label your diagram clearly.) Answer: Denote by Q p and Q m the quantity of pizzas and movies respectively.

<Table 1> Total Utility Marginal Utility Total Utility Marginal Utility

Page Points Score Total: 100

Lecture Notes 1 Part B: Functions and Graphs of Functions

Notes on a Basic Business Problem MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W

MATH 142 Business Mathematics II

Notation for the Derivative:

PRELIMINARY EXAMINATION 2018 MATHEMATICS GRADE 12 PAPER 1. Time: 3 hours Total: 150 PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

2-4 Completing the Square

Demand and income. Income and Substitution Effects. How demand rises with income. How demand rises with income. The Shape of the Engel Curve

Chapter Four. Utility Functions. Utility Functions. Utility Functions. Utility

Math 103 Sample Final

2 Maximizing pro ts when marginal costs are increasing

Economics 101 Section 5

What is the marginal utility of the third chocolate bar to this consumer? a) 10 b) 9 c) 8 d) 7

Price. Quantity. Economics 101 Fall 2013 Homework 4 Due Tuesday, November 5, 2013

SA2 Unit 4 Investigating Exponentials in Context Classwork A. Double Your Money. 2. Let x be the number of assignments completed. Complete the table.

CCAC ELEMENTARY ALGEBRA

Game Theory and Economics Prof. Dr. Debarshi Das Department of Humanities and Social Sciences Indian Institute of Technology, Guwahati

Answer Key. EC 2273 Problem Set 1. Professor Nyshadham. Spring 2017

Chapter 3.4 Notes-Marginal Analysis and Economics. (1) Cost Functions

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6)

2c Tax Incidence : General Equilibrium

Economics 101 Fall 2016 Answers to Homework #1 Due Thursday, September 29, 2016

Solutions to Extra Business Problems

Chapter 6 Analyzing Accumulated Change: Integrals in Action

File: ch03, Chapter 3: Consumer Preferences and The Concept of Utility

x f(x) D.N.E

1 Maximizing profits when marginal costs are increasing

TCM Final Review Packet Name Per.

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 5

Practice Problem Solutions for Exam 1

$0.00 $0.50 $1.00 $1.50 $2.00 $2.50 $3.00 $3.50 $4.00 Price

b) According to the statistics above the graph, the slope is What are the units and meaning of this value?

x 1 = m 2p p 2 2p 1 x 2 = m + 2p 1 10p 2 2p 2

Probability. An intro for calculus students P= Figure 1: A normal integral

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) =

We will make several assumptions about these preferences:

Sample Exam Questions/Chapter 7

EconS Supply and Demand

COMM 220 Practice Problems 1

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:

Microeconomic Analysis PROBLEM SET 6

3: Balance Equations

If Tom's utility function is given by U(F, S) = FS, graph the indifference curves that correspond to 1, 2, 3, and 4 utils, respectively.

Welcome to Day 8. Principles of Microeconomics

Symmetric Game. In animal behaviour a typical realization involves two parents balancing their individual investment in the common

Introduction to Microeconomics AP/ECON C Test #2 (c)

Chapter 6: Quadratic Functions & Their Algebra

ECON 102 Tutorial 3. TA: Iain Snoddy 18 May Vancouver School of Economics

Computing compound interest and composition of functions

Section 7C Finding the Equation of a Line

When Is Factoring Used?

Transcription:

DUSP 11.203 Frank Levy Microeconomics Tutorial 1 NOTES ON CALCULUS AND UTILITY FUNCTIONS These notes have three purposes: 1) To explain why some simple calculus formulae are useful in understanding utility maximization, profit maximization and other problems involving marginal analysis. 2) To give you the three or four calculus formulae you will need for 11.203 so that you can have them handy and use them when needed. 3) To give you a few practice problems so you can determine whether you understand the material. In terms of notation, we will use letters like x, y and z to denote variables in an equation and a, b, and c to denote constants. I. Why do we need calculus at all? The part of calculus we need is first derivatives. Begin with some functional relationship in which a variable, y, depends on a second variable, x: y = f(x) Then the symbol for the first derivative is: dy/dx The derivative describes the number of units of change in y caused by a one-unit change in x. For example, suppose that: y was the number of gallons of gasoline demanded per day in Cambridge gas stations. x was the average price per gallon of gasoline expressed in cents. and f( ) was the demand function which expressed gasoline sales as a function of the price per gallon. If dy/dx equaled -500, it would mean that each penny increase in the average price of gasoline would lower the quantity demanded by 500 gallons per day. (Note that this is related to elasticity but it is not identical since this derivative is a rate expressed in raw numbers while elasticity is a rate expressed in percentage changes.) A derivative, then, is a rate of change of one variable with respect to another. In geometric

2 terms, it is the slope of the curve. s long as we talk about straight lines, this is old news. What will be new here is when we deal with curves. Along a straight line, the slope is always the same. Along a curve, a slope is constantly changing and so rather than write down the slope as a single number, we have to write down the slope as a function of where we are on the curve. This function is the derivative. In other words, the derivative the function f(x) is some new function call it g(x) - such that if are on f(x) at the point x = 17, the function g(17) will tell you the slope of f(x) at that point. Even if you have not seen this concept before, it is not as foreign as it seems. To see this, consider the first formula we will use, the equation for a straight line that runs through the origin: 1) If y = bx, dy/dx = b (where b is a constant) so that if y = 17x, dy/dx = 17 i.e. the slope of this particular straight line is a constant 17. We can verify this by first looking at the equation itself: if x = 1, then y = 17; if x = 2, then y = 34; if x = 3, then y = 51; and so on. This means that when we increase x by 1, we increase y by 17 or, put differently, the change in y brought about per one unit change in x (or dy/dx) is 17. Further, if you graph the equation y = 17x, it will be a straight line with a slope of 17. These are different ways of saying the same thing. A second formula: 2) If y = a (where a is a constant), dy/dx = 0. This derivative of a constant (no x involved) is a special case of (1). Here is the logic. The line y = 35 is a flat line, parallel to the x axis at height 35. Geometrically, we know that if the line is parallel to the x axis it has a slope of zero. Logically, we know that whether we change x (i.e. move out the x axis) by one unit, two units or a million units, y will still be 35 - again, a zero slope. A third formula this time in words: 3) If y is equal to the sum of two terms, then dy/dx is the sum of: (the derivative of the first term) plus (the derivative of the second term). This means that if y = a + bx, dy/dx = 0 + b = b. So the derivative of y = 35 + 17x is just 17 - i.e. your old friend, the slope of a straight line.

As we said, once we move from straight lines (i.e. linear functions) to curves (nonlinear functions) like: y = 35 + 17x 2 3 we have a different problem. At any particular point on the curve (or, said differently, for any particular value of x), this curve still has a slope. But unlike a straight line, the slope of this curve changes from one value of x to another. Prove this to yourself by calculating the change in y when x goes from 1 to 2 and again when x goes from 50 to 51. In each case, x will have increased by 1 but the change in y will be much different in the two cases. It is for these situations that we need to deal with slope (the rate of change of y for each value of x) using calculus. II. Where is the derivative useful in economics? One example of its usefulness is the case of the consumer maximizing her or his utility. Begin with a consumer who has a utility function of the form: U = U(Pizza, Beer) - i.e. their level of utility or satisfaction depends upon the amount of pizza and of beer they consume. The need for derivatives in this situation comes from the following reasoning. Suppose you have allocated some, but not all, of your income and you are now considering how to allocate your next dollar. You can analyze the situation in the following way. Should I spend this next dollar on pizza or beer? If I spend the dollar on pizza, how much extra pizza can I get? (Let's say l/8 extra pizza.) And if I consume the extra 1/8 of pizza how much extra utility will I get? (i.e. the change in utility per 1/8 of pizza or, said differently, the marginal utility of an extra 1/8 of pizza) If I spend the dollar on beer, how much extra beer can I get? (Let's say 1 glass.) And if I consume the extra glass, how much extra utility will I get from that? (i.e. the marginal utility from an extra glass of beer) Having made these calculations, I will invest my dollar in the commodity - pizza or beer - that increases my utility the most. One way of thinking of the consumer's choice problem is to allocate the budget, dollar by dollar, in just this fashion.

4 Because of this logic, it is important to be able to know the amount of extra utility that comes from a small additional amount of a commodity. That amount is known as the marginal utility of the commodity and is identical to the first derivative of the utility function with respect to that commodity. 1 We need calculus for this problem because, as you might suspect, the marginal utility of either commodity is not constant: the marginal utility (i.e. the increase in utility) you get from the first 1/8 of pizza is probably a lot higher than the marginal utility you get from the 97'th 1/8 of pizza (when you are in an ambulance on the way to the hospital to get your stomach pumped). III. The specific examples of derivatives we will need. 1. A constant term: If y = a, then dy/dx = 0 where a is a constant. 2. The Linear Function (straight line): 1 More precisely, this is called a first partial derivative because the derivative is taken with respect to one variable - either pizza or beer - while the other variable as a constant. Thus the marginal utility of beer is the first derivative of the utility function with respect to the quantity of beer, treating the quantity of pizza as a constant.

If y = a + bx, then dy/dx = b where a, b are constants. 2 5 3. The Quadratic and Cubic functions: If y = bx 2, then dy/dx = 2bx If y = bx 3, then dy/dx = 3bx 2 2 As noted before, this derivative is the sum of two terms, a zero for the derivative of "a" and a "b" for the derivative of "bx".

6 If y = a + bx, then dy/dx = b where a, b are constants. 3 3. The Quadratic and Cubic functions: If y = bx 2, then dy/dx = 2bx If y = bx 3, then dy/dx = 3bx 2 In fact, these are part of a more general formula: 3 As noted before, this derivative is the sum of two terms, a zero for the derivative of "a" and a "b" for the derivative of "bx".

7 If y = bx a, then dy/dx = abx (a 1) where the exponent a can be positive or negative and an integer or a fraction. 4. The natural log function or LN( ): If y = bln(x), dy/dx = b/x IV. Some Practice Problems 1) In most cases, we represent a utility function as having positive, but diminishing, marginal utility. That is, one more unit of a good increases your total utility but this increase is smaller than the increase in utility of the previous unit. Below are four functions. Explain meets or fails to meet the two conditions. 1) Y = 17X 2) Y = 17X 2 3) Y = 17X 5X 2 4) Y = 17X (1/2) (i.e. 17 x the square root of X) In each case, it is useful to do the problem in two ways. The first is to actually take the derivative and evaluate its properties is the derivative always positive for any value of X? Does the derivative get smaller as X gets larger? Then, using Excell, graph the function and visually inspect it to see if it satisfies the two properties. 2) Suppose your utility function for hamburgers and apples can be written: U(H, A) = 17H.35 A.88 and suppose you have 10 hamburgers 6 apples. a) Set up an Excel formula using exponents to calculate your utility at U(10,6). b) Copy the formula to an adjacent cell. In that cell, keep hamburgers fixed at ten and increase apples to 7. By how much does your utility increase over your answer in (a)?

c) Then, on a piece of paper, take the partial derivative of the utility function with respect to apples - (du/da) - and evaluate the partial derivative at (H = 10 and A = 6). That is, plug the values of 10 for H and 6 for A into the formula you get when you take the partial derivative. Is your answer from the derivative reasonably close to the change between the two cells in the spreadsheet? We certainly hope so. 8 d) Back to the spread sheet, recopy the formula to a third cell, this time holding hamburgers at 10 and increasing apples from 7 to 8. How does the increase in utility compare to the increase you obtained in the move from 6 apples to 7 apples? Reevaluate your partial derivative at (H = 10 and A = 7) to check the fit. ****************************