The Black-Scholes Model

Similar documents
The Black-Scholes Model

Implied Volatility Surface

Implied Volatility Surface

The Black-Scholes Model

The Black-Scholes Model

The Black-Scholes PDE from Scratch

The Black-Scholes Model

Option Markets Overview

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

1.1 Basic Financial Derivatives: Forward Contracts and Options

Financial Derivatives Section 5

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

7.1 Volatility Simile and Defects in the Black-Scholes Model

Black-Scholes-Merton Model

A Classical Approach to the Black-and-Scholes Formula and its Critiques, Discretization of the model - Ingmar Glauche

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Hedging Credit Derivatives in Intensity Based Models

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

Lecture 8: The Black-Scholes theory

P&L Attribution and Risk Management

Option Pricing Models for European Options

Basic Concepts in Mathematical Finance

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

FIN FINANCIAL INSTRUMENTS SPRING 2008

Dynamic Relative Valuation

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Continuous Time Finance. Tomas Björk

1. What is Implied Volatility?

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

Probability in Options Pricing

Finance: A Quantitative Introduction Chapter 8 Option Pricing in Continuous Time

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Bluff Your Way Through Black-Scholes

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

The Black-Scholes Equation

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Introduction to Financial Derivatives

University of Colorado at Boulder Leeds School of Business MBAX-6270 MBAX Introduction to Derivatives Part II Options Valuation

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems

Using Lévy Processes to Model Return Innovations

Option Properties Liuren Wu

Continuous Processes. Brownian motion Stochastic calculus Ito calculus

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

3.1 Itô s Lemma for Continuous Stochastic Variables

Aspects of Financial Mathematics:

INVESTMENTS Class 2: Securities, Random Walk on Wall Street

Advanced Corporate Finance. 5. Options (a refresher)

M5MF6. Advanced Methods in Derivatives Pricing

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Department of Mathematics. Mathematics of Financial Derivatives

Valuation of Equity Derivatives

The Volatility Smile Dynamics Implied by Smile-Consistent Option Pricing Models and Empirical Data

Replication and Absence of Arbitrage in Non-Semimartingale Models

1 Interest Based Instruments

Monte Carlo Simulations

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Chapter 18 Volatility Smiles

( ) since this is the benefit of buying the asset at the strike price rather

Introduction to Financial Derivatives

A Lower Bound for Calls on Quadratic Variation

Managing the Risk of Options Positions

Risk Neutral Valuation

FINANCIAL OPTION ANALYSIS HANDOUTS

Volatility Trading Strategies: Dynamic Hedging via A Simulation

Counterparty Credit Risk Simulation

King s College London

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options

King s College London

MÄLARDALENS HÖGSKOLA

European call option with inflation-linked strike

Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model.

From Discrete Time to Continuous Time Modeling

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

A New Framework for Analyzing Volatility Risk and Premium Across Option Strikes and Expiries

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

2.3 Mathematical Finance: Option pricing

Risk Neutral Pricing Black-Scholes Formula Lecture 19. Dr. Vasily Strela (Morgan Stanley and MIT)

The Black-Scholes Equation using Heat Equation

Lecture 11: Stochastic Volatility Models Cont.

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

Merton s Jump Diffusion Model. David Bonnemort, Yunhye Chu, Cory Steffen, Carl Tams

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

1 The continuous time limit

Simple Robust Hedging with Nearby Contracts

MFE/3F Questions Answer Key

Chapter 9 - Mechanics of Options Markets

How Much Should You Pay For a Financial Derivative?

Financial Engineering. Craig Pirrong Spring, 2006

Evaluating the Black-Scholes option pricing model using hedging simulations

Transcription:

The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17

The Black-Scholes-Merton (BSM) model Black and Scholes (1973) and Merton (1973) derive option prices under the following assumption on the stock price dynamics, ds t = µs t dt + σs t dw t (explained later) The binomial model: Discrete states and discrete time (The number of possible stock prices and time steps are both finite). The BSM model: Continuous states (stock price can be anything between 0 and ) and continuous time (time goes continuously). Scholes and Merton won Nobel price. Black passed away. BSM proposed the model for stock option pricing. Later, the model has been extended/twisted to price currency options (Garman&Kohlhagen) and options on futures (Black). I treat all these variations as the same concept and call them indiscriminately the BSM model (combine chapters 13&14). Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 2 / 17

Primer on continuous time process ds t = µs t dt + σs t dw t The driver of the process is W t, a Brownian motion, or a Wiener process. The process W t generates a random variable that is normally distributed with mean 0 and variance t, ϕ(0, t). (Also referred to as Gaussian.) The process is made of independent normal increments dw t ϕ(0, dt). d is the continuous time limit of the discrete time difference ( ). t denotes a finite time step (say, 3 months), dt denotes an extremely thin slice of time (smaller than 1 milisecond). It is so thin that it is often referred to as instantaneous. Similarly, dw t = W t+dt W t denotes the instantaneous increment (change) of a Brownian motion. By extension, increments over non-overlapping time periods are independent: For (t 1 > t 2 > t 3 ), (W t3 W t2 ) ϕ(0, t 3 t 2 ) is independent of (W t2 W t1 ) ϕ(0, t 2 t 1 ). Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 3 / 17

Properties of a normally distributed random variable ds t = µs t dt + σs t dw t If X ϕ(0, 1), then a + bx ϕ(a, b 2 ). If y ϕ(m, V ), then a + by ϕ(a + bm, b 2 V ). Since dw t ϕ(0, dt), the instantaneous price change ds t = µs t dt + σs t dw t ϕ(µs t dt, σ 2 S 2 t dt). The instantaneous return ds S = µdt + σdw t ϕ(µdt, σ 2 dt). Under the BSM model, µ is the annualized mean of the instantaneous return instantaneous mean return. σ 2 is the annualized variance of the instantaneous return instantaneous return variance. σ is the annualized standard deviation of the instantaneous return instantaneous return volatility. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 4 / 17

Geometric Brownian motion ds t /S t = µdt + σdw t The stock price is said to follow a geometric Brownian motion. µ is often referred to as the drift, and σ the diffusion of the process. Instantaneously, the stock price change is normally distributed, ϕ(µs t dt, σ 2 S 2 t dt). Over longer horizons, the price change is lognormally distributed. The log return (continuous compounded return) is normally distributed over all horizons: d ln S t = ( µ 1 2 σ2) dt + σdw t. (By Ito s lemma) d ln S t ϕ(µdt 1 2 σ2 dt, σ 2 dt). ln S t ϕ(ln S 0 + µt 1 2 σ2 t, σ 2 t). ln S T /S t ϕ (( µ 1 2 σ2) (T t), σ 2 (T t) ). Integral form: S t = S 0 e µt 1 2 σ2 t+σw t, ln S t = ln S 0 + µt 1 2 σ2 t + σw t Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 5 / 17

Simulate 100 stock price sample paths ds t = µs t dt + σs t dw t, µ = 10%, σ = 20%, S 0 = 100, t = 1. 0.05 200 0.04 180 0.03 0.02 160 Daily returns 0.01 0 Stock price 140 120 0.01 0.02 100 0.03 80 0.04 0 50 100 150 200 250 300 Days 60 0 50 100 150 200 250 300 days Stock with the return process: d ln S t = (µ 1 2 σ2 )dt + σdw t. Discretize to daily intervals dt t = 1/252. Draw standard normal random variables ε(100 252) ϕ(0, 1). Convert them into daily log returns: R d = (µ 1 2 σ2 ) t + σ tε. Convert returns into stock price sample paths: S t = S 0 e 252 d=1 R d. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 6 / 17

The key idea behind BSM The option price and the stock price depend on the same underlying source of uncertainty. The Brownian motion dynamics imply that if we slice the time thin enough (dt), it behaves like a binominal tree. Reversely, if we cut t small enough and add enough time steps, the binomial tree converges to the distribution behavior of the geometric Brownian motion. Under this thin slice of time interval, we can combine the option with the stock to form a riskfree portfolio. Recall our hedging argument: Choose such that f S is riskfree. The portfolio is riskless (under this thin slice of time interval) and must earn the riskfree rate. Magic: µ does not matter for this portfolio and hence does not matter for the option valuation. Only σ matters. We do not need to worry about risk and risk premium if we can hedge away the risk completely. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 7 / 17

Partial differential equation The hedging argument mathematically leads to the following partial differential equation: f t + (r q)s f S + 1 2 σ2 S 2 2 f S 2 = rf At nowhere do we see µ. The only free parameter is σ (as in the binominal model). Solving this PDE, subject to the terminal payoff condition of the derivative (e.g., f T = (S T K) + for a European call option), BSM can derive analytical formulas for call and put option value. Similar formula had been derived before based on distributional (normal return) argument, but µ (risk premium) was still in. The realization that option valuation does not depend on µ is big. Plus, it provides a way to hedge the option position. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 8 / 17

The BSM formulae where c t = S t e q(t t) N(d 1 ) Ke r(t t) N(d 2 ), p t = S t e q(t t) N( d 1 ) + Ke r(t t) N( d 2 ), d 1 = ln(st/k)+(r q)(t t)+ 1 2 σ2 (T t) σ, T t d 2 = ln(s t/k)+(r q)(t t) 1 2 σ2 (T t) σ = d T t 1 σ T t. Black derived a variant of the formula for futures (which I like better): with d 1,2 = ln(f t/k)± 1 2 σ2 (T t) σ. T t c t = e r(t t) [F t N(d 1 ) KN(d 2 )], Recall: F t = S t e (r q)(t t). Use forward price F t to accommodate various carrying costs/benefits. Once I know call value, I can obtain put value via put-call parity: c t p t = e r(t t) [F t K t ]. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 9 / 17

Cumulative normal distribution c t = e r(t t) [F t N(d 1 ) KN(d 2 )], d 1,2 = ln(f t/k) ± 1 2 σ2 (T t) σ T t N(x) denotes the cumulative normal distribution, which measures the probability that a normally distributed variable with a mean of zero and a standard deviation of 1 (ϕ(0, 1)) is less than x. See tables at the end of the book for its values. Most software packages (including excel) has efficient ways to computing this function. Properties of the BSM formula: As S t becomes very large or K becomes very small, ln(f t /K), N(d 1 ) = N(d 2 ) = 1. c t = e r(t t) [F t K]. Similarly, as S t becomes very small or K becomes very large, ln(f t /K), N( d 1 ) = N( d 2 ) = 1. p t = e r(t t) [ F t + K]. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 10 / 17

Options on what? Why does it matter? As long as we assume that the underlying security price follows a geometric Brownian motion, we can use (some versions) of the BSM formula to price European options. Dividends, foreign interest rates, and other types of carrying costs may complicate the pricing formula a little bit. A simpler approach: Assume that the underlying futures/forwards price (of the same maturity of course) process follows a geometric Brownian motion. Then, as long as we observe the forward price (or we can derive the forward price), we do not need to worry about dividends or foreign interest rates They are all accounted for in the forward pricing. Know how to price a forward, and use the Black formula. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 11 / 17

Implied volatility c t = e r(t t) [F t N(d 1 ) KN(d 2 )], d 1,2 = ln(f t/k) ± 1 2 σ2 (T t) σ T t Since F t (or S t ) is observable from the underlying stock or futures market, (K, t, T ) are specified in the contract. The only unknown (and hence free) parameter is σ. We can estimate σ from time series return. (standard deviation calculation). Alternatively, we can choose σ to match the observed option price implied volatility (IV). There is a one-to-one, monotonic correspondence between prices and implied volatilities. As long as the option price does not allow arbitrage against cash, there exists a solution for a positive implied volatility that can match the price. Traders and brokers often quote implied volatilities rather than dollar prices. More stable; more informative; excludes arbitrage The BSM model says that IV = σ. In reality, the implied volatility calculated from different options (across strikes, maturities, dates) are usually different. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 12 / 17

Violations of BSM assumptions The BSM model says that IV = σ. In reality, the implied volatility calculated from different options (across strikes, maturities, dates) are usually different. These difference indicates that in reality the security price dynamics differ from the BSM assumptions: Jumps: BSM assume that the security price moves by a small amount (diffusion) over a short time interval. In reality, sometimes the market can jump by a large amount in an instant. With jumps, returns are no longer normally distributed, but tend to have fatter tails, and sometimes can be asymmetric (skewed). Implied volatility at different strikes will be different. Stochastic volatility: The volatility σ of a security is not constant, but varies randomly over time, and can be correlated with the return move. Implied volatilities will change over time. Stochastic volatility also induces return non-normality. Correlation between return and volatility induces return distribution asymmetry. Second-generation models can accommodate all these features. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 13 / 17

Implied volatility smiles and skews 0.75 AMD: 17 Jan 2006 0.22 SPX: 17 Jan 2006 9.8 GBPUSD 0.7 0.2 9.6 Implied Volatility 0.65 0.6 0.55 0.5 Long term skew Short term smile Implied Volatility 0.18 0.16 0.14 0.12 More skews than smiles Average implied volatility 9.4 9.2 9 8.8 8.6 0.45 Maturities: 32 95 186 368 732 0.1 Maturities: 32 60 151 242 333 704 8.4 0.4 3 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 Moneyness= ln(k/f) σ τ 0.08 3 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 Moneyness= ln(k/f) σ τ 8.2 10 20 30 40 50 60 70 80 90 Put delta Plots of option implied volatilities across different strikes at the same maturity often show a smile or skew pattern, reflecting deviations from the return normality assumption. A smile implies that the probability of reaching the tails of the distribution is higher than that from a normal distribution. Fat tails, or (formally) leptokurtosis. A negative skew implies that the probability of downward movements is higher than that from a normal distribution. Negative skewness in the distribution. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 14 / 17

Stochastic volatility on stock indexes and currencies 0.5 SPX: Implied Volatility Level 0.55 FTS: Implied Volatility Level 0.45 0.5 0.4 0.45 0.4 Implied Volatility 0.35 0.3 0.25 Implied Volatility 0.35 0.3 0.25 0.2 0.2 0.15 0.15 0.1 0.1 96 97 98 99 00 01 02 03 0.05 96 97 98 99 00 01 02 03 28 26 JPYUSD 12 GBPUSD 24 11 22 10 Implied volatility 20 18 16 14 Implied volatility 9 8 7 12 10 6 8 5 1997 1998 1999 2000 2001 2002 2003 2004 1997 1998 1999 2000 2001 2002 2003 2004 At the-money option implied volatilities vary strongly over time, higher during crises and recessions. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 15 / 17

Stochastic skewness on stock indexes and currencies Implied volatility spread between 80% and 120% strikes SPX: Implied Volatility Skew FTS: Implied Volatility Skew 0.4 0.4 Implied Volatility Difference, 80% 120% 0.35 0.3 0.25 0.2 0.15 0.1 Implied Volatility Difference, 80% 120% 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.05 96 97 98 99 00 01 02 03 0 96 97 98 99 00 01 02 03 10-delta call minis 10-delta put implied volatility JPYUSD GBPUSD 50 40 10 30 5 RR10 and BF10 20 10 RR10 and BF10 0 5 0 10 10 20 15 1997 1998 1999 2000 2001 2002 2003 2004 1997 1998 1999 2000 2001 2002 2003 2004 Return skewness also varies over time. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 16 / 17

Summary Understand the basic properties of normally distributed random variables. Map a stochastic process to a random variable. Understand the link between BSM and the binomial model. Memorize the BSM formula (any version). Understand forward pricing and link option pricing to forward pricing. Can go back and forth with the put-call parity conditions, lower and upper bounds, either in forward or in spot notation. Understand the general implications of the implied volatility plots. Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 17 / 17