Asymptotics: Consistency and Delta Method

Similar documents
Lecture 9: The law of large numbers and central limit theorem

14.30 Introduction to Statistical Methods in Economics Spring 2009

Exam 1 Spring 2015 Statistics for Applications 3/5/2015

5. Best Unbiased Estimators

18.S096 Problem Set 5 Fall 2013 Volatility Modeling Due Date: 10/29/2013

5 Statistical Inference

Summary. Recap. Last Lecture. .1 If you know MLE of θ, can you also know MLE of τ(θ) for any function τ?

Introduction to Probability and Statistics Chapter 7

STAT 135 Solutions to Homework 3: 30 points

1 Estimating sensitivities

x satisfying all regularity conditions. Then

0.1 Valuation Formula:

Lecture 5 Point Es/mator and Sampling Distribu/on

Rafa l Kulik and Marc Raimondo. University of Ottawa and University of Sydney. Supplementary material

Topic 14: Maximum Likelihood Estimation

Lecture 4: Parameter Estimation and Confidence Intervals. GENOME 560 Doug Fowler, GS

Exam 2. Instructor: Cynthia Rudin TA: Dimitrios Bisias. October 25, 2011

Kernel Density Estimation. Let X be a random variable with continuous distribution F (x) and density f(x) = d

Sequences and Series

ASYMPTOTIC MEAN SQUARE ERRORS OF VARIANCE ESTIMATORS FOR U-STATISTICS AND THEIR EDGEWORTH EXPANSIONS

Unbiased estimators Estimators

Combining imperfect data, and an introduction to data assimilation Ross Bannister, NCEO, September 2010

Parametric Density Estimation: Maximum Likelihood Estimation

An Empirical Study of the Behaviour of the Sample Kurtosis in Samples from Symmetric Stable Distributions

ECON 5350 Class Notes Maximum Likelihood Estimation

11.7 (TAYLOR SERIES) NAME: SOLUTIONS 31 July 2018

Probability and statistics

Topic-7. Large Sample Estimation

SELECTING THE NUMBER OF CHANGE-POINTS IN SEGMENTED LINE REGRESSION

Quantitative Analysis

AMS Portfolio Theory and Capital Markets

Solutions to Problem Sheet 1

point estimator a random variable (like P or X) whose values are used to estimate a population parameter

Sampling Distributions & Estimators

ST 305: Exam 2 Fall 2014

BOUNDS FOR TAIL PROBABILITIES OF MARTINGALES USING SKEWNESS AND KURTOSIS. January 2008

A Bayesian perspective on estimating mean, variance, and standard-deviation from data

Lecture 5: Sampling Distribution

The Limit of a Sequence (Brief Summary) 1

INTERVAL GAMES. and player 2 selects 1, then player 2 would give player 1 a payoff of, 1) = 0.

Maximum Empirical Likelihood Estimation (MELE)

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 2

Sampling Distributions and Estimation

Inferential Statistics and Probability a Holistic Approach. Inference Process. Inference Process. Chapter 8 Slides. Maurice Geraghty,

Chpt 5. Discrete Probability Distributions. 5-3 Mean, Variance, Standard Deviation, and Expectation

FINM6900 Finance Theory How Is Asymmetric Information Reflected in Asset Prices?

Chapter 8. Confidence Interval Estimation. Copyright 2015, 2012, 2009 Pearson Education, Inc. Chapter 8, Slide 1

Statistics for Economics & Business

1 Basic Growth Models

Binomial Model. Stock Price Dynamics. The Key Idea Riskless Hedge

. The firm makes different types of furniture. Let x ( x1,..., x n. If the firm produces nothing it rents out the entire space and so has a profit of

Quantitative Analysis

Strong consistency of nonparametric Bayes density estimation on compact metric spaces

Fourier Transform in L p (R) Spaces, p 1

Hopscotch and Explicit difference method for solving Black-Scholes PDE

1 Random Variables and Key Statistics

EVEN NUMBERED EXERCISES IN CHAPTER 4

These characteristics are expressed in terms of statistical properties which are estimated from the sample data.

AY Term 2 Mock Examination

Sampling Distributions and Estimation

Random Sequences Using the Divisor Pairs Function

Simulation Efficiency and an Introduction to Variance Reduction Methods

A DOUBLE INCREMENTAL AGGREGATED GRADIENT METHOD WITH LINEAR CONVERGENCE RATE FOR LARGE-SCALE OPTIMIZATION

B = A x z

Monetary Economics: Problem Set #5 Solutions

EXERCISE - BINOMIAL THEOREM

= α e ; x 0. Such a random variable is said to have an exponential distribution, with parameter α. [Here, view X as time-to-failure.

Diener and Diener and Walsh follow as special cases. In addition, by making. smooth, as numerically observed by Tian. Moreover, we propose the center

STAT/MATH 395 PROBABILITY II

NOTES ON ESTIMATION AND CONFIDENCE INTERVALS. 1. Estimation

1 Estimating the uncertainty attached to a sample mean: s 2 vs.

Lecture 4: Probability (continued)

Research Paper Number From Discrete to Continuous Time Finance: Weak Convergence of the Financial Gain Process

Subject CT5 Contingencies Core Technical. Syllabus. for the 2011 Examinations. The Faculty of Actuaries and Institute of Actuaries.

1 The Black-Scholes model

Quasi-maximum likelihood estimation for multiple volatility shifts

Institute of Actuaries of India Subject CT5 General Insurance, Life and Health Contingencies

The Valuation of the Catastrophe Equity Puts with Jump Risks

Bootstrapping high-frequency jump tests

Bayes Estimator for Coefficient of Variation and Inverse Coefficient of Variation for the Normal Distribution

A random variable is a variable whose value is a numerical outcome of a random phenomenon.

Threshold Function for the Optimal Stopping of Arithmetic Ornstein-Uhlenbeck Process

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp )

Bootstrapping high-frequency jump tests

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Outline. Populations. Defs: A (finite) population is a (finite) set P of elements e. A variable is a function v : P IR. Population and Characteristics

Estimation of security excess returns from derivative prices and testing for risk-neutral pricing

Estimation of Population Variance Utilizing Auxiliary Information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

arxiv: v3 [math.st] 3 May 2016

Statistics for Business and Economics

. (The calculated sample mean is symbolized by x.)

Pricing of high-dimensional American options by neural networks

arxiv: v3 [q-fin.mf] 5 Jun 2015

We analyze the computational problem of estimating financial risk in a nested simulation. In this approach,

Dr. Maddah ENMG 624 Financial Eng g I 03/22/06. Chapter 6 Mean-Variance Portfolio Theory

Supplement to Adaptive Estimation of High Dimensional Partially Linear Model

r i = a i + b i f b i = Cov[r i, f] The only parameters to be estimated for this model are a i 's, b i 's, σe 2 i

Online appendices from The xva Challenge by Jon Gregory. APPENDIX 10A: Exposure and swaption analogy.

Saddlepoint Approximation of the Cost-Constrained Random Coding Error Probability

Transcription:

ad Delta Method MIT 18.655 Dr. Kempthore Sprig 2016 1 MIT 18.655 ad Delta Method

Outlie Asymptotics 1 Asymptotics 2 MIT 18.655 ad Delta Method

Cosistecy Asymptotics Statistical Estimatio Problem X 1,..., X iid P θ, θ Θ. q(θ): target of estimatio. qˆ(x 1,..., X ): estimator of q(θ). Defiitio: qˆ is a cosistet estimator of q(θ), i.e., P θ qˆ(x 1,..., X ) q(θ) if for every E > 0, lim P θ ( q (X 1,..., X ) q(θ) > E) = 0. Example: Cosider P θ such that: E [X 1 θ] = θ q(θ) = θ i=1 X i qˆ = = X Whe is ˆq cosistet for θ? 3 MIT 18.655 ad Delta Method

Cosistecy: Example Asymptotics Example: Cosistecy of sample mea ˆq (X 1,..., X ) = X = X. If Var(X 1 θ) = σ 2 (θ) <, apply Chebychev s Iequality. For ay E > 0: Var(X θ) σ 2 (θ)/e 2 P θ ( X E) = 0 E 2 If Var(X 1 θ) =, X is cosistet if E [ X 1 θ] <. Proof: Levy Cotiuity Theorem. 4 MIT 18.655 ad Delta Method

Cosistecy: A Stroger Defiitio Defiitio: qˆ is a uiformly cosistet estimator of q(θ), if for every E > 0, lim sup[p θ ( q (X 1,..., X ) q(θ) > E)] = 0. θ Θ Example: Cosider the sample mea ˆq = X for which E [X θ] = θ Var[X θ] = σ 2 (θ). Proof of cosistecy of ˆq = X exteds to uiform cosistecy if sup θ Θ σ 2 (θ) M < ( ). Examples Satisfyig ( ) X i i.i.d. Beroulli(θ). X i i.i.d. Normal(µ, σ 2 ), where θ = (µ, σ 2 ) Θ = {θ} = (, + ) [0, M], for fiite M <. 5 MIT 18.655 ad Delta Method

Cosistecy: The Strogest Defiitio Defiitio: i qˆ is a strogly cosistet estimator t of q(θ), if P θ lim q (X 1,..., X ) q(θ) E)] = 1, for every E > 0. Compare to: a.s. qˆ q(θ). (a.s. almost surely ) Defiitio: qˆ is a (weakly) cosistet estimator of q(θ), if for every E > 0, lim [P θ ( q (X 1,..., X ) q(θ) > E)] = 0. 6 MIT 18.655 ad Delta Method

Cosistecy of Plug-I Estimators Plug-I Estimators: Discrete Case Discrete outcome space of size K : X = {x 1,..., x K } X 1,..., X iid P θ, θ Θ, where θ = (p 1,..., p K ) P(X 1 = x k θ) = p k, k = 1,..., K K p k 0 for k = 1,..., K ad p k = 1. Θ = S K (K -dimesioal simplex). Defie the empirical distributio: θˆ = (ˆp 1,..., pˆk ) where i=1 1(X i = x k ) N k pˆk = ˆθ S K. 1 7 MIT 18.655 ad Delta Method

Cosistecy of Plug-I Estimators Propositio/Theorem (5.2.1) Suppose X = (X 1,..., X ) is a radom sample of size from a discrete distributio θ S. The: ˆθ is uiformly cosistet for θ S. For ay cotiuous fuctio q : S R d, qˆ = q(θˆ) is uiformly cosistet for q(θ). Proof: For ay E > 0, P θ ( θˆ θ E) 0. This follows upo otig that: {x : θˆ(x ) θ 2 < E 2 } K k=1{x : (θˆ(x ) θ) k 2 < E 2 /K} So K P({x : θˆ(x ) θ 2 E 2 } k=1 P({x : (θˆ(x ) θ) k 2 E 2 /K} K 1 K 2 k=1 4 /(E2 /K) = 4: 2 8 MIT 18.655 ad Delta Method

Cosistecy of Plug-I Estimators Proof (cotiued): q( ): cotiuous o compact S = q( ) uiformly cotiuous o S. For every E > 0, there exists δ(e) > 0 such that: θ 1 θ 0 < δ(e) = q(θ 1 ) q(θ 0 ) < E, uiformly for all θ 0, θ 1 Θ. It follows that {x : q(θˆ(x)) q(θ) < E} c {x : θˆ θ < δ(e)} c = P θ [ qˆ q(θ) E] P θ [ θˆ θ δ(e)] Note: uiform cosistecy ca be show; see B&D. 9 MIT 18.655 ad Delta Method

Cosistecy of Plug-I Estimators Propositio 5.2.1 Suppose: Defie: where The: g = (g 1,..., g d ) : X Y R d. E [ g j (X 1 ) θ] <, for j = 1,..., d, for all θ Θ. m j (θ) E [g j (X 1 ) θ], for j = 1,..., d. q(θ) = h(m(θ)), m(θ) = (m 1 (θ),..., m d (θ)) h : Y R p, is cotiuous. 1 I qˆ = h(ḡ) = h g(x i ) i=1 is a cosistet estimator of q(θ). 10 MIT 18.655 ad Delta Method

Cosistecy of Plug-I Estimators Propositio 5.2.1 Applied to No-Parametric Models P = {P : E P ( g(x 1 ) ) < } ad ν(p) = h(e P g(x 1 )) P ν(pˆ) ν(p) where Pˆ is empirical distributio. 11 MIT 18.655 ad Delta Method

Cosistecy of MLEs i Expoetial Family Theorem 5.2.2 Suppose: The: P is a caoical expoetial family of rak d geerated by T = (T 1 (X ),..., T d (X )) T. p(x η) = h(x)exp{t(x)η A(η)} E = {η} is ope. X 1,..., X are i.i.d P η P P η [ the MLE ˆη exists] 1. ηˆ is cosistet. 12 MIT 18.655 ad Delta Method

Cosistecy of MLEs i Expoetial Family Proof: ηˆ(x 1,..., X ) exists iff T = 1 T(X i )/ C T o. If η 0 is true, the t 0 = E [T(X 1 ) η 0 ] C T o ad A(η 0 ) = t 0. By defiitio of the iterior of the covex support, there exists δ > 0: S δ = {t : t E η0 [T(X 1 ) < δ} C o. T By the WLLN: I 1 Pη0 T = T(X i ) E η0 [T(X 1 )] i=1 = P η0 T C T o 1. ηˆ exists if it solves A(η) = T, i.e., if T C T o, The map η A(η) is 1-to-1 o C 0 ad cotiuous o E, so T the iverse fuctio A 1 is cotiuous, ad Prop. 5.2.1 applies. 13 MIT 18.655 ad Delta Method

Cosistecy of Miimum-Cotrast Estimates Miimum-Cotrast Estimates X 1,..., X iid P θ, θ Θ R d. ρ(x, θ) : X Θ R, a cotrast fuctio D(θ 0, θ) = E [ρ(x, θ) θ 0 ]: the discrepacy fuctio θ = θ 0 uiquely miimizes D(θ 0, θ). The Miimum-Cotrast Estimate θˆ miimizes: 1 I ρ (X, θ) = ρ(x i, θ). i=1 Theorem 5.2.3 Suppose 1 I P θ0 sup{ ρ(xi, θ) D(θ 0, θ)} 0 θ Θ i=1 if {D(θ 0, θ)} > D(θ 0, θ 0 ), for all E > 0. θ θ 0 : The θˆ is cosistet. 14 MIT 18.655 ad Delta Method

Outlie Asymptotics 1 Asymptotics 15 MIT 18.655 ad Delta Method

Delta Method Asymptotics Theorem 5.3.1 (Applyig Taylor Expasios) Suppose that: The where X 1,..., X iid with outcome space X = R. E [X 1 ] = µ, ad Var[X 1 ] = σ 2 <. E [ X 1 m ] <. h : R R, m-times differetiable o R, with m 2. d j h(x) h (j) =, j = 1, 2,..., m. dx j h (m) sup h (m) (x) M <. x X m 1 I h (j) (µ) E (h(x )) = h(µ) + E[(X µ) j ] + R m j! j=1 R m M E [ X 1 m ] m/2 m! 16 MIT 18.655 ad Delta Method

Proof: Apply Taylor Expasio to h(x ) : h(x ) = m 1 I h (j) (µ) h(µ) + (X µ) j + h (m) (X )(X µ) m, j! j=1 where X µ X µ Take expectatios ad apply Lemma 5.3.1: If E X 1 j <, j 2, the there exist costats C j > 0 ad D j > 0 such that E X µ j C j E X 1 j j/2 E [(X µ) j ] D j E X 1 j (j+1)/2 for j odd 17 MIT 18.655 ad Delta Method

Applyig Taylor Expasios Corollary 5.3.1 (a). If E X 1 3 < ad h (3) <, the h (2) (µ) E [h(x )] = h(µ) + 0 + [ ] σ2 2 + O( 3/2 ) Corollary 5.3.1 (b). If E X 1 4 < ad h (4) <, the h (2) (µ) E [h(x )] = h(µ) + 0 + [ ] σ2 2 + O( 2 ) For (b), use Lemma 5.3.2 with j = 3 (odd) gives 1 E (x µ) 3 D 3 E [ X 1 3 ] = O( 2 ) Note: Asymptotic bias of h(x ) for h(µ) : If h (2) (µ) 1 ) = 0, the O( If h (2) (µ) = 0, the O( 3/2 ) if third-momet fiite ad O( 2 ) if fourth-momet fiite. 18 MIT 18.655 ad Delta Method 2

Applyig Taylor Expasios: Asymptotic Variace Corollary 5.3.2 (a). If h (j) <, for j=1,2,3, ad E Z 1 3 <, the σ2 [h(1)(µ)] 2 Var[h(X )] = + O( 3/2 ) Proof: Evaluate Var[h(X )] = E [(h(x ) 2 ] (E[h(X ]) 2 From Corollary 5.3.1 (a): h (2) (µ) E [h(x )] = h(µ) + 0 + [ ] σ2 2 + O( 3/2 ) h (2) (µ) ] σ2 2 = (E[h(X )]) 2 = (h(µ) + [ ) 2 + O( 3/2 ) = (h(µ)) 2 + [h(µ)h (2) (µ)] σ2 + O( 3/2 ) Takig Expectatio of the Taylor Expasio: E ([h(x )] 2 ) = [h(µ)] 2 + E [X [ µ] [ 2[h(µ)]h (1) (µ) 1 2 [ + E[(X µ) 2 ] 2[h (1) (µ)] 2 + 2[h(µ)]h (2) (µ) 1 + 6 E [(X µ) 3 ] [h 2 (µ)] (3) (X ) Differece gives result. 19 MIT 18.655 ad Delta Method

Note: Asymptotic bias of h(x ) for h(µ) is O( 1 ). Asymptotic stadard deviatio of h(x ) is O( 1 ) uless (!) h (1) (µ) = 0. More terms i ataylor Series with fiite expectatios of E [ X θ j ] yields fier approximatio to order O( j/2 ) Taylor Series Expasios apply to fuctios of vector-valued statistics (See Theorem 5.3.2). 20 MIT 18.655 ad Delta Method

Outlie Asymptotics 1 Asymptotics 21 MIT 18.655 ad Delta Method

Theorem 5.3.3 Suppose The X 1,..., X iid with X = R. E [X 1 2 ] <. µ = E [X 1 ] ad σ 2 = Var(X 1 ). h : R R is differetiable at µ. [ L (h(x ) h(µ))) N(0, σ 2 (h)) where σ 2 (h) = [h (1) (µ)] 2 σ 2. Proof: Apply Taylor expasio of h(x ) about µ : h(x ) = h(µ) + (X µ)[h (1) (µ) + R ] = (h(x ) h(µ)) = [ (X µ)][h (1) (µ) + R ] L [N(0, σ 2 )] h (1) (µ) 22 MIT 18.655 ad Delta Method

Limitig Distributios of t Statistics Example 5.3.3 Oe-sample t-statistic X 1,..., X iid P P E P [X 1 ] = µ Var P (X 1 ) = σ 2 < For a give µ 0, defie t-statistic for testig H 0 : µ = µ 0 versus H 1 : µ > µ 0. (X µ 0 ) T = where 2 s s = 1(X i X ) 2 /( 1). L If H is true the T N(0, 1). Proof: Apply Slutsky s theorem for limit of {U /v } where (X µ 0 ) L U = N(0, 1). σ P v = s /σ 1. 23 MIT 18.655 ad Delta Method

Limitig Distributios of t Statistics Example 5.3.3 Two-Sample t-statistic X 1,..., X 1 iid with E [X 1 ] = µ 1 ad Var[X 1 ] = σ2 1 <. Y 1,..., X 2 iid with E [Y 1 ] = µ 2 ad Var[Y 1 ] = σ2 2 <. Defie t-statistic for testig H 0 : µ 1 2 = µ 1 ( versus H ) 1 : µ 2 > µ 1. Y X 1 2 Y X T = = s2 s2 s + 1 2 2 1 1 where s = (X 2 i X ) 2 + (Y i Y ) 2 2 i=1 j=1 If H is true, σ 2 = σ2 1 2, ad all distributios are Gaussia, the T t 2, (a t-distributio) I geeral, if H is true, ad 1 ad 2, with 1 / λ, (0 < λ < 1), the L (1 λ)σ1 2 +λσ2 T 2 N(0, τ 2 ), where τ 2 = λσ1 ( 1, whe?) 2 +(1 λ)σ2 2 24 MIT 18.655 ad Delta Method

Additioal Topics Mote Carlo simulatios/studies: evaluatig asymptotic distributio approximatios. Variace-stabilizig trasformatios: Whe E [X ] = µ, but Var[X ] = σ 2 (µ), cosider h(x ) such that σ 2 (µ)[h (1) (µ)] 2 = costat Asymptotic distributio approximatio for h(x ) will have a costat variace. Edgeworth Approximatios: Refiig the Cetral Limit Theorem to match ozero skewess ad o-gaussia kurtosis. 25 MIT 18.655 ad Delta Method

Taylor Series Review Asymptotics Power Series Represetatio of fuctio f (x) f (x) = j=0 c j (x a) j, for x : x a < d a = ceter; ad d = radius of covergece Theorem: If f (x) has a power series represetatio, the d j f (j) (a) [f (x)] dx c j j = = x=a. j! j! m Defie T m (x) = j=1 c j (x a) j, ad R m (x) = f (x) T m (x). lim T m (x) = f (x) ad ( ) lim R m (x) = 0. m m 26 MIT 18.655 ad Delta Method

27 Power Series Approximatio of f (x) where f (j) (x): fiite for 1 j m sup x f (m) (x) M. For m = 2: f (2) (x) M x f (2) x = a (t)dt a Mdt f (1) (x) f (1) (a) M(x a) f (1) (x) f (1) (a) + M(x a) Itegrate agai: x f (1) (t)dt x [f (1) (a) + M(t a)]dt a a (x a) 2 f (x) f (a) f (1) (a)(x a) + M 2 (x a) f (x) f (a) + f (1) (a)(x a) + M 2 2 Reverse iequality ad use M: (x a) = f (x) f (a) + f (1) (a)(x a) M 2 2 = f (x) = f (a) + f (1) (a)(x a) + R 2 (x) where R 2 (x) M MIT 18.655 (t a) 2 2 ad Delta Method

Delta Method for Fuctio of a Radom Variable X a r.v. with µ = E [x] h( ) fuctio with m derivatives h(x ) = h(µ) + (X µ)h (1) (µ) + R 2 (X ) where R 2 (X ) M (X µ) 2. 2 h(x ) = h(µ) + (X µ)h (1) (µ) + (X µ) 2 h (2) (µ) + R 3 (X ) 2 where R 3 (X ) M X µ 3. 3! h(x ) = h(µ) + (X µ)h (1) (µ) + (X µ) 2 h (2) (µ) 2 +(X µ) 3 h (3) (µ) 3! + R 4 (X ) where R 4 (X ) M X µ 4. 4! 28 MIT 18.655 ad Delta Method

1 Key Example: X = i=1 X i, for i.i.d. X i E [X 1 ] = θ, E [(X 1 θ) 2 ] = σ 2 E [(X 1 µ) 3 ] = µ 3 E [ X 1 µ 3 ] = κ 3 With X for a give sample size E [X ] = θ, E [(X θ) 2 σ ] = 2 µ E [(X θ) 3 ] = 3 E [ X µ 3 ] = 0 p [( 1 ) 3 ] 2 Takig Expectatios of the Delta Formulas (cases m = 2, 3) E [h(x )] = E[h(θ) + ( X θ)h (1) (θ) + R 2 (X )] = h(θ) + E [(X θ)]h (1) (θ) + E[R 2 (X )] = h(θ) + 0 + E [R 2 (X )] σ where E [R 2 2 (X )] E [ R 2 (X ) ] M E [(X θ) 2 ] = M 2 2 X θ) 2 h (2) (θ) E [h(x )] = E[h(θ) + ( X θ)h (1) (θ) + ( 2 + R 3 (X )] h (2) (θ) = h(θ) + σ2 2 + E[R 3 (X )] where E [R 3 (X )] [E R 3 (X ) ] M E [ X θ 3 ] = M O p ( 1 3! 3! 3 ). 29 MIT 18.655 ad Delta Method

Takig Expectatios of the Delta Formula (case m = 4) X θ) 2 h (2) (θ) E [h(x )] = E[h(θ) + ( X θ)h (1) (θ) + ( 2 ]+ +E [( X θ) 3 h(3) + R 4 (X )] 3! h (2) (θ) 2 3! h (2) (θ) µ h (3) 3 2 2 3! h (2) (θ) 2 2 = h(θ) + σ2 + E[( X θ) 3 ] h(3) + E [R 4 (X )] = h(θ) + σ2 + + E [R 4 (X )] = h(θ) + σ2 + O p ( 1 ) because E [R 4 (X )] [E R 4 (X ) ] M E [ X θ 4 ] = M O p [ 1 ]. 4! 4! 2 30 MIT 18.655 ad Delta Method

Takig Expectatios of the Delta Formula (case m = 4) X θ) 2 h (2) (θ) E [h(x )] = E[h(θ) + ( X θ)h (1) (θ) + ( 2 ]+ +E [( X θ) 3 h(3) + R 4 (X )] 3! h (2) (θ) 2 3! h (2) (θ) µ h (3) 3 2 2 3! h (2) (θ) 2 2 = h(θ) + σ2 + E[( X θ) 3 ] h(3) + E [R 4 (X )] = h(θ) + σ2 + + E [R 4 (X )] = h(θ) + σ2 + O p ( 1 ) because E [R 4 (X )] [E R 4 (X ) ] M E [ X θ 4 ] = M O p [ 1 ]. 4! 4! 2 31 MIT 18.655 ad Delta Method

1 Key Example: X = i=1 X i, for i.i.d. X i E [X 1 ] = θ, E [(X 1 θ) 2 ] = σ 2 E [(X 1 µ) 3 ] = µ 3 E [ X 1 µ 3 ] = κ 3 With X for a give sample size E [X ] = θ, E [(X θ) 2 σ ] = 2 µ E [(X θ) 3 ] = 3 E [ X µ 3 ] = 0 p [( 1 ) 3 ] 2 Limit Laws from the Delta Formula (case m = 2) h(x ) = h(θ) + ( X θ)h (1) (θ) + R 2 (X ) = [h(x ) h(θ)] = (X θ)h (1) (θ) + R 2 (X ) = (X θ)h (1) (θ) + O p ( 1 ) σ 2 L N(0, [h (1) (θ)] 2 ) M σ 2 sice E [R 2 (X )] 2 Note: if h (1) (θ) = 0, the [h(x ) h(θ)] Pr 0. Cosider icreasig scalig to [h(x ) h(θ)] 32 MIT 18.655 ad Delta Method

MIT OpeCourseWare http://ocw.mit.edu 18.655 Mathematical Statistics Sprig 2016 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.