The Paradox of Asset Pricing. Introductory Remarks

Similar documents
Birkbeck MSc/Phd Economics. Advanced Macroeconomics, Spring Lecture 2: The Consumption CAPM and the Equity Premium Puzzle

Lecture 11. Fixing the C-CAPM

LECTURE NOTES 10 ARIEL M. VIALE

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010

EFFICIENT MARKETS HYPOTHESIS

Can Rare Events Explain the Equity Premium Puzzle?

Principles of Asset-Pricing Theory

Asset Pricing and Equity Premium Puzzle. E. Young Lecture Notes Chapter 13

Consumption- Savings, Portfolio Choice, and Asset Pricing

Macroeconomics Sequence, Block I. Introduction to Consumption Asset Pricing

RECURSIVE VALUATION AND SENTIMENTS

GMM Estimation. 1 Introduction. 2 Consumption-CAPM

Lecture 2: Stochastic Discount Factor

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Graduate Macro Theory II: Two Period Consumption-Saving Models

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

ECON FINANCIAL ECONOMICS

Toward A Term Structure of Macroeconomic Risk

Competing Mechanisms with Limited Commitment

M.I.T Fall Practice Problems

Basics of Asset Pricing. Ali Nejadmalayeri

Identification and Estimation of Dynamic Games when Players Beliefs are not in Equilibrium

Consumption and Asset Pricing

Derivation of zero-beta CAPM: Efficient portfolios

Low Risk Anomalies? Discussion

Valuing Investments A Statistical Perspective. Bob Stine Department of Statistics Wharton, University of Pennsylvania

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Finance: A Quantitative Introduction Chapter 7 - part 2 Option Pricing Foundations

ECOM 009 Macroeconomics B. Lecture 7

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and

Pricing theory of financial derivatives

Steven Heston: Recovering the Variance Premium. Discussion by Jaroslav Borovička November 2017

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods

INTERTEMPORAL ASSET ALLOCATION: THEORY

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

P&L Attribution and Risk Management

SOLUTION Fama Bliss and Risk Premiums in the Term Structure

Asset Pricing with Heterogeneous Consumers

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

Chapter 3. Dynamic discrete games and auctions: an introduction

Reviewing Income and Wealth Heterogeneity, Portfolio Choice and Equilibrium Asset Returns by P. Krussell and A. Smith, JPE 1997

1 Dynamic programming

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011

Lecture 5. Xavier Gabaix. March 4, 2004

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION

Course information FN3142 Quantitative finance

Lecture 3: Asymptotics and Dynamics of the Volatility Skew

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

The Fisher Equation and Output Growth

Consumption and Portfolio Decisions When Expected Returns A

The Market Price of Risk and the Equity Premium: A Legacy of the Great Depression? by Cogley and Sargent

Economics 8106 Macroeconomic Theory Recitation 2

Macroeconomics I Chapter 3. Consumption

Derivative Securities

Homework 3: Asset Pricing

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology

An Introduction to Market Microstructure Invariance

Lecture 1 Definitions from finance

The Equity Premium. Blake LeBaron Reading: Cochrane(chap 21, 2017), Campbell(2017/2003) October Fin305f, LeBaron

Lecture 23 The New Keynesian Model Labor Flows and Unemployment. Noah Williams

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Predicting the Market

April 29, X ( ) for all. Using to denote a true type and areport,let

Statistical estimation

Applying the Principles of Quantitative Finance to the Construction of Model-Free Volatility Indices

Stochastic Games and Bayesian Games

Notes II: Consumption-Saving Decisions, Ricardian Equivalence, and Fiscal Policy. Julio Garín Intermediate Macroeconomics Fall 2018

Generalized Recovery

Managerial Economics Uncertainty

1 The continuous time limit

CONSUMPTION-BASED MACROECONOMIC MODELS OF ASSET PRICING THEORY

Real Options and Game Theory in Incomplete Markets

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

MSc Finance with Behavioural Science detailed module information

Slides III - Complete Markets

PhD Qualifier Examination

Information aggregation for timing decision making.

The stochastic calculus

Identification and Estimation of Dynamic Games when Players Belief Are Not in Equilibrium

Foundations of Asset Pricing

Measuring the Amount of Asymmetric Information in the Foreign Exchange Market

FINANCIAL OPTIMIZATION. Lecture 5: Dynamic Programming and a Visit to the Soft Side

1 Asset Pricing: Replicating portfolios

Time Invariant and Time Varying Inefficiency: Airlines Panel Data

Is asset-pricing pure data-mining? If so, what happened to theory?

King s College London

On Existence of Equilibria. Bayesian Allocation-Mechanisms

Economics and Finance

Lecture 5 Theory of Finance 1

6.825 Homework 3: Solutions

Market Survival in the Economies with Heterogeneous Beliefs

An introduction to game-theoretic probability from statistical viewpoint

Beliefs-Based Preferences (Part I) April 14, 2009

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Problem set 1 Answers: 0 ( )= [ 0 ( +1 )] = [ ( +1 )]

Supplementary Material for: Belief Updating in Sequential Games of Two-Sided Incomplete Information: An Experimental Study of a Crisis Bargaining

Estimation of dynamic term structure models

Chapter 7: Estimation Sections

Transcription:

The Paradox of Asset Pricing Introductory Remarks 1

On the predictive power of modern finance: It is a very beautiful line of reasoning. The only problem is that perhaps it is not true. (After all, nature does not have to go along with our reasoning.) (Richard P. Feynman, in Lectures on Physics.) (E.g., CAPM and other linear asset pricing models: widely used as if they re right!?) 2

The position we re going to take: Theory is not necessarily to blame for the poor scientific record of asset pricing, but empirical methodology 3

The Paradox of Asset Pricing I. The Principles of Asset Pricing...... needed to understand the work of empiricists. So, we ll ignore, among other things, heterogeneous information! 4

6. Consumption-Based Asset Pricing Models The first-order conditions of agents intertemporal investment-consumption are referred to as stochastic Euler equations. These form an asset pricing model: in equilibrium, they ought to be satisfied for all agents. Problem: we don t have [historical, field] data at the individual level. Let s be bold [Lucas] and assume all investors are alike. Then aggregate percapita and private consumption coincide, so the stochastic Euler equations are true for aggregate consumption as well: δe[ ũ(c A ) c ũ(c A ) c R n x] = 1. (1) 5

A Special Case: The Rubinstein dynamic CAPM Model Assume that the representative agent has log utility. The following is easy to check: In equilibrium, c A = (1 δ)x A ; c A = (1 δ)x A. x A δx A = R M. 6

So: E[ δx A x R n x] = E[ 1 R n x] = 1. (2) A R M... independent of return stochastics! Joint lognormality of individual and market returns implies: µ n,x ln R F = 2 β M x,n (µ M,x ln R F ) 1 2 σ2 n,x. (3) 7

7. Asset Pricing Theory: The Bottom Line where A measures aggregate risk. E[AR n x] = 1, (4) E.g., Rubinstein: A = 1 R M. 8

The Paradox of Asset Pricing II. Empirical Methodology 9

Point of departure: Pick a measure of aggregate risk A. Then this is what we need to test: E m [AR n x] = 1. (5) To test this, we need to estimate beliefs used to form expectations ( m ). The theory puts little restrictions on beliefs, except Lucas-RE see below. So, to test the theory, we should really be asking agents what they expected ex ante. That s not what s being done... 10

What s being done... is to link beliefs to actual outcomes: Beliefs are correct (The Efficient Markets Hypothesis); Equivalently, beliefs are confirmed by the actual outcomes. Which really means: 1. Beliefs are unbiased expectations of the true probabilities; 2. The true probabilities can be estimated by simple averaging of outcomes. 11

Here is what these things mean mathematically/statistically: 1. We can drop the m: E[AR n x] = 1. 2. We need a law of large numbers, and for that, we need stationarity, so that, for A t R n,t, t = 1, 2,...: 1 T T t=1 A t R n,t E[AR n ](= 1). 12

Ignoring the conditioning on the state variable x, these assumptions allow for a simple method of moments test: Are 1 T T t=1 A t R n,t equal to 1? 13

Remarks: A t-test would also require independence and normality; an (asymptotic) z-test would require the right mixing decay in dependence, but let s not worry about that... All tests are generalizations of this simple method of moments test. 14

One can do a reductio ad absurdum: The approach implies that...... the high average returns on Apple stock over the last five years (37.4% p.a.) relative to IBM (-2.3% p.a. ) reflect the higher risk of holding Apple stock, and the negative average returns on the Nikkei index since 1990 against the high positive average return on the SP 500 index reflect the much lower risk of the former. 15

Aside from the issues of correct beliefs and stationarity, the empirical methodology is remarkably parsimonious and robust: it is possible to test asset pricing theory with minimal knowledge about: the data generating process; information that agents may have had. (...although these features are not always exploited!) Any new test that relaxes some of the assumptions should aim at the same features! 16

The Paradox of Asset Pricing V. Improving Empirical Methodology... where we develop a new methodology for testing asset pricing models that allows the market to hold mistaken expectations at times, but we ll still require it to learn as under EMH. We will call it the Hypothesis Of Efficiently Learning Markets (ELM). 17

Preliminary Remarks: Traditional empirical methodology requires a tight link between ex-ante beliefs in the marketplace and what factually is in the dataset of the empiricist ex-post. There are a variety of reasons why this link is too tight. 1. The market may have had biased beliefs because, e.g., lack of experience (e.g., IPOs in start-up airline companies during deregulation). 2. The empiricist inadvertently collected a biased sample, where an expected event happened not to have occurred (a Peso problem; e.g., the devaluation of the currency did not happen in the time span under investigation). Can we do something about this without losing the parsimony of the traditional approach? 18

Overview 1. A (Surprising) Property of Bayesian Learning 2. Digital Option Prices Under ELM and Risk Neutrality 3. Limited-Liability Securities Prices Under ELM and Risk Neutrality 4. Re-Introducing Risk Aversion and You Favorite Asset Pricing Model 19

1. Bayesian Learning Re-Visited Use the standard set-up: Let t index time. t = 0, 1,..., T. Unknown real-valued parameter V, to be revealed at T. (Arbitrary) prior belief λ 0 ( ). Signals x t at t = 1,..., T 1 with known likelihood: l t (x t x t 1, V ). 20

Learning using the rules of conditional probability (Bayes law): λ t (V ) = l t(x t x t 1, V )λ t 1 (V ), (t = 1, 2,..., T 1). (6) lt (x t x t 1, v)λ t 1 (v)dv 21

Beliefs form a martingale, hence learning is rational (Doob): E m [λ t (V ) x t 1,..., x 1 ] = λ t 1 (V ). (7) Note: E m [λ t (V ) x t 1,..., x 1 ] = λ t (V )l t (x x t 1, v)λ t 1 (v)dxdv. 22

Now consider E[ x t 1, V ](= E[ x t 1,..., x 1, V ]). (The Markov assumption justifies the equality in parentheses.) In particular, study E[ λ t 1(V ) λ t (V ) x t 1, V ]. 23

Technicality: we have to ensure that this conditional expectation exists, i.e., that E[ λ t 1(V ) λ t (V ] <. ) For simplicity, assume that there exists ɛ > 0 such that, for all V, and for t = 0, 1,..., T 1, P {λ t (V ) ɛ V } = 1. (8) 24

Call this the No Early Exclusion Hypothesis (NEEH)... which is violated, for instance, if information flows can be represented in terms of a recombining binomial tree! 25

Now, under NEEH: E[ λ t 1(V ) λ t (V ) x t 1, V ] = 1. (9) 26

Proof: E[ λ t 1(V ) λ t (V ) x t, V ] λt 1 (V ) = λ t (V ) l t(x x t 1, V )dx λt 1 (V ) l t (x x = t 1, v)λ t 1 (v)dv l t (x x t 1, V )λ t 1 (V l t (x x t 1, V )dx ) = = 1. l t (x x t 1, v)dx λ t 1 (v)dv 27

2. Application To Digital Option Prices (Under Risk Neutrality) Digital option pays $1 if V = V, 0 otherwise. So, P t = E m [1 {V =V } x t, x t 1,...] = λ t (V ). 28

The following follows immediately from (9): E[ P t 1 P t x t 1, V = V ] = 1. (10) As in traditional tests, readily testable... 1. No additional parameters, 2. One can ignore information: for a smaller conditioning vector x b,t 1 : E[E[ P t 1 x t 1, V = V ] x b,t 1, V = V ] = E[ P t 1 x b,t 1, V = V ] = 1. P t P t 29

3. Application To Limited-Liability Securities Prices (Under Risk Neutrality) Payoff: either (i) no default/in-the-money, in which case payoff = V > 0; or (ii) if V 0, default/out-of-the-money, in which case payoff = 0. P t = E m [V 1 {V >0} x t, x t 1,...]. Assumed unbiased conditional expectations (UCE): E m [V x t, x t 1,..., V > 0] = E[V x t, x t 1,..., V > 0]. 30

Under NEEH and UCE: E[ P t P t 1 P t V x t 1, V > 0] = 0. (11) Again, this is readily verifiable... on substantially biased samples! And: 1. No additional parameters relative to traditional tests, 2. One can again ignore information, as in traditional tests. 31

Proof: E[ P t P t 1 P t V x t 1, V > 0] = E[V x t 1, V > 0] E [ P t 1 P t E[V x t, x t 1,..., V > 0] x t 1, x t 2,..., V > 0 ] [ λ t 1 ({V > 0}) E[V x t 1,..., V > 0] = E[V x t 1, V > 0] E λ t ({V > 0}) E[V x ] t, x t 1,..., V > 0] E[V x t, x t 1,..., V > 0] x t 1, x t 2,..., V > 0 = E[V x t 1, V > 0] E [ λ t 1 ({V > 0}) λ t ({V > 0}) E[V x t 1,..., V > 0] x t 1, x t 2,..., V > 0 ] = E[V x t 1, x t 2,..., V > 0] ( 1 E[ λ t 1({V > 0}) λ t ({V > 0}) x t 1, x t 2,..., V > 0] ) = 0. 32

4. Re-Introducing Risk Aversion And Your Favorite Asset Pricing Model... a no-brainer for somebody familiar with mathematical finance: Start from your asset pricing model: E m [A t R n,t x t 1 ] = 1. (Note superscript!) Re-write this in terms of prices: E m [A t P t x t 1 ] = P t 1. Adding past information does not hurt (Markov): E m [A t P t x t 1, x t 2,...] = P t 1. 33

(C d) Apply this to the pricing at times T and T 1: E m [A T P T x T 1, x T 2,...] = P T 1. Since A T 1, A T 2,..., A 0 are all in the market s information set at time T 1, we could as well have written: E m [A T A T 1 A T 2...A 0 P T x T 1, x T 2,...] = A T 1 A T 2...A 0 P T 1. An analogous operation can be done at any prior point in time: E m [A t A t 1...A 0 P t x t 1, x t 2,...] = A t 1...A 0 P t 1. 34

So, define the deflated price P t = A t A t 1...A 0 P t, then: E m [ P t x t, x t 1,...] = P t 1, and, iterating, one obtains: P t = E m [ P T x t, x t 1,...], (12) with P T = A T A T 1...A 0 P T = A T A T 1...A 0 V 1 {V >0}. 35

Define: Ṽ = A T A T 1...A 0 V, (13) then: E[ P t P t 1 P t Ṽ x t 1, x t 2,..., Ṽ > 0] = 0. (14) so that our restrictions obtain for the tilde variables! 36

Final remark: Unlike some recent work by Brennan, Xhia, Veronesi, Lewellen and others, we re not casting the learning problem in terms of an unknown dividend process, but in terms of the value of the security at some future point of time ours is more general. 37

In a nutshell... We have derived a set of restrictions that obtain even if the market has biased priors (but uses the correct likelihood). These restrictions can (need to) be tested on biased samples. The test is parsimonious, like traditional tests: (i) robust to ignoring information that the market had at the time of decision making, (ii) no more parameters (e.g., prior beliefs) need to be estimated. 38

The Paradox of Asset Pricing 1. IPO aftermarket pricing 2. Index call options VI. Re-Visiting The Historical Record 39

(Based on Bossaerts (2004)) 2. Index Call Options SPX 1991-95: big price run-up during period of lowest volatility (1995)!? Study (real) daily closing prices of SPX option contracts. At-the-money 5 weeks before expiration; nearest-maturity; followed for 4 weeks. Risk adjustment using (i) Rubinstein s log utility model; (ii) Rubinstein s generalization to power utility: A t = ( 1 R M,t ) γ. This is not derivatives pricing; options are priced directly. Relaxation of beliefs relative to traditional tests: markets may have gotten the frequency wrong that at-the-money call options expired in the money. 40

Using Rubinstein s log utility model: Selection Bias Return Measure N Daily Average (%) Intercept Slope All Contracts Standard 1102 0.925 0.031 0.954 (-1.767) (-5.526) (-3.455) Winning Contracts Standard 760 1.102 (1.608) Modified 760 2.109 (-3.258) Weighted Standard 760 0.069 (3.506) Weighted Modified 760-0.002-0.000 0.027 (-0.094) (-1.573) (-2.844) (Projections use option richness [inverted: log (strike/index)] as explanatory variable.) 41

Using Rubinstein s power-utility model with γ = 5: Selection Bias Return Measure N Daily Average (%) Intercept Slope All Contracts Standard 1102 1.407 0.033 0.954 (-2.897) (-6.439) (-3.830) Winning Contracts Standard 760 0.380 (0.586) Modified 760 2.168 (-3.759) Weighted Standard 760 0.028 (2.135) Weighted Modified 760-0.019 0.000 0.010 (-1.545) (-2.162) (-1.561) 42

Conclusion 1. Our test has power it rejects where you expect. 2. Risk adjustment can be explained in terms of simple models once obvious biases in beliefs are taken into account. 3. We need more applications. 43