Speculative Betas. Harrison Hong and David Sraer Princeton University. September 30, 2012

Similar documents
Speculative Betas. Harrison Hong and David Sraer Princeton University. November 16, 2012

Speculative Betas. First Draft: September 29, This Draft: December 7, Abstract

Appendix to: AMoreElaborateModel

Inflation Bets on the Long Bond

Quiet Bubbles. H. Hong D. Sraer. July 30, 2011

Inflation Bets on the Long Bond

Ambiguous Information and Trading Volume in stock market

Signal or noise? Uncertainty and learning whether other traders are informed

Applied Macro Finance

FIN 6160 Investment Theory. Lecture 7-10

Beauty Contests, Risk Shifting, and Bubbles

Growth Opportunities, Investment-Specific Technology Shocks and the Cross-Section of Stock Returns

LECTURE NOTES 10 ARIEL M. VIALE

Macroeconomics. Lecture 5: Consumption. Hernán D. Seoane. Spring, 2016 MEDEG, UC3M UC3M

trading ambiguity: a tale of two heterogeneities

Techniques for Calculating the Efficient Frontier

Agent Based Trading Model of Heterogeneous and Changing Beliefs

Macroeconomics Sequence, Block I. Introduction to Consumption Asset Pricing

Lecture 2: Stochastic Discount Factor

Heterogeneous Firm, Financial Market Integration and International Risk Sharing

Financial Decisions and Markets: A Course in Asset Pricing. John Y. Campbell. Princeton University Press Princeton and Oxford

LECTURE NOTES 3 ARIEL M. VIALE

Speculative Bubble Burst

BOUNDEDLY RATIONAL EQUILIBRIUM AND RISK PREMIUM

An Online Appendix of Technical Trading: A Trend Factor

Market Liquidity and Performance Monitoring The main idea The sequence of events: Technology and information

Online Appendix for Overpriced Winners

Consumption and Portfolio Decisions When Expected Returns A

Does the uptick rule stabilize the stock market? Insights from adaptive rational equilibrium dynamics

Labor Economics Field Exam Spring 2011

Monetary Economics Final Exam

What Can Rational Investors Do About Excessive Volatility and Sentiment Fluctuations?

General Examination in Macroeconomic Theory SPRING 2016

Feedback Effect and Capital Structure

Credit and hiring. Vincenzo Quadrini University of Southern California, visiting EIEF Qi Sun University of Southern California.

Chapter One NOISY RATIONAL EXPECTATIONS WITH STOCHASTIC FUNDAMENTALS

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010

NBER WORKING PAPER SERIES ASSET FLOAT AND SPECULATIVE BUBBLES. Harrison Hong Jose Scheinkman Wei Xiong

Basics of Asset Pricing. Ali Nejadmalayeri

Why Do Agency Theorists Misinterpret Market Monitoring?

What is Cyclical in Credit Cycles?

One-Period Valuation Theory

Birkbeck MSc/Phd Economics. Advanced Macroeconomics, Spring Lecture 2: The Consumption CAPM and the Equity Premium Puzzle

Liquidity Creation as Volatility Risk

Advanced Macroeconomics I ECON 525a - Fall 2009 Yale University

Introduction Model Results Conclusion Discussion. The Value Premium. Zhang, JF 2005 Presented by: Rustom Irani, NYU Stern.

Taxing Firms Facing Financial Frictions

OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS. BKM Ch 7

INTERTEMPORAL ASSET ALLOCATION: THEORY

Lecture 2. (1) Permanent Income Hypothesis. (2) Precautionary Savings. Erick Sager. September 21, 2015

Household Heterogeneity in Macroeconomics

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Asset Float and Speculative Bubbles

Asset Prices Under Short-Sale Constraints

Variation in Liquidity, Costly Arbitrage, and the Cross-Section of Stock Returns

Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS. Jan Werner. University of Minnesota

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach

The High Idiosyncratic Volatility Low Return Puzzle

A Macroeconomic Framework for Quantifying Systemic Risk. June 2012

Consumption and Asset Pricing

M. R. Grasselli. ORFE - Princeton University, April 4, 2011

Variation in Liquidity and Costly Arbitrage

Comparing Different Regulatory Measures to Control Stock Market Volatility: A General Equilibrium Analysis

Consumption- Savings, Portfolio Choice, and Asset Pricing

1 Asset Pricing: Replicating portfolios

Two Essays on Short Selling and Uptick Rules

Applied Macro Finance

Short Interest and Aggregate Volatility Risk

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

A Macroeconomic Model with Financial Panics

Practice Problems 1: Moral Hazard

Inflation, Demand for Liquidity, and Welfare

Homework # 8 - [Due on Wednesday November 1st, 2017]

Reverse return-volatility asymmetry, and short sale constraints: Evidence from the Chinese markets

Information Acquisition and Portfolio Under-Diversification

Bank Capital Requirements: A Quantitative Analysis

Characterization of the Optimum

Mean Variance Analysis and CAPM

Applied Macro Finance

Differential Interpretation of Public Signals and Trade in Speculative Markets. Kandel & Pearson, JPE, 1995

Overpriced Winners. Kent Daniel, Alexander Klos and Simon Rottke * First Version: February 2016 This Version: December 2016

Macro Disagreement and the Cross-Section of Stock Returns

Scheinkman, J. A. and Xiong, W. (2003): Overcon dence and Speculative Bubbles, JPE, vol. 111, no.6

The CAPM Strikes Back? An Investment Model with Disasters

MPhil F510 Topics in International Finance Petra M. Geraats Lent Course Overview

1 Explaining Labor Market Volatility

Liquidity Creation as Volatility Risk

FIN FINANCIAL INSTRUMENTS SPRING 2008

Archana Khetan 05/09/ MAFA (CA Final) - Portfolio Management

Uncertainty Shocks In A Model Of Effective Demand

Midterm 1, Financial Economics February 15, 2010

Speculative Trade under Ambiguity

Exercises on the New-Keynesian Model

The Lost Generation of the Great Recession

Practical example of an Economic Scenario Generator

Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles

Speculative Bubbles, Heterogeneous Beliefs, and Learning

Chapter 9 Dynamic Models of Investment

NBER WORKING PAPER SERIES LIQUIDITY AND ASSET PRICES: A UNIFIED FRAMEWORK. Dimitri Vayanos Jiang Wang

Transcription:

Speculative Betas Harrison Hong and David Sraer Princeton University September 30, 2012

Introduction Model 1 factor static Shorting OLG Exenstion Calibration

High Risk, Low Return Puzzle Cumulative Returns 0 20 40 60 80 100 01jan1970 01jan1980 01jan1990 01jan2000 01jan2010 date 1st 2nd 3rd 4th 5th Beta-neutral strategy of long low beta / short high beta stocks has Sharpe of 0.75 (BBW ( 11 Black ( 72, Pratt ( 67, Friend and Blume ( 70

Our Explanation Disagreement about aggregate cash-flows + short-sales constraints Non-private information, agree to disagree Evidence of disagreement among professional forecasters and households On macroeconomic state variables such as market earnings, industrial production growth and inflation (Cukierman and Wachtel 79, Zarnowitz and Lambros 87, Kandel and Pearson 95, Mankiw, Romer and Wolfers 04 Dispersion in professional forecasts about stock market earnings varies over time and is correlated with aggregate economic uncertainty indicators (Bloom 09, Lamont 02, Yu 10 Disagreement due to heterogeneous priors or cognitive biases such as overconfidence that result in agents over-weighing private signals

Bloom (2012 uncertainty measure and modified Yu (2012 analyst forecast dispersion measure aggregate disagreement 3 4 5 6 7 6 8 10 12 14 Sales uncertainty 01jan1970 01jan1980 01jan1990 01jan2000 01jan2010 date aggregate disagreement Sales uncertainty

Short-Selling Constraints Short-selling costly due to institutional constraints Large fraction of mutual funds, 20 trillion dollars under management, can t short by charter and can t use derivatives (Almazan et al. 04, Koski and Pontiff 99 Hedge fund sector with 1.8 trillion dollars can and do short

Key Features of Model Otherwise CAPM framework: cashflows of firms follow a one factor model Disagree about the mean of common factor and not variances Buyers such as retail mutual funds Arbitrageurs such as hedge funds who short Multi-asset model based on Chen, Hong and Stein 01 s rendition of Miller 77 single stock economy Divergence of opinion leads to over-pricing because price reflects only the views of the optimists

The Main Idea β scales aggregate disagreement d i = β i z + ɛ i 1. High β assets are more sensitive to disagreement about aggregate cashflows than low β assets. 2. Macro-disagreement: optimists z + λ, pessimists z λ 3. High β experience more divergence of opinion: optimist β i ( z + λand pessimists β i ( z λ 4. Then over-pricing due to short-sales constraints 5. More shorting from arbs on high β CAPM holds when aggregate disagreement is low But high disagreement leads to inverted-u shaped: initially increasing with beta and then decreasing Kinked/concave/inverted-U shaped relationship due to disagreement having to be large enough to over-come benefits of diversification (cost of bearing idiosyncratic risk

OLG Extension OLG extension to show results go through + additional implication that high beta stocks have higher share turnover Calibration exercise

Empirics Use modified Yu (2010 measure of dispersion of earnings forecasts and cross-sectional SD of sales growth Bloom 09 Test basic predictions/premises of the model: 1. Upward sloping SML when disagreement/uncertainty is low. 2. Inverted U-shape of SML when disagreement is high 3. More stock-level disagreement on high β stocks, especially when high aggregate disagreement. 4. More shorting on high β stocks, especially when high aggregate disagreement. 5. More turnover on high β stocks, especially when high aggregate disagreement.

Disagreement and CAPM: kinks Figure: Average 3-months excess returns for equal-weighted beta decile portfolios in low and high aggregate disagreement months. 1.5 2 2.5 3 3.5 0.5 1 1.5 2 post-ranking beta Low disagreement High disagreement

Stock-level disagreement, β and aggregate disagreement. Figure: Equal-weighted average of dispersion of analyst earnings forecasts by beta deciles during low and high aggregate disagreement months. stock-level disagreement 2 4 6 8 10 0.5 1 1.5 2 post-ranking beta Low disagreement High disagreement

Disagreement, β and shorting activity Figure: Equal-weighted average of short interest ratio by beta deciles during low and high aggregate disagreement months. short-interest ratio 0.01.02.03.04.05 0.5 1 1.5 2 post-ranking beta Low disagreement High disagreement

Disagreement and share turnover Figure: Equal-weighted average of share turnover for stocks by beta deciles during low and high aggregate disagreement months. turnover ratio 0.5 1 1.5 2 0.5 1 1.5 2 post-ranking beta Low disagreement High disagreement

Outline Introduction Model 1 factor static Shorting OLG Exenstion Calibration

Introduction Model 1 factor static Shorting OLG Exenstion Calibration

Model Dates t = 0, 1 N risky assets and exogenous risk-free rate is r Risky asset i delivers a dividend d i at date 1: i {1,..., N}, di = b i z + ɛ i, where z N ( z, σz 2, ɛi N ( 0, σɛ 2, and cov ( z, ɛi = 0 Each asset is in supply 1 N : Assume N i=1 b i N = 1. 0 < b 1 < b 2 < < b N

Model Dates t = 0, 1 N risky assets and exogenous risk-free rate is r Risky asset i delivers a dividend d i at date 1: i {1,..., N}, di = b i z + ɛ i, where z N ( z, σz 2, ɛi N ( 0, σɛ 2, and cov ( z, ɛi = 0 Each asset is in supply 1 N : Assume N i=1 b i N = 1. 0 < b 1 < b 2 < < b N

Investors Preferences and Beliefs Two groups of investors: Short-sales constrained with heterogenous beliefs (MF - fraction α Unconstrained with homogenous beliefs (HF or arbs - fraction 1 α Investors have mean-variance utility functions with variance weight 1 2γ (or CARA withs risk tolerance γ Heterogeneous beliefs about aggregate factor: E A [ z] = z + λ and E B [ z] = z λ with λ > 0 Proportion 1 2 of optimists/pessimists among SSC agents. Investors hold correct expectations about the variance of z.

Investors Preferences and Beliefs Two groups of investors: Short-sales constrained with heterogenous beliefs (MF - fraction α Unconstrained with homogenous beliefs (HF or arbs - fraction 1 α Investors have mean-variance utility functions with variance weight 1 2γ (or CARA withs risk tolerance γ Heterogeneous beliefs about aggregate factor: E A [ z] = z + λ and E B [ z] = z λ with λ > 0 Proportion 1 2 of optimists/pessimists among SSC agents. Investors hold correct expectations about the variance of z.

Homoskedasticity This is just to simplify the exposition. If dividends are heteroskedastic, then need to re-rank assets b according to: 1 < < b σ1 2 N σn 2 In the data, b i is highly correlated with b σi 2 i : Figure: Sample: CRSP. Period: 1982-2010. fraction of aggregate vol. to total vol.5.6.7.8.9 0.5 1 1.5 2 post-ranking beta

Discussion of other assumptions 1. Can also have disagreement about idiosyncratic but too easy 2. No disagreement on variance/covariance matrix. Jarrow 80: more general structure but less clear implications than 1-factor model 3. Strict short-selling constraints. (realistic MF Works with any strictly convex cost function.

Solving for the equilibrium Intuition: investors disagree on expected payoffs. Mechanically, disagreement is higher for high b assets (E i [ d] = b i E i [ z]. Pessimists hit binding short-sales constraints on high b assets first. 1. Posit equilibrium structure: j [1, N] such that: Assets i j (i.e. b i > b j such that pessimists are sidelined. All investors are long assets i < j. 2. Derive equilibrium pricing equations under j. 3. Write down conditions under which j is the marginal asset.

Solving for the equilibrium Intuition: investors disagree on expected payoffs. Mechanically, disagreement is higher for high b assets (E i [ d] = b i E i [ z]. Pessimists hit binding short-sales constraints on high b assets first. 1. Posit equilibrium structure: j [1, N] such that: Assets i j (i.e. b i > b j such that pessimists are sidelined. All investors are long assets i < j. 2. Derive equilibrium pricing equations under j. 3. Write down conditions under which j is the marginal asset.

Maximization program Agents are maximizing: max µ k i N i=1 µk i ( bi E k [ z] (1 + rp i µ k i [ ( N 2 1 2γ i=1 µk i b i σ 2 z + N ( i=1 µ k 2 ( ] i σ 2 ɛ is number of shares purchased by investors in group k for asset i. For agents A and B, under the constraint: µ 0.

Maximization program Agents are maximizing: max µ k i N i=1 µk i ( bi E k [ z] (1 + rp i µ k i [ ( N 2 1 2γ i=1 µk i b i σ 2 z + N ( i=1 µ k 2 ( ] i σ 2 ɛ is number of shares purchased by investors in group k for asset i. For agents A and B, under the constraint: µ 0.

Pricing for unconstrained assets For unconstrained assets (i < j: (( N ( z + λb i P i (1 + r = 1 b k µ A k b i σz 2 + µ A i σɛ 2 γ k=1 (( N ( z λb i P i (1 + r = 1 γ (( N k=1 b k µ B k b i σ 2 z + µ B i σ 2 ɛ zb i P i (1 + r = 1 γ k=1 b k µ a k b i σ 2 z + µ a i σ 2 ɛ Market clearing condition: α ( 1 2 µa i + 1 2 µb i Pricing equation similar to CAPM: + (1 αµ a i = 1 N zb i P i (1 + r = 1 ( b }{{} i σz 2 + σ2 ɛ γ N expected excess return on asset i. }{{} risk premium (

Pricing for unconstrained assets For unconstrained assets (i < j: (( N ( z + λb i P i (1 + r = 1 b k µ A k b i σz 2 + µ A i σɛ 2 γ k=1 (( N ( z λb i P i (1 + r = 1 γ (( N k=1 b k µ B k b i σ 2 z + µ B i σ 2 ɛ zb i P i (1 + r = 1 γ k=1 b k µ a k b i σ 2 z + µ a i σ 2 ɛ Market clearing condition: α ( 1 2 µa i + 1 2 µb i Pricing equation similar to CAPM: + (1 αµ a i = 1 N zb i P i (1 + r = 1 ( b }{{} i σz 2 + σ2 ɛ γ N expected excess return on asset i. }{{} risk premium (

Pricing for unconstrained assets For unconstrained assets (i < j: (( N ( z + λb i P i (1 + r = 1 b k µ A k b i σz 2 + µ A i σɛ 2 γ k=1 (( N ( z λb i P i (1 + r = 1 γ (( N k=1 b k µ B k b i σ 2 z + µ B i σ 2 ɛ zb i P i (1 + r = 1 γ k=1 b k µ a k b i σ 2 z + µ a i σ 2 ɛ Market clearing condition: α ( 1 2 µa i + 1 2 µb i Pricing equation similar to CAPM: + (1 αµ a i = 1 N zb i P i (1 + r = 1 ( b }{{} i σz 2 + σ2 ɛ γ N expected excess return on asset i. }{{} risk premium (

Pricing for constrained assets For constrained assets (i j: (( N ( z + λb i P i (1 + r = 1 γ (( N k=1 b k µ A k b i σ 2 z + µ A i σ 2 ɛ zb i P i (1 + r = 1 γ µ B i = 0 With first-order condition: zb i P i (1 + r }{{} E[ R i ] k=1 b k µ a k = 1 ( b i σz 2 + σ2 ɛ γ N }{{} risk premium b i σ 2 z + µ a i σ 2 ɛ π i }{{} speculative premium (

Speculative premium Speculative premium: excess-pricing over no short-sales constraint benchmark (α = 0. Derivation: sum FOC and compute j 1 k=1 b kµ B k using FOC of assets j < j. Exact form (depends on j and θ = α 2 1 α strictly with α: 2 π i σɛ = θ b 2 i ( λ σ2 z b k σ2 ɛ σɛ 2 + σz 2 γn γn i< j b2 i k j Speculative premium strictly increases with b i.

Closing the model: marginal asset Derive equilibrium holdings (conditional on j of pessimists and derive conditions for: (µ B < 0 1. U B µ B j 2. µ B j 1 > 0 This is equivalent to: u j < λγ u j 1 where (u is strictly decreasing sequence. We span entire λ space. Unique equilibrium.

Over-pricing 1. Low b assets are priced according to standard CAPM equation. 2. High b assets are over-priced relative to standard CAPM equation. Amount of overpricing increases with λ and α. More disagreement on high b assets thus more likely to have pessimists short thus more over-pricing through short-sale costs. (cost of shorting idiosyncratic risk is the same accross assets High b assets are more disagreement sensitive. 2 speculative premium 3. λ α > 0. Increasing λ leads to more severe mispricing in high α environment. 4. Cutoff j increases with λ. For high λ, even low b assets can have high disagreement. 2 speculative premium 5. λ β > 0: more mispricings when sorted on shorting in high beta stocks

Shorting There exists ˆλ > 0 such that if λ > ˆλ: 1. HFs short at least one asset in equilibrium, i.e. µ a N < 0. 2. There exists ĩ such that: µ a N > µa N 1 > µã i > 0 and 3. k < ĩ, µ a k > 0. µ a N λ > µa N 1 λ > µã i λ > 0. A rise in aggregate disagreement leads to a larger increase in shorting for high b assets.

OLG Extension t = 0, 1,... Each period t, a new generation of mass 1 is born and invest in the stock market to consume the proceeds at date t + 1. A new generation is always compose of 2 groups of agents; arbitrageurs, or Hedge Funds, in proportion 1 α, and Mutual funds in proportion α. Investors have mean-variance preferences with risk tolerance parameter 2γ. There are N assets in this economy, whose dividend process each period is given as in our static model by: d i = b i z + ɛ i

OLG Extension Mutual funds born at date t have heterogeneous beliefs about the expected value of z t+1 and thus about the expected dividend to be received at date t + 1 before reselling the asset. Specifically, there are two groups of mutual funds: group A of optimists MF (E A [ z t+1 ] = z + λ t and group B of pessimists (E B [ z t+1 ] = z λ t. λ t {0, λ > 0} is a two-states Markov process with persistence ρ ]1/2, 1[.

OLG Extension 1. When ρ is large, same basic results from static setting. 2. Plus share turnover: high beta stocks have higher turnover due to more shorting and more shares which are then traded when generations changeover. 3. The differential turnover between high w assets (j î and low w assets (j < î is strictly greater for high disagreement states ( λ = λ > 0 than for low disagreement states ( λ = 0.

Resale Option and Bubble Suppose λ t = 0. Potential disagreement at t + 1 leads to potential binding constraints when λ > 0. Current generation of traders anticipate that resale price will be high when short-sales constraints are binding in the λ > 0 state. This is a version of the resale option of Harrison and Kreps 1978 and Scheinkman and Xiong 2003 (except each generation has to sell. Bubble accompanied by high turnover due to shorting by hedge funds. Like classic theories of bubbles with over-trading (too much demand met by arbs shorting

Illustration: SML Slope Conditional on Disagreement Parameters: N = 100, σ 2 z =.0022, σ 2 ɛ =.029, α =.63, γ =.6, ρ = 0.94. Expected excess returns -.005 0.005.01 0.5 1 1.5 2 beta lambda=0 lambda=.0075 lambda=.005

When Some Investors Head for the Exit (w/ Wenxi Jiang Chen-Hong-Stein: Decrease in breadth of mutual fund ownership (change in fraction of MF owners = entry rate - exit rate forecasts low stock returns Asquith-Pathak-Ritter: Top short-interest ratio (shares shorted to shares outstanding decile under-performs rest of the stocks Show exit rate better captures short-sales constraints. Entry rate might reflects changes in limited participation and higher prices and more shorting A new measure of hedge fund breadth and exit rate which work better than mutual fund breadth. These all work better in high beta stocks, consistent with 2 speculative premium λ β > 0.

Short Interest Forecast of Quarterly Returns 1991 to 2008 Sort on short interest ratio Equal-Weighted Raw Return DGTW Returns Lo Beta Q2 Q3 Q4 Hi Beta Lo Beta Q2 Q3 Q4 Hi Beta Bottom 50% 2.73% 2.72% 3.43% 2.55% 1.84% 0.32% 0.32% 0.88% 0.50% 0.08% (3.22 (2.93 (3.28 (2.00 (1.05 (0.74 (0.90 (2.89 (2.09 (0.14 Top 5% 1.45% 2.01% 1.47% 0.17% -0.42% -0.65% -0.01% -0.38% -1.65% -2.95% (0.89 (1.29 (0.93 (0.10 (-0.17 (-0.49 (-0.01 (-0.37 (-2.16 (-2.47 Hi - Lo -1.28% -0.72% -1.96% -2.38% -2.26% -0.97% -0.33% -1.26% -2.15% -3.03% (-0.94 (-0.68 (-1.84 (-2.49 (-2.26 (-0.74 (-0.39 (-1.19 (-2.56 (-2.99 Among high beta stocks, in high disagreement periods (top 30%, Hi-Lo is -2.17% per quarter RAW. In low disagreement periods (bottom 30% only -1.43% RAW.

Hedge Fund Exit Rate Forecast of Quarterly Returns 1991 to 2008 Sort on HF EXIT Equal-Weighted Raw Return DGTW Returns Lo Beta Q2 Q3 Q4 Hi Beta Lo Beta Q2 Q3 Q4 Hi Beta Bottom 50% 2.68% 2.76% 3.09% 2.53% 1.93% 0.29% 0.27% 0.61% 0.45% -0.25% (3.21 (2.88 (2.98 (1.95 (0.94 (0.68 (0.84 (2.64 (1.66 (-0.33 Top 5% 4.00% 2.10% 3.36% 0.78% -0.63% 2.03% -0.58% 1.26% -1.54% -3.08% (4.20 (2.19 (2.54 (0.41 (-0.31 (2.65 (-1.00 (1.06 (-1.37 (-3.02 Hi - Lo 1.35% -0.45% 0.53% -1.65% -2.44% 1.71% -0.75% 0.72% -2.01% -2.57% (2.85 (-0.86 (0.62 (-1.58 (-2.69 (2.94 (-1.45 (0.66 (-1.92 (-2.56 Among high beta stocks, in uncertain periods, Hi-Lo is -3.24% RAW. It is -2.12% RAW.

Mutual Fund Exit Rate Forecasts Quarterly Returns 1981 to 2008 Sort on EF EXIT Equal-Weighted Raw Return DGTW Returns Lo Beta Q2 Q3 Q4 Hi Beta Lo Beta Q2 Q3 Q4 Hi Beta Bottom 50% 3.06% 3.49% 3.54% 3.01% 2.19% 0.12% 0.43% 0.49% 0.20% -0.48% (4.66 (4.48 (4.01 (2.87 (1.49 (0.35 (1.85 (2.62 (0.94 (-0.86 Top 5% 3.04% 2.77% 2.57% 1.77% -0.08% -0.14% -0.34% 0.43% -0.56% -2.36% (3.04 (2.57 (2.38 (1.40 (-0.05 (-0.18 (-0.39 (0.81 (-0.88 (-3.19 Hi - Lo -0.02% -0.72% -0.97% -1.24% -2.26% -0.26% -0.76% -0.06% -0.76% -1.88% (-0.03 (-1.02 (-1.56 (-2.11 (-3.53 (-0.37 (-0.98 (-0.12 (-1.25 (-2.61 Among high beta stocks, in high uncertainty periods, Hi-Lo is -2.76%. It is -2.58% in low uncertainty periods.

Conclusion Bridge of Behavioral Finance to CAPM Behavioral Beta Finance or Behavioral Macro-Finance Speculative investors like beta high beta assets command high prices. High volatility assets associated with higher expected returns. Many potential links of existing work back to the cross-section and beta, including capital budgeting implications.