FV N = PV (1+ r) N. FV N = PVe rs * N 2011 ELAN GUIDES 3. The Future Value of a Single Cash Flow. The Present Value of a Single Cash Flow

Similar documents
2018 CFA Exam Prep. IFT High-Yield Notes. Quantitative Methods (Sample) Level I. Table of Contents

KARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI

Quantitative Analysis

CFA Level I - LOS Changes

CFA Level I - LOS Changes

CFA Level 1 - LOS Changes

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii)

Probability and Random Variables A FINANCIAL TIMES COMPANY

ETHICAL AND PROFESSIONAL STANDARDS

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Homework Problems Stat 479

STUDY SESSION 2 STUDY SESSION 2

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers

Schweser Printable Answers - QM 1

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes

Chapter 7. Inferences about Population Variances

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

2018 Level I Formulas

Statistics for Managers Using Microsoft Excel 7 th Edition

Tests for One Variance

Basic Procedure for Histograms

1) 3 points Which of the following is NOT a measure of central tendency? a) Median b) Mode c) Mean d) Range

CHAPTER 2 Describing Data: Numerical

Quantitative Methods

ก CISA 1 (Certified Investment Securities Analysis: CISA Level 1)

1/2 2. Mean & variance. Mean & standard deviation

CHAPTER 5. Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS. McGraw-Hill/Irwin

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

2009/2010 CAIA Prerequisite Diagnostic Review (PDR) And Answer Key

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by. Cov(X, Y ) = E(X E(X))(Y E(Y ))

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling

So that is exactly what I did, and you are now looking at an excerpt from the study notes that will allow you to:

The Two-Sample Independent Sample t Test

Homework Problems Stat 479

Basics of Probability

CHAPTER 5. Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS. McGraw-Hill/Irwin

Contents Part I Descriptive Statistics 1 Introduction and Framework Population, Sample, and Observations Variables Quali

C03-Fundamentals of business mathematics

Chapter 7 1. Random Variables

Statistics for Business and Economics

CHAPTER 5. Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS

Lecture Data Science

Two Populations Hypothesis Testing

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

MTP_Foundation_Syllabus 2012_June2016_Set 1

Probability Distribution Unit Review

2 of PU_2015_375 Which of the following measures is more flexible when compared to other measures?

CFALA/USC REVIEW MATERIALS USING THE TI-BAII PLUS CALCULATOR

Diploma in Business Administration Part 2. Quantitative Methods. Examiner s Suggested Answers

QUANTITATIVE INVESTMENT ANALYSIS WORKBOOK

PRMIA Exam 8002 PRM Certification - Exam II: Mathematical Foundations of Risk Measurement Version: 6.0 [ Total Questions: 132 ]

Converting to the Standard Normal rv: Exponential PDF and CDF for x 0 Chapter 7: expected value of x

Chapter 5 Normal Probability Distributions

Lecture 6: Non Normal Distributions

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1

1. You are given the following information about a stationary AR(2) model:

Business Statistics 41000: Probability 3

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

Exam 2 Spring 2015 Statistics for Applications 4/9/2015

DESCRIBING DATA: MESURES OF LOCATION

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

Rationale. Learning about return and risk from the historical record and beta estimation. T Bills and Inflation

Section-2. Data Analysis

Monetary Economics Measuring Asset Returns. Gerald P. Dwyer Fall 2015

Monte Carlo Simulation (Random Number Generation)

32.S [F] SU 02 June All Syllabus Science Faculty B.A. I Yr. Stat. [Opt.] [Sem.I & II] 1

Measures of Dispersion (Range, standard deviation, standard error) Introduction

Statistics Class 15 3/21/2012

(AA12) QUANTITATIVE METHODS FOR BUSINESS

FNCE 4030 Fall 2012 Roberto Caccia, Ph.D. Midterm_2a (2-Nov-2012) Your name:

1 Exercise One. 1.1 Calculate the mean ROI. Note that the data is not grouped! Below you find the raw data in tabular form:

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable

David Tenenbaum GEOG 090 UNC-CH Spring 2005

MAKING SENSE OF DATA Essentials series

2017 Fall QMS102 Tip Sheet 2

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

Binomial Random Variables. Binomial Random Variables

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Review of the Topics for Midterm I

34.S-[F] SU-02 June All Syllabus Science Faculty B.Sc. I Yr. Stat. [Opt.] [Sem.I & II] - 1 -

STATE BANK OF PAKISTAN

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE)

CFALA/USC REVIEW MATERIALS USING THE TI-BAII PLUS CALCULATOR. Using the TI-BA2+

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Two-Sample T-Test for Superiority by a Margin

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

Tests for Two Independent Sensitivities

TABLE OF CONTENTS - VOLUME 2

Two-Sample T-Test for Non-Inferiority

Random Variables and Applications OPRE 6301

Risk and Return: Past and Prologue

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS

Statistics TI-83 Usage Handout

AUGUST 2017 STOXX REFERENCE CALCULATIONS GUIDE

Chapter 7: Random Variables and Discrete Probability Distributions

2.4 STATISTICAL FOUNDATIONS

Statistical Methods in Practice STAT/MATH 3379

Wiley 11th Hour Guide for 2015 Level I CFA Exam

Chapter 11: Inference for Distributions Inference for Means of a Population 11.2 Comparing Two Means

Transcription:

QUANTITATIVE METHODS The Future Value of a Single Cash Flow FV N = PV (1+ r) N The Present Value of a Single Cash Flow PV = FV (1+ r) N PV Annuity Due = PVOrdinary Annuity (1 + r) FV Annuity Due = FVOrdinary Annuity (1 + r) Present Value of a Perpetuity PV(perpetuity) = PMT I/Y Continuous Compounding and Future Values FV N = PVe rs * N Effective Annual Rates EAR = (1 + Periodic interest rate) N - 1 Net Present Value NPV = N CF t (1 + r) t t=0 where CF t = the expected net cash flow at time t N = the investment s projected life r = the discount rate or appropriate cost of capital Bank Discount Yield r BD = D F 360 t r BD = the annualized yield on a bank discount basis. D = the dollar discount (face value purchase price) F = the face value of the bill t = number of days remaining until maturity Holding Period Yield HPY = P 1 - P 0 + D 1 = P 1 + D 1-1 P 0 P 0 P 0 = initial price of the investment. P 1 = price received from the instrument at maturity/sale. D 1 = interest or dividend received from the investment. 2011 ELAN GUIDES 3

Effective Annual Yield EAY= (1 + HPY) 365/t - 1 HPY = holding period yield t = numbers of days remaining till maturity HPY = (1 + EAY) t/365-1 Money Market Yield R MM = 360 r BD 360 - (t r BD) R MM = HPY (360/t) Bond Equalent Yield BEY = [(1 + EAY) ^ 0.5-1] Population Mean Where, x i = is the ith observation. Sample Mean Geometric Mean Harmonic Mean with X i > 0 for i = 1, 2,..., N. 2011 ELAN GUIDES 4

Percentiles y = percentage point at which we are dividing the distribution L y = location (L) of the percentile (P y ) in the data set sorted in ascending order Range Range = Maximum value - Minimum value Mean Absolute Deviation n = number of items in the data set = the arithmetic mean of the sample Population Variance X i = observation i = population mean N = size of the population Population Standard Deviation Sample Variance Sample variance = n = sample size. 2011 ELAN GUIDES 5

Sample Standard Deviation Coefficient of Variation Coefficient of variation s = sample standard deviation = the sample mean. Sharpe Ratio s = mean portfolio return = risk-free return s = standard deviation of portfolio returns Sample skewness, also known as sample relative skewness, is calculated as: S K = n [ (n - 1)(n - 2) ] n (X i - X) 3 i = 1 s 3 As n becomes large, the expression reduces to the mean cubed deviation. n (X i - X) 3 i = 1 S K n s 3 s = sample standard deviation 2011 ELAN GUIDES 6

Sample Kurtosis uses standard deviations to the fourth power. Sample excess kurtosis is calculated as: K E = ( ) 3(n n(n + 1) (n - 1)(n - 2)(n - 3) n i = 1 (X i - X) 4 s 4-1) 2 (n - 2)(n - 3) As n becomes large the equation simplifies to: n (X i - X) 4 i = 1 K E 3 n s 4 s = sample standard deviation For a sample size greater than 100, a sample excess kurtosis of greater than 1.0 would be considered unusually high. Most equity return series have been found to be leptokurtic. Odds for an event Where the odds for are given as a to b, then: Odds for an event Where the odds against are given as a to b, then: 2011 ELAN GUIDES 7

Conditional Probabilities Multiplication Rule for Probabilities Addition Rule for Probabilities For Independant Events P(A B) = P(A), or equivalently, P(B A) = P(B) P(A or B) = P(A) + P(B) - P(AB) P(A and B) = P(A) P(B) The Total Probability Rule P(A) = P(AS) + P(AS c ) P(A) = P(A S) P(S) + P(A S c ) P(S c ) The Total Probability Rule for n Possible Scenarios P(A) = P(A S 1 ) P(S 1 ) + P(A S 2 ) P(S 2 ) +...+ P(A S n ) P(S n ) where the set of events {S 1, S 2,..., S n } is mutually exclusive and exhaustive. Expected Value n i=1 X i = one of n possible outcomes. 2011 ELAN GUIDES 8

Variance and Standard Deviation 2 (X) = E{[X - E(X)] 2 } n 2 (X) = P(X i ) [X i - E(X)] 2 i=1 The Total Probability Rule for Expected Value 1. E(X) = E(X S)P(S) + E(X S c )P(S c ) 2. E(X) = E(X S 1 ) P(S 1 ) + E(X S 2 ) P(S 2 ) +...+ E(X S n ) P(S n ) E(X) = the unconditional expected value of X E(X S 1) = the expected value of X given Scenario 1 P(S 1) = the probability of Scenario 1 occurring The set of events {S 1, S 2,..., S n } is mutually exclusive and exhaustive. Covariance Cov (XY) = E{[X - E(X)][Y - E(Y)]} Cov (R A,R B ) = E{[R A - E(R A )][R B - E(R B )]} Correlation Coefficient Corr (R A,R B ) = (R A,R B ) = Cov (R A,R B ) ( A )( B ) Expected Return on a Portfolio Portfolio Variance Variance of a 2 Asset Portfolio 2011 ELAN GUIDES 9

Variance of a 3 Asset Portfolio Bayes Formula Counting Rules The number of different ways that the k tasks can be done equals n 1 n 2 n 3 n k. Combinations Remember: The combination formula is used when the order in which the items are assigned the labels is NOT important. Permutations Discrete uniform distribution F(x) = n p(x) for the nth observation. Binomial Distribution p = probability of success 1 - p = probability of failure = number of possible combinations of having x successes in n trials. Stated differently, it is the number of ways to choose x from n when the order does not matter. Variance of a binomial random variable 2011 ELAN GUIDES 10

The Continuous Uniform Distribution P(X < a), P (X >b) = 0 P (x 1 X x 2 ) = x 2 - x 1 b - a Confidence Intervals For a random variable X that follows the normal distribution: The 90% confidence interval is The 95% confidence interval is The 99% confidence interval is - 1.65s to - 1.96s to - 2.58s to + 1.65s + 1.96s + 2.58s The following probability statements can be made about normal distributions Approximately 50% of all observations lie in the interval Approximately 68% of all observations lie in the interval Approximately 95% of all observations lie in the interval Approximately 99% of all observations lie in the interval z-score z = (observed value - population mean)/standard deviation = (x )/ Roy s safety-first criterion Minimize P(R P< R T) R P = portfolio return R T = target return Shortfall Ratio Continuously Compounded Returns = continuously compounded annual rate 2011 ELAN GUIDES 11

Sampling Error Sampling error of the mean = Sample mean - Population mean = Standard Error of Sample Mean when Population variance is Known = the standard error of the sample mean = the population standard deviation n = the sample size Standard Error of Sample Mean when Population variance is Not Known = standard error of sample mean s = sample standard deviation. Confidence Intervals Point estimate (reliability factor standard error) Point estimate = value of the sample statistic that is used to estimate the population parameter Reliability factor = a number based on the assumed distribution of the point estimate and the level of confidence for the interval (1- ). Standard error = the standard error of the sample statistic (point estimate) = The sample mean (point estimate of population mean) z /2 = The standard normal random variable for which the probability of an observation lying in either tail is / 2 (reliability factor). n = The standard error of the sample mean. = sample mean (the point estimate of the population mean) = the t-reliability factor = standard error of the sample mean s = sample standard deviation 2011 ELAN GUIDES 12

Test Statistic Test statistic = Power of a Test Sample statistic - Hypothesized value Standard error of sample statistic Power of a test = 1 - P(Type II error) Decision Rules for Hypothesis Tests Decision Do not reject H 0 Reject H 0 H 0 is True Correct decision Incorrect decision Type I error Significance level = P(Type I error) H 0 is False Incorrect decision Type II error Correct decision Power of the test = 1 - P(Type II error) Confidence Interval [ ( sample critical standard population sample ) ] statistic - ( ) ( ) value error parameter ( ) [ ( ) statistic ] + critical standard ( value ) ( error ) x - (z ) ( ) µ 0 x + (z ) ( ) Summary Type of test Null hypothesis Alternate hypothesis Reject null if Fail to reject null if P-value represents One tailed (upper tail) test H 0 : µ µ 0 H a : µ µ 0 Test statistic > critical value Test statistic critical value Probability that lies above the computed test statistic. One tailed (lower tail) test H 0 : µ µ 0 H a : µ µ 0 Test statistic < critical value Test statistic critical value Probability that lies below the computed test statistic. Two-tailed H 0 : µ = µ 0 H a : µ µ 0 Test statistic < Lower critical value Test statistic > Upper critical value Lower critical value test statistic Upper critical value Probability that lies above the positive value of the computed test statistic plus the probability that lies below the negative value of the computed test statistic 2011 ELAN GUIDES 13

t-statistic t-stat = x - µ0 x = sample mean µ 0= hypothesized population mean s = standard deviation of the sample n = sample size z-statistic z-stat = x - µ0 x = sample mean µ 0= hypothesized population mean = standard deviation of the population n = sample size z-stat = x - µ0 x = sample mean µ 0= hypothesized population mean s = standard deviation of the sample n = sample size Tests for Means when Population Variances are Assumed Equal 2 s 1 = variance of the first sample 2 s 2 = variance of the second sample n 1 = number of observations in first sample n 2 = number of observations in second sample degrees of freedom = n 1 + n 2-2 2011 ELAN GUIDES 14

Tests for Means when Population Variances are Assumed Unequal t-stat 2 s 1 = variance of the first sample 2 s 2 = variance of the second sample n 1 = number of observations in first sample n 2 = number of observations in second sample Paired Comparisons Test d = sample mean difference s d = standard error of the mean difference= s d = sample standard deviation n = the number of paired observations Hypothesis Tests Concerning the Mean of Two Populations - Appropriate Tests Population distribution Relationship between samples Assumption regarding variance Type of test Normal Independent Equal t-test pooled variance Normal Independent Unequal t-test with variance not pooled Normal Dependent N/A t-test with paired comparisons 2011 ELAN GUIDES 15

Chi Squared Test-Statistic n = sample size s 2 = sample variance 2 = hypothesized value for population variance 0 Test-Statistic for the F-Test 2 s 1 = Variance of sample drawn from Population 1 2 s 2 = Variance of sample drawn from Population 2 Hypothesis tests concerning the variance. Hypothesis Test Concerning Variance of a single, normally distributed population Equality of variance of two independent, normally distributed populations Appropriate test statistic Chi-square stat F-stat Setting Price Targets with Head and Shoulders Patterns Price target = Neckline - (Head - Neckline) Setting Price Targets for Inverse Head and Shoulders Patterns Price target = Neckline + (Neckline - Head) Momentum or Rate of Change Oscillator M = (V - Vx) 100 M = momentum oscillator value V = last closing price Vx = closing price x days ago, typically 10 days 2011 ELAN GUIDES 16

Relative Strength Index 100 RSI = 100 1 + RS (Up changes for the period under consideration) where RS = ( Down changes for the period under consideration ) Stochastic Oscillator C L14 %K = 100 ( H14 L14 ) C = last closing price L14 = lowest price in last 14 days H14 = highest price in last 14 days %D (signal line) = Average of the last three %K values calculated daily. Short Interest ratio Short interest Short interest ratio = Average daily trading volume Arms Index Number of advancing issues / Number of declining issues Arms Index = Volume of advancing issues / Volume of declining issues 2011 ELAN GUIDES 17