I. Warnings for annuities and

Similar documents
Time Value of Money. Part III. Outline of the Lecture. September Growing Annuities. The Effect of Compounding. Loan Type and Loan Amortization

Lecture 3. Chapter 4: Allocating Resources Over Time

Chapter 4. Discounted Cash Flow Valuation

Mortgages & Equivalent Interest

Time Value of Money. Lakehead University. Outline of the Lecture. Fall Future Value and Compounding. Present Value and Discounting

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

Simple Interest. Simple Interest is the money earned (or owed) only on the borrowed. Balance that Interest is Calculated On

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

FinQuiz Notes

Unit 9 Financial Mathematics: Borrowing Money. Chapter 10 in Text

Unit 9 Financial Mathematics: Borrowing Money. Chapter 10 in Text

Financial Management I

3. Time value of money. We will review some tools for discounting cash flows.

6.1 Simple and Compound Interest

3. Time value of money

Copyright 2015 Pearson Education, Inc. All rights reserved.

Calculator practice problems

Unit 9: Borrowing Money

The three formulas we use most commonly involving compounding interest n times a year are

Solutions to EA-1 Examination Spring, 2001

1. Draw a timeline to determine the number of periods for which each cash flow will earn the rate-of-return 2. Calculate the future value of each

Chapter 4. Discounted Cash Flow Valuation

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS

A mortgage is an annuity where the present value is the amount borrowed to purchase a home

7.7 Technology: Amortization Tables and Spreadsheets

Chapter 9: Consumer Mathematics. To convert a percent to a fraction, drop %, use percent as numerator and 100 as denominator.

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University,

Chapter 5. Interest Rates ( ) 6. % per month then you will have ( 1.005) = of 2 years, using our rule ( ) = 1.

Time Value of Money. All time value of money problems involve comparisons of cash flows at different dates.

The Regular Payment of an Annuity with technology

APPENDIX 3 TIME VALUE OF MONEY. Time Lines and Notation

Solutions to Questions - Chapter 3 Mortgage Loan Foundations: The Time Value of Money

Interest: The money earned from an investment you have or the cost of borrowing money from a lender.

CHAPTER 2 TIME VALUE OF MONEY

CHAPTER 4 TIME VALUE OF MONEY

SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS. EXAM FM SAMPLE QUESTIONS Interest Theory

Chapter 2 Time Value of Money

Chapter 5 Time Value of Money

Example. Chapter F Finance Section F.1 Simple Interest and Discount

Section 5.1 Simple and Compound Interest

Finance Notes AMORTIZED LOANS

FINA 1082 Financial Management

Sample Investment Device CD (Certificate of Deposit) Savings Account Bonds Loans for: Car House Start a business

Running head: THE TIME VALUE OF MONEY 1. The Time Value of Money. Ma. Cesarlita G. Josol. MBA - Acquisition. Strayer University

The Time Value. The importance of money flows from it being a link between the present and the future. John Maynard Keynes

Chapter 2 Time Value of Money ANSWERS TO END-OF-CHAPTER QUESTIONS

A central precept of financial analysis is money s time value. This essentially means that every dollar (or

CHAPTER 8. Valuing Bonds. Chapter Synopsis

Finance 402: Problem Set 1

Understanding Interest Rates

Introduction to the Canadian Mortgage Industry Module 4 Workbook Answer Key

hp calculators HP 20b Loan Amortizations The time value of money application Amortization Amortization on the HP 20b Practice amortizing loans

Disclaimer: This resource package is for studying purposes only EDUCATION

Name Date. Which option is most beneficial for the bank, and which is most beneficial for Leandro? A B C N = N = N = I% = I% = I% = PV = PV = PV =

Full file at

The Time Value of Money

The car Adam is considering is $35,000. The dealer has given him three payment options:

Introduction to the Hewlett-Packard (HP) 10B Calculator and Review of Mortgage Finance Calculations

JEM034 Corporate Finance Winter Semester 2017/2018

Future Value of Multiple Cash Flows

Debt. Last modified KW

Principles of Corporate Finance

Activity 1.1 Compound Interest and Accumulated Value

Introduction. Once you have completed this chapter, you should be able to do the following:

Chapter 15B and 15C - Annuities formula

Copyright 2015 by the McGraw-Hill Education (Asia). All rights reserved.

Getting Started Pg. 450 # 1, 2, 4a, 5ace, 6, (7 9)doso. Investigating Interest and Rates of Change Pg. 459 # 1 4, 6-10

The time value of money and cash-flow valuation

[Image of Investments: Analysis and Behavior textbook]

Review Class Handout Corporate Finance, Sections 001 and 002

Texas Instruments 83 Plus and 84 Plus Calculator

Finance 100 Problem Set Bonds

Chapter 02 Test Bank - Static KEY

Copyright 2015 by the UBC Real Estate Division

Math 1130 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

TIME VALUE OF MONEY. (Difficulty: E = Easy, M = Medium, and T = Tough) Multiple Choice: Conceptual. Easy:

Mathematics of Finance

AFP Financial Planning & Analysis Learning System Session 1, Monday, April 3 rd (9:45-10:45) Time Value of Money and Capital Budgeting

Real Estate. Refinancing

Stock and Bond Valuation: Annuities and Perpetuities

Lectures 2-3 Foundations of Finance

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Global Financial Management

บทท 3 ม ลค าของเง นตามเวลา (Time Value of Money)

(Refer Slide Time: 2:20)

Introduction to Corporate Finance, Fourth Edition. Chapter 5: Time Value of Money

Appendix A Financial Calculations

ACCT 652 Accounting. Payroll accounting. Payroll accounting Week 8 Liabilities and Present value

Lectures 1-2 Foundations of Finance

Finance 2400 / 3200 / Lecture Notes for the Fall semester V.4 of. Bite-size Lectures. on the use of your. Hewlett-Packard HP-10BII

Casio 9750G PLUS Calculator

Quantitative. Workbook

Practice Test Questions. Exam FM: Financial Mathematics Society of Actuaries. Created By: Digital Actuarial Resources

Economics 135. Bond Pricing and Interest Rates. Professor Kevin D. Salyer. UC Davis. Fall 2009

LO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs.

Review for Exam #2. Review for Exam #2. Exam #2. Don t Forget: Scan Sheet Calculator Pencil Picture ID Cheat Sheet.

Lesson 24 Annuities. Minds On

Transcription:

Outline I. More on the use of the financial calculator and warnings II. Dealing with periods other than years III. Understanding interest rate quotes and conversions IV. Applications mortgages, etc. 0 I. Warnings for annuities and perpetuities Remember the PV formulas given for annuities and perpetuities always discount the cash flows to exactly one period before the first cash flow. If the cash flows begin at period t, then you must divide the PV from our formula by (1+r) t-1 to get PV 0. Note: this works even if t is a fraction. 1 1

Example A retirement annuity of 30 annual payments (each payment is $50,000) begins 20 years from today. The value of that annuity 20 years from today is. The value of that annuity 19 years from today is. The value of that annuity today is. (r=12%) 2 Be careful of the number of annuity payments Count the number of payments in an annuity. If the first payment is in period 1 and the last is in period 2, there are obviously 2 payments. How many payments are there if the 1 payment is in period 12 and the st last payment is in period 21 (answer is 10 use your fingers). How about if the 1 payment is now (period st 0) and the last payment is in period 15 (answer is 16 payments). If the first cash flow is at period t and the last cash flow is at period T, then there are T-t+1 cash flows in the annuity. 3 2

Example Five years from now Mary will deposit $1,000 into a savings fund for her daughter Margaret. Each year she will make an additional $1,000 deposit. The last deposit will be twenty years from now. How much will accumulate into the savings fund by the time the last deposit is made? What is the present value of the cash flows today? 4 Be careful of the wording of when a cash flow occurs A cash flow occurs at the end of the third period. A cash flow occurs at time period three. A cash flow occurs at the beginning of the fourth period. 0 1 2 3 4 C Each of the above statements refers to the same point in time! If in doubt, draw a time line. 5 3

Example What is the value at the end of the 12th year of $100,000 that is invested at the beginning of the 5th year? 6 II. Dealing with periods other than years Definition: Effective interest rates are returns with interest compounded once over the period of quotation. Examples: 10% per year compounded yearly 0.5% per month compounded monthly PV and FV Calculations for a single cash flow As long as you have an effective interest rate there is only one thing to ensure: set the number of periods for PV or FV calculation in the same units as the effective rate s period of quotation. 7 4

Examples You expect to receive $50,000 in 90 days. What is the PV if your relevant opportunity cost of capital is an effective rate of 6% per year? Note if the you are told it is an effective rate of 6% per year, then this implies 6% per year compounded yearly. You have just invested $100,000 and expect your return to be 4% per quarter compounded quarterly. How much do you expect to accumulate after 5 years? 8 Annuities and perpetuities The annuity and perpetuity formulae require the rate used to be an effective rate and, in particular, the effective rate must be quoted over the same time period as the time between cash flows. In effect: If cash flows are yearly, use an effective rate per year If cash flows are monthly, use an effective rate per month If cash flows are every 14 days, use an effective rate per 14 days If cash flows are daily, use an effective rate per day If cash flows are every 5 years, use an effective rate per 5 years. Etc. 9 5

Example You are obtaining a car loan from your bank and the loan will be repaid in 5 years of monthly payments beginning in one month. The amount borrowed is $20,000. Given the rate that the bank quoted, you have determined the effective monthly interest rate to be 0.75%. What are your monthly payments? 10 III. Understanding Interest Rate Quotes and Conversions The TVM formulae we have used all require rates that are effective. Unfortunately, rates are rarely quoted in a way that we can input, as is, into our TVM formulae or calculator functions. Thus we must be competent in converting between the rates that are quoted to us and the equivalent rates that are necessary for our calculations. 11 6

Interest Rate Conversions Step 1: finding the implied effective rate Identify how the rate is quoted and, if not an effective rate, convert into the implied effective rate. Examples: 10% per year compounded yearly This rate is already effective, so there is nothing to do for step 1. 60% per year compounded monthly This rate is not effective, but it implies by definition an effective rate of 5% per month Note: the quoted rate of 60% per year with monthly compounding is compounded 12 times per the quotation period of one year. Thus the implied effective rate is 60% 12= 5% and this implied effective rate is over a period of one year 12 = one month. 12 Step 1: finding the implied effective rate In words, step 1 can be described as follows: Take both the quoted rate and its quotation period and divide by the compounding frequency to get the implied effective rate and the implied effective rate s quotation period. The quoted rate of 60% per year with monthly compounding is compounded 12 times per the quotation period of one year. Thus the implied effective rate is 60% 12= 5% and this implied effective rate is over a period of one year 12= one month. 13 7

Step 1: additional examples to find the implied effective rate 16% per year compounded quarterly 9% per year compounded semi-annually 11% per year compounded bi-yearly (every two years) 100% per decade compounded every 10 years 14 Step 2: Converting to the desired effective rate Example: if you are doing loan calculations with quarterly payments, then the annuity formula requires an effective rate per quarter. Once we have done step 1, if our implied effective rate is not our desired effective rate, then we need to convert to our desired effective rate. 15 8

Step 2: continued Converting between equivalent effective rates Use the example of 60% per year compounded monthly and the implied effective rate of 5% per month... we need an effective rate per quarter. Consider how $1 grows after 3 months... Month: 1 2 3 months Quarter: 1 quarter $1 $1.05 $1.1025 x 1.05 x 1.05 x 1.05 x 1.157625 $1.157625 16 Step 2: continued Effective to effective conversion In the previous example, 5% per month is equivalent to 15.7625% per 3 months (or quarter year). This result is due to the fact that (1+.05) 3 =1.157625 As a formula this can be represented as Ld Ld Lg Lg (1+ rg ) = (1+ rd ) or rd = (1+ rg ) 1 where r g is the given effective rate, r d is the desired effective rate. L g is the quotation period of the given rate and L d is the quotation period of the desired rate, thus L d /L g is the length of the desired quotation period in terms of the given quotation period. 17 9

Step 2: additional examples to find the desired effective rate 9% per year compounded semi-annually; from step one this gives us 4.5% per six months (effective rate). Suppose we desire an equivalent effective rate per month Suppose we desire an equivalent effective rate per year 18 Step 3? For the purpose of doing TVM calculations, generally we are ready after doing steps 1 and 2 as we have obtained our desired effective rate and can now use it in the TVM formulae. Unfortunately, there are some circumstances when we desire a final rate quoted in a manner that is not effective here a third step is necessary. 19 10

Step 3: finding the final quoted rate Identify how the final rate is to be quoted and, if not an effective rate, convert from the desired effective rate (determined in step 2) into the desired quoted rate. Examples: Desired rate is to be quoted as a rate per quarter compounded quarterly This rate is already effective and was determined in step 2 (where, using a previous example, we calculated 15.7625% per quarter), so there is nothing to do for step 3. Desired rate is to be quoted as a rate per year compounded quarterly This rate is not effective, but 15.7625% per quarter (from step 2) implies a desired quoted rate per year compounded quarterly of 63.05% Note: the desired quoted rate is quoted per year with quarterly compounding; i.e., compounded 4 times per the quotation period of one year. Thus the desired quoted rate is 15.7625% per quarter x 4 = 63.05% quoted over one year (= 4 x one quarter of a year) compounded quarterly. 20 Step 3: finding the final quoted rate In words, step 3 can be described as follows: Take both the implied effective rate and its quotation period and multiply by the compounding frequency of the desired final quoted rate. This results in the desired final quoted rate and its quotation period. In our example, the desired quoted rate is a rate per year compounded quarterly. Therefore the compounding frequency is 4. We multiply 15.7625% per quarter by 4 to get 63.05% per year compounded quarterly. 21 11

Step 3: additional examples Given an effective rate of 15.7625% per quarter, find the following: The rate per six months compounded quarterly The rate per 2 years compounded quarterly The rate per month compounded quarterly The rate per 1.5 months compounded quarterly 22 Interest rate conversions: additional examples Bank of Montreal is offering car loans at 8% per year compounded monthly. You manage Catfish Credit Union where rates are quoted as per year compounded semiannually. What is the most you could quote to remain competitive with Bank of Montreal? Step 1: Note: since your final quoted rate will be compounded semiannually, you would like to (in step 2) convert the B of M rate into an effective rate per 6 months. So step 2 depends on the desired outcome in step 3! Step 3 23 12

Interest rate conversions continuous compounding self study Consider steps 1 and 2 combined together in a formula to convert a quoted rate per period compounded m times into an effective rate over the same quotation period Do not use this formula. m rquoted 1 = + reffective + m 1 Use the 3-step method shown in the prior slides as that method works generally and this formula only works in one special situation. Note: this formula only handles steps 1 and 2 when the final effective rate has the same quotation period as the initial quoted rate. This formula is not recommended as it does NOT work in most situations and is only shown because of the derivation that follows. 24 Continuous Compounding self study (continued) Using the previous formula and mathematical limits As m,1+ r As m, r quoted effective = e is said to be the continuously compounded rate of interest r quoted To convert in the other direction... from r effective per period to r per period with continuous compounding, r per period with continuous compounding = ln(1+ r effective per period ) 25 13

Continuous Compounding self study examples to try What is the effective annual rate, given a quoted rate of 20% per year with Monthly compounding answer=21.939108% Daily compounding answer=22.133586% Compounding every hour answer=22.139997% Continuous compounding answer=22.140276% What is the rate per year compounded continuously if the effective annual rate is 10% answer=9.531018% 50% answer=40.54651% 100% answer=69.31472% 26 IV. Applications of TVM Quotations on mortgages Quotations on bonds Quotations on credit cards Quotations on personal loans and car loans Mortgage and loan amortizations 27 14

Canadian Mortgage Quotes Canadian mortgages are quoted as rates per year compounded semiannually. In this course, unless otherwise noted, assume all mortgage quotes are quoted in the above manner. (Note, some of the text problems may not make this assumption, but all class assignments and exams will make this assumption unless otherwise noted). Normally a constant series of monthly payments is required to repay the mortgage. What interest rate is required to do TVM calculations for the mortgage if the quoted rate is 6%? 28 Bond Yields A bond s yield is essentially the IRR of the bond and is quoted as a rate per year compounded semiannually. In this course, unless otherwise noted, assume bond yields are quoted in the above manner. (Note, some of the text problems may not make this assumption, but all class assignments and exams will make this assumption unless otherwise noted). Most corporate and government bonds have constant semiannual coupon payments and a lump sum terminal payment. What interest rate is required to do TVM calculations on the bond coupons if the yield is quoted as 8%? 29 15

Credit Cards CIBC Visa quotes the annual interest rate of 19.50% and the daily interest rate of 0.05342%. How are the two rates quoted? What is the effective rate per year charged by CIBC Visa? 30 Personal Loans and Car Loans Most banks quote the interest rates on personal loans and car loans as rates per year compounded monthly. Since personal loans and car loans generally require equal monthly payments, what interest rate would be used in TVM formulae if the quoted rate was 12%? 31 16

Mortgage and loan amortizations A mortgage contract specifies the quoted rate and the amortization period for the payments. The amortization period is often longer than the duration of the contract. Thus we must determine the payments, the amount of interest and principal paid each month, and the outstanding principal at the end of the contract. Example: You have just negotiated a 5 year mortgage on $100,000 amortized over 30 years at a rate of 8%. What are the monthly payments? What are the principal and interest payments each month for the first 3 months of payments? How much will be left at the end of the 5 year contract? If the mortgage terms do not change over then entire amortization period, how much interest and principal reduction result from the 300 th payment? 32 Mortgage example First determine the relevant effective rate for TVM calculations. Next determine the monthly payment. Now utilize the table on the next page to understand how a mortgage amortization schedule works. 33 17

Mortgage amortization schedule Column: Month 0 1 2 3 4 A Principal outstanding at the beginning of the month $100,000.00 $99,931.11 $99,861.77 $99,791.97 B Interest charged during the month = A r% $655.82 $655.37 $654.91 $654.46 C Monthly payment = E0 anr% $724.71 $724.71 $724.71 $724.71 D Principal reduction with monthly payment = C - B $68.89 $69.34 $69.80 $70.26 E Principal outstanding at the end of the month (after the payment) = A - D $100,000.00 $99,931.11 $99,861.77 $99,791.97 $99,721.71 Note: as time goes by, the principal outstanding is reduced and therefore the interest charge per month drops. This results in more of the monthly payment going toward principal reduction as time elapses. The way the annuity payments are calculated, the last payment will have just enough principal reduction to repay the remaining principal owed and then the loan will be repaid. 34 Mortgage continued How much will be left at the end of the 5-year contract? After 5 years of payments (60 payments) there are 300 payments remaining in the amortization. The principal remaining outstanding is just the present value of the remaining payments. How much interest and principal reduction result from the 300 th payment? When the 299 th payment is made, there are 61 payments remaining. The PV of the remaining 61 payments is the principal outstanding at the beginning of the 300 th period and this can be used to calculate the interest charge which can then be used to calculate the principal reduction. 35 18

Summary and conclusions Cash flows that occur in different time periods cannot be added together unless they are brought to one common time period. We usually use PV to do this and sometimes FV. PV and FV calculations were done for single cash flows, constant annuities and perpetuities and growing annuities and perpetuities. In addition, we used the concepts of NPV and IRR. For annuities and perpetuities, we must ensure the discount rate is effective and quoted over a period the same as the time period between cash flows. TVM principles are useful for analyzing consumption and investment decisions. TVM principles are also useful for working with loan and mortgage amortizations. If you understand TVM principles, you do not need to blindly rely on another party to determine value or interest costs. You know what factors affect these and you can determine reasonable numbers for yourself. 36 19