MEMORANDUM. No 26/2002. At Last! An Explicit Solution for the Ramsey Saddle Path. By Halvor Mehlum

Similar documents
A Note on Ramsey, Harrod-Domar, Solow, and a Closed Form

1 The Solow Growth Model

2014/2015, week 6 The Ramsey model. Romer, Chapter 2.1 to 2.6

A 2 period dynamic general equilibrium model

1 A tax on capital income in a neoclassical growth model

General Examination in Macroeconomic Theory. Fall 2010

Working Paper Public-good valuations and intrafamily allocation. Memorandum, Department of Economics, University of Oslo, No.

MEMORANDUM. No 27/2002. Optimal bailout during currency and financial crises: A sequential game analysis. By Gabriela Mundaca

Chapter 3 The Representative Household Model

Dynamic Macroeconomics

Chapter 9 Dynamic Models of Investment

Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice

IS FINANCIAL REPRESSION REALLY BAD? Eun Young OH Durham Univeristy 17 Sidegate, Durham, United Kingdom

Final Exam (Solutions) ECON 4310, Fall 2014

Aggregation with a double non-convex labor supply decision: indivisible private- and public-sector hours

Lastrapes Fall y t = ỹ + a 1 (p t p t ) y t = d 0 + d 1 (m t p t ).

202: Dynamic Macroeconomics

(Incomplete) summary of the course so far

Government Debt, the Real Interest Rate, Growth and External Balance in a Small Open Economy

For students electing Macro (8702/Prof. Smith) & Macro (8701/Prof. Roe) option

The Optimal Perception of Inflation Persistence is Zero

Exercises in Growth Theory and Empirics

The Representative Household Model

Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g))

Lecture 3 Growth Model with Endogenous Savings: Ramsey-Cass-Koopmans Model

A Two-sector Ramsey Model

Chapter 5 Fiscal Policy and Economic Growth

From Solow to Romer: Teaching Endogenous Technological Change in Undergraduate Economics

National Debt and Economic Growth with Externalities and Congestions

Final Exam II ECON 4310, Fall 2014

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION

MACROECONOMICS. Prelim Exam

B r i e f T a b l e o f C o n t e n t s

General Examination in Macroeconomic Theory SPRING 2016

MEMORANDUM. No 13/2002. Deductibles in Health Insurance: Pay or Pain? By Geir B. Asheim, Anne Wenche Emblem and Tore Nilssen

004: Macroeconomic Theory

Part A: Answer question A1 (required), plus either question A2 or A3.

ON INTEREST RATE POLICY AND EQUILIBRIUM STABILITY UNDER INCREASING RETURNS: A NOTE

Documento de Trabajo. ISSN (edición impresa) ISSN (edición electrónica)

Unemployment Fluctuations and Nominal GDP Targeting

Comprehensive Exam. August 19, 2013

AK and reduced-form AK models. Consumption taxation. Distributive politics

Inflation Persistence and Relative Contracting

econstor Make Your Publications Visible.

Nonlinear Tax Structures and Endogenous Growth

Fiscal Policy and Economic Growth

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

The Ramsey Model. Lectures 11 to 14. Topics in Macroeconomics. November 10, 11, 24 & 25, 2008

Dynamic AD and Dynamic AS

Chapter 6 Money, Inflation and Economic Growth

Optimal Perception of Inflation Persistence at an Inflation-Targeting Central Bank

Part A: Answer Question A1 (required) and Question A2 or A3 (choice).

Macroeconomics and finance

Consumption and Savings (Continued)

Macroeconomics Module 3: Cobb-Douglas production function practice problems. (The attached PDF file has better formatting.)

A REINTERPRETATION OF THE KEYNESIAN CONSUMPTION FUNCTION AND MULTIPLIER EFFECT

Chapter 8 A Short Run Keynesian Model of Interdependent Economies

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

14.05: SECTION HANDOUT #4 CONSUMPTION (AND SAVINGS) Fall 2005

Mandatory Social Security Regime, C Retirement Behavior of Quasi-Hyperb

Intergenerational Equity and Exhaustible Resources

Was The New Deal Contractionary? Appendix C:Proofs of Propositions (not intended for publication)

Final Exam II (Solutions) ECON 4310, Fall 2014

NBER WORKING PAPER SERIES IMPERFECT COMPETITION AND THE KEYNESIAN CROSS. N. Gregory Mankiw. Working Paper No. 2386

Part A: Answer Question A1 (required) and Question A2 or A3 (choice).

Savings, Investment and the Real Interest Rate in an Endogenous Growth Model

Chapter 22. Modern Business Cycle Theory

Macroeconomic Theory I: Growth Theory

Notes on Intertemporal Optimization

1. Money in the utility function (continued)

General Equilibrium Analysis Part II A Basic CGE Model for Lao PDR

Growth and Distributional Effects of Inflation with Progressive Taxation

Lecture 2, November 16: A Classical Model (Galí, Chapter 2)

AK and reduced-form AK models. Consumption taxation.

Foreign Direct Investment and Economic Growth in Some MENA Countries: Theory and Evidence

A THREE-FACTOR CONVERGENCE MODEL OF INTEREST RATES

Characterization of the Optimum

1 Consumption and saving under uncertainty

Understanding Krugman s Third-Generation Model of Currency and Financial Crises

Final Exam - Economics 101 (Fall 2009) You will have 120 minutes to complete this exam. There are 105 points and 7 pages

Public Investment, Life Expectancy and Income Growth

Pricing Dynamic Solvency Insurance and Investment Fund Protection

ECON 302: Intermediate Macroeconomic Theory (Spring ) Discussion Section Week 7 March 7, 2014

The Real Business Cycle Model

The Solow Model. Econ 4960: Economic Growth

1. Money in the utility function (start)

State-Dependent Fiscal Multipliers: Calvo vs. Rotemberg *

MACROECONOMIC ANALYSIS OF THE CONFERENCE AGREEMENT FOR H.R. 1, THE TAX CUTS AND JOBS ACT

MEMORANDUM. No 32/2002. A General Approach to Welfare Measurement through National Income Accounting. By Geir B. Asheim and Wolfgang Buchholz

Advanced Macroeconomics Tutorial #2: Solutions

Growth Effects of the Allocation of Government Expenditure in an Endogenous Growth Model with Physical and Human Capital

On Repeated Myopic Use of the Inverse Elasticity Pricing Rule

Consumption and Portfolio Choice under Uncertainty

Final Exam Solutions

Master 2 Macro I. Lecture 3 : The Ramsey Growth Model

UNIVERSITY OF TOKYO 1 st Finance Junior Workshop Program. Monetary Policy and Welfare Issues in the Economy with Shifting Trend Inflation

Quadratic Labor Adjustment Costs and the New-Keynesian Model. by Wolfgang Lechthaler and Dennis Snower

Graduate Macro Theory II: Fiscal Policy in the RBC Model

Intertemporal choice: Consumption and Savings

Exact microeconomic foundation for the Phillips curve under complete markets: A Keynesian view

Transcription:

MEMORANDUM No 26/2002 At Last! An Explicit Solution for the Ramsey Saddle Path By Halvor Mehlum ISSN: 0801-1117 Department of Economics University of Oslo

This series is published by the University of Oslo Department of Economics P OBox 1095 Blindern N-0317 OSLO Norway Telephone: + 47 22855127 Fax: + 47 22855035 Internet: http://wwwoekonomiuiono/ e-mail: econdep@econuiono In co-operation with The Frisch Centre for Economic Research Gaustadalleén 21 N-0371 OSLO Norway Telephone: +47 22 95 88 20 Fax: +47 22 95 88 25 Internet: http://wwwfrischuiono/ e-mail: frisch@frischuiono No 25 No 24 No 23 No 22 No 21 No 20 No 19 No 18 No 17 No 16 List of the last 10 Memoranda: Steinar Holden and John C Driscoll Coordination, Fair Treatment and Inflation Persistence 37 pp Atle Seierstad Maximum principle for stochastic control in continuous time with hard end constraints Hilde C Bjørnland and Håvard Hungnes Fundamental determinants of the long run real exchange rate: The case of Norway 40 pp Atle Seierstad Conditions implying the vanishing of the Hamiltonian at the infinite horizon in optimal control problems 3 pp Morten Søberg The Duhem-Quine thesis and experimental economics: A reinterpretation 22 pp Erling Barth, Bernt Bratsberg and Oddbjørn Raaum Local Unemployment and the Relative Wages of Immigrants: Evidence from the Current Population Surveys 53 pp Erling Barth, Bernt Bratsberg and Oddbjørn Raaum Local Unemployment and the Earnings Assimilation of Immigrants in Norway 46 pp Gunnar Bårdsen, Eilev S Jansen and Ragnar Nymoen Testing the New Keynesian Phillips curve 38 pp Morten Søberg Voting rules and endogenous trading institutions: An experimental study 36 pp Gabriela Mundaca A Drift of the "Drift Adjustment Method" 35 pp A complete list of this memo-series is available in a PDF format at: http://wwwoekonomiuiono/memo/

AtLast! AnExplicitSolutionfortheRamseySaddlePath Halvor Mehlum Abstract I derive an explicit solution for the saddle path in a Ramsey growth model The existence of a closed form expression greatly simpliþes the analysis of how the parameters of the utility function affects investments and growth Keywords: Ramsey growth model JEL: D91O41 1 Introduction Two of the main contributions to growth theory is the Ramsey growth model (1928) and the Solow model (1956) The novelty of the Solow model was the use of a neo-classical production function with declining returns to capital combined with a Þxed savings rate Later, Ramsey s model got renewed attention as economists, unsatisþed with the savings assumption of the Solow model, wanted to analyze dynamic optimizing savings behavior By now, both the Ramsey model and the Solow model are central in any exposition of growth theory (see for example Barro and Sala-I-Martin 1995) Central in the solution of the Ramsey model is the saddle path that relates consumption to production and thus determines the rate of investment and the rate of growth It is generally impossible to Þnd an explicit solution for the Ramsey model To my knowledge all expositions of the Ramsey model reverts to qualitative assessments, approximate methods or numerical simulations Department of Economics, University of Oslo PO Box 1095, Blindern N-0317 Oslo, Norway E-mail: halvormehlum@econuiono 1

At Last! 2 when characterizing the saddle path The contribution of the present paper is to show that an explicit solution is in fact available when the production function is of the Þxed coefficient type The choice of this production function may appear to be restrictive It nevertheless leaves a lot of room for discussing the main insight of the Ramsey model; the optimizing behavior of a rational consumer with foresight The results should be of interest for economist working with growth theory and, not the least, for students struggling with their understanding of what is really going on in the Ramsey model 2 The model Production is given as a function of capital K by the Þxed coefficient production function X = a min K, K (1) where a is the output-capital ratio and K is the maximal capital stock that can be used productively This production function is concave and has the essential properties needed for the Ramsey problem K may be given by factors of production that cannot be accumulated, for example labor In that case (1) is the limit of a constant elasticity of substitution production function as the elasticity of substitution between labor and capital goes to zero When the supply of capital is below K, the rental price of capital will be equal to the output-capital ratio a When the capital stock is larger than K, however, there will be excess supply of capital, and the rental price will be zero K< K r = a K> K r =0 (2) I will return to the case of exact equality K = K below The static model (1) and (2) determines X, andr as functions of K The dynamics of the economy depends on the capital accumulation Assume that the initial capital stock K 0 is below its maximum K so that there is a scope for further capital accumulation All income is earned by a representative consumer who is the owner of the Þrms and the owner of capital The supply of capital accumulation is then determined by

At Last! 3 the consumer s savings/investment decision The consumer maximizes a constant relative risk aversion utility function U = Z C 1 1 σ t=0 t 1 1 1 e θt dt (3) σ where C is consumption, θ the rate of time preferences, and σ the intertemporal elasticity of substitution When abstracting from depreciation and using (1), investments (the time derivative of capital) is simply dk dt = ak C (4) By using standard methods of dynamic optimization 1, maximizing (3) with respect to (4) and inserting from (2), the aggregate consumption path is dc dt [a θ]when K< K = Cσ [r θ] =Cσ Cσθ when K> K (5) When a>θ consumption grows exponentially, starting out below the level of production ak In the solution both the capital stock and consumption grow until the steady state is reached where K = K and C = ak As the consumption growth is exponential the transition time is Þnite At time of termination all capital is employed and the return to capital r drops down to the level where the consumer has no incentive for further savings nor for dissavings Hence from the point of termination and onwards consumption is stable From (5) it follows that the rental price of capital that satisþes this condition is r = θ Hence (2) can be completed by the following condition K = K r = θ (6) The two linear differential equations (4) and (5), in combination with the initial condition K = K 0 and the two terminal conditions C = a K and K = K, aresufficient for solving for the two paths and for the transition time 1 In order to keep the paper short I deliberately avoid technicalities, as I assume that the readers are familiar with the problem For a careful presentation of the Ramsey problem see for example Barro and Sala-I-Martin (1995)

At Last! 4 21 The Saddle Path In order to display the familiar saddle path in a capital-consumption phase diagram, I transform the two differential equations (4) and (5) to one differential equation between K and C This is possible since the solutions for both K and C are strictly increasing in t When dividing (4) by (5) I get the linear differential equation K (C) C ak (C) C = Cσ (a θ) (7) with the end point condition K (ak) = K The solution to (7) is found by using standard formulas It can be conþrmed by taking the derivative that the solution is simply K (C) = 1 β a K C β βc, β = a (β 1) a σ (a θ) (8) This function is the main Þnding of this paper 2 It is an explicit function describing the Ramsey saddle path A saddle path that is discussed extensively in most every advanced course in Macroeconomics and in a countless number of journal articles The closed form solution provided in (8) gives everyone working with the Ramsey problem an accessible way to investigate the consequences of altering the parameters of the utility function They can employ standard methods from calculus and need not use numerical or approximate methods Figure 1 gives two illustration of shifts in parameter values: When the intertemporal C, X Figure 1: The saddle path 1 0 σ high θ high 1 2 3 X K 2 In the case where β = 1 the solution becomes K (C) =C 1 +ln a K/C /a

At Last! 5 elasticity of substitution σ is high, consumption C is low relative to production, hence, savings and investments are high On the other hand, if the rate of time preferences θ is high savings and investments are low and the growth is low 3 22 Transition paths ThesaddlepathgivestherelationshipbetweenK and C In order to Þnd the initial consumption level for a given starting value of the capital stock one needs to solve the equation K 0 = K (C 0 ) This equation is easily solved numerically Once C 0 is known (5) gives the exponential growth of C C (t) =C 0 e ta/β (9) Once C (t) is known it can be inserted into (8) to also get K as a function of time and Þnally production X follows The economic growth over time is illustrated in Figure 2 X Figure 2: Transition time 1 σ high θ high 0 t 0 5 10 15 When the intertemporal elasticity of substitution σ is high, investments are high and the growth is fast If the rate of time preferences θ is high, however, investments are low and the growth is slow This concludes the main analysis To summarize: The main result is the existence of the function (8) that gives the closed form solution for the saddle path Combined with (9) and the initial condition on the capital stock it is simple to calculate the time paths 3 In the numerical example I use the following parameter values: a = 1/3, K =3, σ =05, θ =005, σ (high) = 1, θ (high) = 020, and in addition for the next Þgure, K 0 = 15

At Last! 6 for consumption, capital and production 3 Concluding remarks I have shown that there exists an explicit function describing the saddle path in a Ramsey problem This explicit solution makes it a lot easier to get to grips with the essential feature of the Ramsey model: The optimizing consumer s behavior in a speciþc technological environment The present model allows the analysis of changes in the important parameters of the utility function: the intertemporal elasticity of substitution and the rate of time preferences The explicit function describing the saddle path K (C) in (8) follows from the linear differential equation (7) The essential condition for this result is that the rental price of capital is constant during the transition; a property that follows from the Þxed coefficient production function Given that this condition is satisþed the model s assumptions may be altered in a number of ways The following alterations can be done without losing the explicit expression for the saddle path First, the utility function may be modiþed to include a minimum consumption, a la Stone-Geary, or be changed to the constant absolute risk aversion type Second, the capital may be subject to depreciation with a Þxed coefficient Third, the production function need not start out in origo but at the constant b That is X = b + a min K, K (10) Readers who wants to investigate the consequences of shifts in the technology may use (10) with it s degrees of freedom to approximate production functions with more curvature References Barro, Robert and Xavier Sala-I-Martin (1995) Economic Growth, McGraw Hill, New York Ramsey, Frank (1928) A mathematical theory of saving, Economic Journal, 38, 543-559 Solow, Robert (1956) A Contribution to the theory of economic growth, Quarterly Journal of Economics, 70, 65-94