Money Demand. ECON 40364: Monetary Theory & Policy. Eric Sims. Fall University of Notre Dame

Similar documents
Money Supply, Inflation, and Interest Rates

Money, Inflation, and Interest Rates

Macroeconomics 2. Lecture 5 - Money February. Sciences Po

Midterm 2 Review. ECON 30020: Intermediate Macroeconomics Professor Sims University of Notre Dame, Spring 2018

The Zero Lower Bound

Graduate Macro Theory II: Two Period Consumption-Saving Models

Demand for Money MV T = PT,

Chapter 5. Money and Inflation

Money Demand. ECON 30020: Intermediate Macroeconomics. Prof. Eric Sims. Spring University of Notre Dame

Chapter 7: Money and Inflation. Instructor: Dmytro Hryshko

Velocity of Money and the Equation of Exchange

ECON 3560/5040 Week 5

Chapter 19. Quantity Theory, Inflation and the Demand for Money

Consumption. ECON 30020: Intermediate Macroeconomics. Prof. Eric Sims. Spring University of Notre Dame

Intermediate Macroeconomics: Money

Money and the Economy CHAPTER

2. Three Key Aggregate Markets

macro macroeconomics Money and Inflation N. Gregory Mankiw CHAPTER FOUR PowerPoint Slides by Ron Cronovich fifth edition

Exercises on the New-Keynesian Model

Money in an RBC framework

Econ 219 Spring Lecture #11

Notes VI - Models of Economic Fluctuations

DEMAND FOR MONEY. Ch. 9 (Ch.19 in the text) ECON248: Money and Banking Ch.9 Dr. Mohammed Alwosabi

Money in a Neoclassical Framework

EC3115 Monetary Economics

TOPIC 5. Fed Policy and Money Markets

San Francisco State University ECON 302. Money

ECON 3010 Intermediate Macroeconomics. Chapter 5 Inflation: Its Causes, Effects, and Social Costs

Opportunity Cost of Holding Money

Chapter 4. U.S. inflation & its trend, The connection between money and prices

macro macroeconomics Money and Inflation (chapter 4) N. Gregory Mankiw The classical theory of inflation causes effects social costs

ECON 4325 Monetary Policy and Business Fluctuations

6. Deficits and inflation: seignorage as a source of public sector revenue

Chapter 5 Inflation: Its Causes, Effects, and Social Costs

Money Growth and Inflation

Intermediate Macroeconomic Theory / Macroeconomic Analysis (ECON 3560/5040) Midterm Exam (Answers)

Equilibrium with Production and Endogenous Labor Supply

MACROECONOMICS. Inflation: Its Causes, Effects, and Social Costs. N. Gregory Mankiw. PowerPoint Slides by Ron Cronovich

Macroeconomics. Money Growth and Inflation. Introduction. In this chapter, look for the answers to these questions: N.

Macroeconomics Sixth Edition

Macro II. John Hassler. Spring John Hassler () New Keynesian Model:1 04/17 1 / 10

Outline. What is Money? What does affect the supply of Money? What does affect the demand of Money? Asset Portfolio Decision

Consumption. ECON 30020: Intermediate Macroeconomics. Prof. Eric Sims. Fall University of Notre Dame

Monetary Economics. Money in Utility. Seyed Ali Madanizadeh. February Sharif University of Technology

Topic 6. Introducing money

Graduate Macro Theory II: Fiscal Policy in the RBC Model

x = %ΔX = rate of change of spending m = %ΔM = rate of change of the money supply v = %ΔV = rate of change of the velocity of money

Problem Set #2. Intermediate Macroeconomics 101 Due 20/8/12

The Fiscal Theory of the Price Level

Money Growth and Inflation

MACROECONOMICS. N. Gregory Mankiw. Money and Inflation 8/15/2011. In this chapter, you will learn: The connection between money and prices

Test Review. Question 1. Answer 1. Question 2. Answer 2. Question 3. Econ 719 Test Review Test 1 Chapters 1,2,8,3,4,7,9. Nominal GDP.

Stock Prices and the Stock Market

Econ 330 Final Exam Name ID Section Number

So far in the short-run analysis we have ignored the wage and price (we assume they are fixed).

Introduction to Economic Fluctuations

Introduction. Money Growth and Inflation. In this chapter, look for the answers to these questions:

ECONOMIC GROWTH 1. THE ACCUMULATION OF CAPITAL

The classical theory of inflation. causes effects. Classical assumes prices are flexible & markets clear Applies to the long run

Monetary Policy. ECON 30020: Intermediate Macroeconomics. Prof. Eric Sims. Spring University of Notre Dame

Problem Set #4 Revised: April 13, 2007

THE FEDERAL RESERVE AND MONETARY POLICY Macroeconomics in Context (Goodwin, et al.)

Essex EC248-2-SP Lecture 5. The Demand for Money and Monetary Theory. Alexander Mihailov, 13/02/06

Plan of Talk. Quantity Theory of Money. Aims and Learning Outcomes. P Y Velocity V (definition) M Equation of Exchange M V P Y (identity)

ECON385: A note on the Permanent Income Hypothesis (PIH). In this note, we will try to understand the permanent income hypothesis (PIH).

Outline for ECON 701's Second Midterm (Spring 2005)

Equilibrium with Production and Labor Supply

Fluctuations in the economy s output. 1. Three Components of Investment

Key Idea: We consider labor market, goods market and money market simultaneously.

Midterm 2 - Economics 101 (Fall 2009) You will have 45 minutes to complete this exam. There are 5 pages and 63 points. Version A.

ECON Micro Foundations

Inflation. David Andolfatto

Optimal Monetary Policy

Exam 2 Review. 2. If Y = AK 0.5 L 0.5 and A, K, and L are all 100, the marginal product of capital is: A) 50. B) 100. C) 200. D) 1000.

Chapter Twenty. In This Chapter 4/29/2018. Chapter 22 Quantity Theory, Inflation and the Demand for Money

Comprehensive Exam. August 19, 2013

Money, Banking and the Federal Reserve

Public budget accounting and seigniorage. 1. Public budget accounting, inflation and debt. 2. Equilibrium seigniorage

Monetary Economics Final Exam

Part II Money and Public Finance Lecture 7 Selected Issues from a Positive Perspective

Monetary Policy and EMU Introduction Why Study Money and Monetary Policy?

Test Yourself: Monetary Policy

Midsummer Examinations 2013

Recall: The Meaning of Money and Inflation. Money Growth and Inflation 1. HISTORICAL ASPECTS OF INFLATION. Key points

1. Introduction of another instrument of savings, namely, capital

Leandro Conte UniSi, Department of Economics and Statistics. Money, Macroeconomic Theory and Historical evidence. SSF_ aa

ECON 581. Introduction to Arrow-Debreu Pricing and Complete Markets. Instructor: Dmytro Hryshko

Open Economy Macroeconomics: Theory, methods and applications

9. ISLM model. Introduction to Economic Fluctuations CHAPTER 9. slide 0

SV151, Principles of Economics K. Christ 6 9 February 2012

ECON 4325 Monetary Policy Lecture 11: Zero Lower Bound and Unconventional Monetary Policy. Martin Blomhoff Holm

MODERN PRINCIPLES OF ECONOMICS Third Edition. Chapter 5: Inflation

In our model this theory is supported since: p t = 1 v t

Chapter Twenty 11/26/2017. Chapter 20 Money Growth, Money Demand, and Modern Monetary Policy. In This Chapter. 1. The quantity theory of money.

Notes On IS-LM Model Econ3120, Economic Department, St.Louis University

Class 5. The IS-LM model and Aggregate Demand

Test Questions. Part I Midterm Questions 1. Give three examples of a stock variable and three examples of a flow variable.

Consumption, Investment and the Fisher Separation Principle

ECON 2301 TEST 3 Study Guide. Spring 2013

Fed Policy and Money Markets

Transcription:

Money Demand ECON 40364: Monetary Theory & Policy Eric Sims University of Notre Dame Fall 2017 1 / 37

Readings Mishkin Ch. 19 2 / 37

Classical Monetary Theory We have now defined what money is and how the supply of money is set What determines the demand for money? How do the demand and supply of money determine the price level, interest rates, and inflation? We will focus on a framework in which money is neutral and the classical dichotomy holds: real variables (such as output and the real interest rate) are determined independently of nominal variables like money We can think of such a world as characterizing the medium or long runs (periods of time measured in several years) We will soon discuss the short run when money is not neutral 3 / 37

Velocity and the Equation of Exchange Let Y t denote real output, which we can take to be exogenous with respect to the money supply P t is the dollar price of output, so P t Y t is the dollar value of output (i.e. nominal GDP) Define velocity as as the average number of times per year that the typical unit of money, M t, is spent on goods and serves. Denote by V t The equation of exchange or quantity equation is: M t V t = P t Y t This equation is an identity and defines velocity as the ratio of nominal GDP to the money supply 4 / 37

From Equation of Exchange to Quantity Theory The quantity equation can be interpreted as a theory of money demand by making assumptions about velocity Can write: M t = 1 V t P t Y t Monetarists: velocity is determined primarily by payments technology (e.g. credit cards, ATMs, etc) and is therefore close to constant (or at least changes are low frequency and therefore predictable) Let κ = Vt 1 and treat it as constant. Since money demand, Mt d, equals money supply, M t, our money demand function is: M d t = κp t Y t Money demand proportional to nominal income; κ does not depend on things like interest rates This is called the quantity theory of money 5 / 37

Money and Prices Take natural logs of equation of exchange: ln M t + ln V t = ln P t + ln Y t If V t is constant and Y t is exogenous with respect to M t, then: d ln M t = d ln P t In other words, a change in the money supply results in a proportional change in the price level (i.e. if the money supply increases by 5 percent, the price level increases by 5 percent) 6 / 37

Money and Inflation Since the quantity equation holds in all periods, we can first difference it across time: (ln M t ln M t 1 ) + (ln V t ln V t 1 ) = (ln P t ln P t 1 ) + (ln Y t ln Y t 1 ) The first difference of logs across time is approximately the growth rate Inflation, π t, is the growth rate of the price level Constant velocity implies: π t = g M t g Y t Inflation is the difference between the growth rate of money and the growth rate of output If output growth is independent of the money supply, then inflation and money growth ought to be perfectly correlated 7 / 37

8 / 37

9 / 37

10 / 37

Nominal and Real Interest Rates The nominal interest rate tells you what percentage of your nominal principal you get back (or have to pay back, in the case of borrowing) in exchange for saving your money. Denote by i t There are many interest rates, differing by time to maturity and risk. Ignore this for now. Think about one period interest rates i.e. between t and t + 1 The real interest rate tells you what percentage of a good you get back (or have to pay back, in the case of borrowing) in exchange for saving a good. Denote by r t Putting one good in the bank P t dollars in bank (1 + i t )P t dollars tomorrow purchases (1 + i t ) P t P t+1 goods tomorrow 11 / 37

The Fisher Relationship The relationship between the real and nominal interest rate is then: 1 + r t = (1 + i t ) P t P t+1 Since the inverse of the ratio of prices across time is the expected gross inflation rate, we have: 1 + r t = 1 + i t 1 + π e t+1 Here πt+1 e is expected inflation between t and t + 1 Approximately: r t = i t πt+1 e 12 / 37

The Natural Rate of Interest Over the medium to long run, the real interest rate is an equilibrium construct which balances the supply and demand for savings and investment We sometimes refer to this as the natural rate of interest after Knut Wicksell Simple theory based on the consumption Euler equation with log utility: C t+1 C t = β(1 + r P t ) r P is the natural rate of interest, or the real interest rate consistent with potential output. Take logs, approximate, and treat consumption growth as equal to output growth: r P t = g Y t+1 ln β Intuition based on supply and demand for savings and investment 13 / 37

Money, Inflation, and Interest Rates Over the medium to long run, the natural rate of interest just depends on output growth and attitudes about saving, captured by β. Independent of monetary factors. Think of this as constant. Over the medium to long run, we should also expect expected inflation to equal realized inflation, π e t+1 = π t From the Fisher relationship, this means that nominal interest rates and inflation ought to move together 14 / 37

16 14 Correlation = 0.74 1981 Three Month Treasury Bill Rate 12 10 8 6 4 2 1984 1982 1983 1989 1985 1990 1973 1978 1988 1969 1970 1986 2000 1995 1987 1991 1968 1998 1997 1996 1966 1976 1977 1999 2006 19942007 1967 1971 1963 1959 1964 1965 1972 1992 2001 1957 1962 1960 19932005 1961 1956 2002 19551958 20082004 2003 1979 1980 1974 1975 0 2009 20152014 2010 2016 2013 2012 2011 0 2 4 6 8 10 Inflation Rate 15 / 37

Problems with the Quantity Theory The quantity theory seems to provide a pretty good theory of inflation and interest rates over the medium to long run What about the short run? Problems with the quantity theory: The shorter term relationships between money growth and both inflation and nominal interest rates are weak Velocity is not constant and has become harder to predict, particularly since the early 1980s 16 / 37

17 / 37

18 / 37

19 / 37

20 / 37

Moving Beyond the Quantity Theory The key assumption in the quantity theory is that the demand for money (i.e. velocity) is stable (or at least predictable) Doesn t seem to be the case, particularly in last several decades Liquidity preference theory of money demand posits that the demand for real money balances, m t = M t P t, is an increasing function of output, Y t, but a decreasing function of the nominal interest rate, i t : M t P t = L(i t, Y t + ) But then velocity: V t = P ty t M t = Y t L(i t, Y t ) 21 / 37

Money in the Utility Function Suppose that there is a representative household who receives utility from consuming goods and holding real money balances, m t = M t P t. Flow utility: ( U C t, M ) ( ) t Mt = ln C t + ψ ln P t P t Flow budget constraint: P t C t + B t B t 1 + M t M t 1 P t Y t P t T t + i t 1 B t 1 B t 1 and M t 1 : stocks of bonds and money household enters t with Both enter as stores of value. Difference being that bonds pay interest Household discounts future utility flows by β [0, 1) 22 / 37

Optimality Conditions Plugging constraints in and taking derivatives yields: 1 1 = βe t (1 + i t ) P t C t C t+1 P t+1 ψ P t M t = 1 C t βe t 1 C t+1 P t P t+1 Government s budget constraint with G t = 0 (similar to above): P t T t = (1 + i t )B G,t 1 B G,t (M t M t 1 ) Market-clearing: B G,t = B t, so C t = Y t 23 / 37

Money Demand Function Making use of market-clearing and combining the FOC yields: ψm 1 t = 1 Y t i t 1 + i t Re-arranging: m t = ψy t 1 + i t i t Demand for real balances: (i) increasing in Y t, (ii) decreasing in i t Zero lower bound: must have i t 0 to get non-negative real balances. At i t 0, demand for real balances goes to infinity 24 / 37

Baumol-Tobin You need to spend Y over the course of a period (say, a year) You keep wealth in the bank earning nominal interest i t You need to determine how many trips you take to bank Each trip incurs a cost ( shoeleather cost ) of K Let m t denote average real balances holdings over the period. Opportunity cost of holding money is i t m t Each time you withdraw money, you withdraw 2m t dollars. Total trips to bank is Y 2m t Objective is to pick m t to minimize: min m t i t m t + K Y 2m t 25 / 37

Money Demand Function Use calculus to get first order condition: KYt m t = 2i t Or re-arranging: ( KYt m t = 2 ) 1 2 i 1 2 t Demand for real balances again increasing in Y t and decreasing in i t There is again a zero lower bound: i t 0 for demand for real balances to be positive 26 / 37

Friedman Rule Milton Friedman argued that optimal monetary policy in the medium to long run would target a nominal interest rate of zero With a positive natural rate of interest, this would require deflation Basic intuition: a positive nominal interest rates dissuades people from holding money by increasing the opportunity cost of liquidity relative to bonds, whereas the marginal cost of producing (fiat) money is essentially zero At a social optimum, want to equate private cost of holding money (interest rate) to the public cost of producing money (zero) Holds in both the MIU model (i = 0 maximizes utility) and the B-T model (i = 0 minimizes the cost of holding money) Why don t central banks follow Friedman rule? Because of the zero lower bound and short run stabilization policy Does help us understand desire for low interest rates, however 27 / 37

A ln m 2m Optimality of i = 0 2 MIU Model 4 B-T Model 1.5 1 0.5 i " m + K Y 3 2 1 0 0 2 4 6 i 0 0 2 4 6 i 28 / 37

Instability of Velocity: Movement Away from Focusing on Monetary Aggregates Paul Volcker and the Fed experimented with targeting monetary aggregates in the early 1980s This brought inflation down from the 1970s, but led to high and variable interest rates Most monetary economists concluded that the demand for money is not in fact stable, i.e. a rejection of monetarism If the money supply is not closely and predictably connected to aggregate spending, targeting the money supply probably not a good policy This has led most monetary economists to instead favoring focusing on short term interest rates as the target of monetary policy, as we saw with a discussion of the Taylor rule and the Fed controlling the Fed Funds Rate (FFR) 29 / 37

Money and Inflation: The Case of Hyperinflations Milton Friedman famously said that inflation is everywhere and always a monetary phenomenon Simple logic based on the quantity equation. Works pretty well in the medium to long run What about extreme situations of inflation, or what are called hyperinflations? 30 / 37

Hyperinflations 31 / 37

Hyperinflations Usually a Fiscal Phenomenon Most hyperinflations in history are associated with fiscal mischief Government s budget constraint (ignoring distinction between M t and MB t ): P t G t + i t 1 B G,t 1 = P t T t + M t M t 1 + B G,t B G,t 1 Here P t is the nominal price of goods (i.e. the price level), B G,t 1 is the stock of debt with which a government enters period t, B G,t is the stock of debt the government takes from t to t + 1, i t 1 is the nominal interest rate on that debt, T t is tax revenue (real), and M t is the money supply Deficit equals change in money supply plus change in debt: P t G t + i t 1 B G,t 1 P t T t = M t M t 1 + B G,t B G,t 1 32 / 37

Monetizing the Debt If tax revenue doesn t cover expenditure (spending plus interest on debt), then government either has to issue more debt or print more money In some cases printing more money is explicit, in others implicit Monetizing the debt: fiscal authority issues debt to finance deficit, but monetary authority buys the debt by doing open market operations, which creates base money 33 / 37

Application: Seignorage and the Inflation Tax Recall from the government s budget constraint above when talking about hyperinflations that nominal revenue from printing money is simply: M t M t 1 Real revenue from printing money is M t M t 1 P t We call the real revenue from printing money seignorage This can be written: Seignorage = M t M t 1 P t This can equivalently be written: Seignorage = M t M t 1 M t 1 M t 1 M t M t P t 34 / 37

More Seignorage Define the growth rate of money as: g M t = M t M t 1 M t 1 Then the expression for seignorage can be written: Seignorage = g M t 1 + g M t m t This is approximately: Seignorage = g M t m t Seignorage is tax revenue from printing more money gt M effectively the tax rate and m t is the tax base is 35 / 37

Seignorage in the Medium to Long Run Suppose that the growth rate of money is constant in the medium to long run, gt M = g M Suppose that output, Y t, is independent of the money growth rate rate and is constant, so Y t = Y Suppose that the real interest rate equals the natural rate of interest, so the nominal rate is constant and is: i = r P + π Suppose that the inflation rate equals the money growth rate, so: i = r P + g M If demand for real balances is generically given by: m t = L(i t, Y t ), then we can write demand for real balances as: m = L(r P + g M, Y ) 36 / 37

Optimal Inflation Tax Suppose that a central bank wants to pick g M to maximize seignorage. Problem is: max g M g M L(ρ + g M, Y ) Provided money demand is decreasing in nominal interest rate (i.e. L i ( ) < 0), then two competing effects of higher g M : 1. Tax rate: higher g M higher tax rate 2. Base: higher g M lower tax base First order condition: g M = L(ρ + g M, Y ) L i (ρ + g M, Y ) Revenue-maximizing growth rate of money inversely related to interest sensitivity of money demand If money demand interest insensitive (e.g. quantity theory), then revenue-maximizing g M =! Desire for seignorage another reason to move away from Friedman rule 37 / 37