STOCHASTIC INTEGRALS

Similar documents
The stochastic calculus

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

1.1 Basic Financial Derivatives: Forward Contracts and Options

Lecture 11: Ito Calculus. Tuesday, October 23, 12

AMH4 - ADVANCED OPTION PRICING. Contents

Lévy models in finance

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Continuous Time Finance. Tomas Björk

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Hedging under Arbitrage

Risk Neutral Valuation

M5MF6. Advanced Methods in Derivatives Pricing

Application of Stochastic Calculus to Price a Quanto Spread

An overview of some financial models using BSDE with enlarged filtrations

Stochastic modelling of electricity markets Pricing Forwards and Swaps

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

Monte Carlo Simulations

MAS452/MAS6052. MAS452/MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Stochastic Processes and Financial Mathematics

Risk Neutral Measures

θ(t ) = T f(0, T ) + σ2 T

( ) since this is the benefit of buying the asset at the strike price rather

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance

The Self-financing Condition: Remembering the Limit Order Book

Martingale Approach to Pricing and Hedging

Optimal trading strategies under arbitrage

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

Partial differential approach for continuous models. Closed form pricing formulas for discretely monitored models

LECTURE 4: BID AND ASK HEDGING

Exam Quantitative Finance (35V5A1)

Basic Arbitrage Theory KTH Tomas Björk

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance

Lecture 3: Review of mathematical finance and derivative pricing models

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL

Advanced Stochastic Processes.

How to hedge Asian options in fractional Black-Scholes model

Stochastic Calculus for Finance II - some Solutions to Chapter IV

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

Illiquidity, Credit risk and Merton s model

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as:

1 The continuous time limit

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

Change of Measure (Cameron-Martin-Girsanov Theorem)

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Stochastic Calculus - An Introduction

M.I.T Fall Practice Problems

Local Volatility Dynamic Models

Stochastic Calculus, Application of Real Analysis in Finance

Analytical formulas for local volatility model with stochastic. Mohammed Miri

Hedging of Contingent Claims under Incomplete Information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Advanced topics in continuous time finance

Bluff Your Way Through Black-Scholes

The Black-Scholes PDE from Scratch

Lecture 4. Finite difference and finite element methods

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Binomial model: numerical algorithm

MARTINGALES AND LOCAL MARTINGALES

Volatility Smiles and Yield Frowns

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

AMERICAN OPTIONS REVIEW OF STOPPING TIMES. Important example: the first passage time for continuous process X:

Insiders Hedging in a Stochastic Volatility Model with Informed Traders of Multiple Levels

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science

Calculating Implied Volatility

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

2.1 Mean-variance Analysis: Single-period Model

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

Barrier options. In options only come into being if S t reaches B for some 0 t T, at which point they become an ordinary option.

25857 Interest Rate Modelling

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Forward Dynamic Utility

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

Optimal robust bounds for variance options and asymptotically extreme models

Valuation of derivative assets Lecture 8

Replication and Absence of Arbitrage in Non-Semimartingale Models

Hedging Credit Derivatives in Intensity Based Models

1 Geometric Brownian motion

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

4 Risk-neutral pricing

Martingale representation theorem

The Black-Scholes Model

Aspects of Financial Mathematics:

Lecture 7: Computation of Greeks

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

Lecture 5: Review of interest rate models

The Multistep Binomial Model

Math 416/516: Stochastic Simulation

Credit Risk : Firm Value Model

King s College London

Transcription:

Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1 <... < t n = t: P/L t = i<n θ ti (X ti+1 X ti ) }{{} X ti GRID BECOMES DENSE : max i t i P/L t θ u dx u INTEGRAL DEFINED AS LIMIT OF SUMS Winter 27 1 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 PROPERTIES MOSTLY FROM SUMS: (aθ ti + bη ti ) X ti i<n }{{} = a θ ti X ti + b ηt i X ti i<n i<n }{{} }{{} (aθ u + bη u )dx u a θ u dx u + b η u dx u LINEARITY OK TIME VARYING INTEGRAL: θ u dx u = limit of θ ti (X ti+1 X ti ) t i+1 t Limit in probability Winter 27 2 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 MARTINGALE PROPERTY: If X t = M t = MG: U (n) t = t i+1 t θ ti X ti : U (n) t i+1 = θ ti X ti If on grid t, t 1,...: E( U (n) t i+1 F ti ) = E(θ ti X ti F ti ) = θ ti E( X ti F ti ) = U (n) t is F ti MG Taking limits: E(U t F s ) = U s Winter 27 3 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 QUADRATIC VARIATION (Q. V.) U (n) t = t i+1 t θ ti X ti so: U (n) t i = U (n) t i+1 U (n) t i = θ ti X ti Aggregate: [U (n), U (n) ] t }{{} = = ( U (n) t i ) 2 = θ 2 t i ( X ti ) 2 ( U (n) t i ) 2 t i+1 t t i+1 t [U, U] t = θ 2 t i ( X ti ) 2 = If X t = W t = B.M. : d[x, X] t = dt IT FOLLOWS THAT [U, U] t = θ2 udu t i+1 t θ 2 t i [X, X] ti }{{ } θ 2 ud[x, X] u Winter 27 4 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 INTEGRAL: U (n) t i becomes DIFFERENTIAL NOTATION = θ ti X ti vs. U t = U + du t = θ t dx t vs. U t = U + QUADRATIC VARIATION: t i+1 t θ ti X ti θ s dx s ( U (n) t i ) 2 = θ 2 t i ( X ti ) 2 vs. [U (n), U (n) ] t = θ 2 t i [X, X ti ] [U (n), U (n) ] ti = θ 2 t i [X, X] ti becomes: (du t ) 2 = θ 2 t (dx t ) 2 vs. [U, U] t = θ 2 ud[x, X] u BROWNIAN MOTION: d[u, U] t = θ 2 t d[x, X] t (dw t ) 2 = dt AND d[u, U] t = θ 2 t dt Winter 27 5 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 QUADRATIC COVARIATION: U, Z : [U, Z] t = limit of t i+1 t U ti Z ti CASE OF TWO INTEGRALS: U t = θ s dx s, Z t = η s dy s THEN: [U, Z] t = θ s η s d[x, Y ] s BECAUSE or U ti Z ti = θ ti η ti X ti Y ti du t dz }{{} t = θ t η t dx t dy }{{} t d[u, Z] t d[x, Y ] t IF: X t = Y t = W t THE SAME B.M.: d[u, Z] t = θ t η t dt Winter 27 6 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 DETERMINISTIC INTEGRAND IF θ t IS NONRANDOM: t i+1 t θ t i W ti : θ s dw s = limit of t i+1 t θ ti W ti LINEAR COMBINATION OF NORMAL RANDOM VARIABLES IS A NORMAL RANDOM VARIABLE MEAN: E t i+1 t θ t i W ti = VARIANCE: Var ( t i+1 t θ t i W ti ) = t i+1 t θ2 t i Var ( W ti ) = t i+1 t θ2 t i t i θ sdw s : IN THE LIMIT: NORMAL RANDOM VARIABLE MEAN IS ZERO VARIANCE: Var ( θ sdw s ) = E[ θ sdw s, θ sdw s ] t = θ2 sds Winter 27 7 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 ITÔ s FORMULA X t : CONTINUOUS PROCESS (SOME RESTRICTIONS): ξ: TWICE CONTINUOUSLY DIFFERENTIABLE ξ(x t ) = ξ(x ) + ξ (X u )dx u + 1 2 ξ (X u )d[x, X] t DIFFERENTIAL NOTATION: dξ(x t ) = ξ (X t )dx t + 1 2 ξ (X t )d[x, X] t EX: X t = W t = BROWNIAN MOTION: dξ(w t ) = ξ (W t )dw t + 1 2 ξ (W t )dt EX: dx t = ν t dt + σ t dw t ITÔ PROCESS or: X t = X + ν sds + σ sdw s First question: What is d[x, X] t? Winter 27 8 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 FIRST: CASE OF EXPLICIT INTEGRATION: W t = B.M. WHAT IS W sdw s? U t = W 2 t = ζ(w t ), ζ(x) = x 2 du t = ζ (W t )dw t + 1 2 ζ (W t )dt = 2W t dw t + dt so: W t dw t = 1 2 du t 1 2 dt >: W s dw s = 1 2 (U t U ) 1 2 ds = 1 2 W 2 t 1 2 t DIFFERENT FROM ORDINARY INTEGRAL: If X t = g(t) g exists, continuous, g(t) = X s dx s = g(s)g (s)ds = 1 2 g(t)2 = 1 2 X2 t Winter 27 9 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 ITÔ PROCESS: Grid: X t = X + ν s ds+ }{{} Z t σ s dw s } {{ } U t so: X ti = Z ti + U ti ( X ti ) 2 = ( Z ti ) 2 + ( U ti ) 2 + 2 Z ti U ti ( Xti ) 2 = ( Z ti ) 2 + ( U ti ) 2 + 2 Z ti U ti Z ti = i+1 t i sup ( Zti ) 2 (sup s s (sup s ν s ds i+1 t i ν s (t i+1 t i ) = sup s ν s ) 2 i ( t i ) 2 ν s ) 2 sup t i }{{} : [Z, Z] t = ALSO: [Z, U] t = ν s ds t i i }{{} t ν s t i ONLY: [U, U] t = σ2 sds Winter 27 1 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 X t = X + ITÔ PROCESS ν s d s + }{{} Z t σ s dw s } {{ } U t d[z, Z] t = d[z, U] t = d[u, U] t = σt 2 dt (dz t ) 2 dz t du t USING DIFFERENTIALS: ANY dt-term HAS ZERO Q.V.: (dz t ) 2 = ν 2 t (dt) 2 = ETC COMBINING TERMS: (dx t ) 2 = (dz t + du t ) 2 = (dz t ) 2 + 2dZ t du t + (du t ) 2 = (du t ) 2 = σt 2 dt RIGOROUS: ( X ti ) 2 = Zt 2 i + 2 Z ti U ti + ( U ti ) 2 SUM OVER t i, TAKE LIMITS, GET SAME RESULT Winter 27 11 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 INTEGRALS WITH RESPECT TO AN ITÔ PROCESS X t = X + ν s ds + σ s dw s CAN SHOW THAT: θ s dx s = θ s ν s ds + θ s σ s dw s A NEW ITÔ PROCESS Winter 27 12 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 BACK TO ITÔ S FORMULA: dξ(x t ) = ξ (X t )dx t + 1 2 ξ (X t )d[x, X] t ( ) ITÔ PROCESS: dx t = ν t dt + σ t dw t SO d[x, X] t = σ 2 t dt PLUG IN: dξ(x t ) = ξ (X t )(ν t dt + σ t dw t ) + 1 2 ξ (X t )σt 2 dt = (ξ (X t )ν t + 1 2 ξ (X t )σt 2 )dt + ξ (X t )σ t dw t EASIER TO REMEMBER (*)... Winter 27 13 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 PROOF OF ITÔ S FORMULA: U t = ξ(x t ): U ti = ξ(x ti+1 ) ξ(x ti ) = ξ(x ti + X ti ) ξ(x ti ) sum up: = ζ (X ti ) X ti + 1 2 ζ (X ti ) X 2 t i + 1 3! ζ (X ti ) X 3 t i + U t U = ζ (X ti ) X ti }{{ } + ζ (X s )dx s + 1 ζ (X ti ) Xt 2 2 i }{{ } 1 2 ζ (X s )d[x, X] s OTHER PROOF : du t = ζ(x t + dx t ) ζ(x t ) = ζ (X t )dx t + 1 2 ζ (X t ) (dx t ) 2 + }{{} d[x,x] t Winter 27 14 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 MULTIVARIATE FORMULA etc. U t = ζ(x t, Y t ) du t = ζ x(x t, Y t )dx t + ζ y(x t, Y t )dy t + 1 { ζ 2 xx(x t, Y t )d[x, X] t + ζ yy(x t, Y t )d[y, Y ] t } + 2ζ xy(x t, Y t )d[x, Y ] t Winter 27 15 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 EXAMPLE: GEOMETRIC BROWNIAN MOTION S t = S exp{ σ s dw s + ( r s 1 ) 2 σ2 s ds} SET X t = σ sdw s + ( ) rs 1 2 σ2 s ds S t = f(x t ) (f(x) = S exp{x}) USE ITÔ S FORMULA ds t = f (X t )dx t + 1 2 f (X t )d[x, X] t f (x) = f (x) = f(x) AND d[x, X] t = σt 2 dt, SO: ds t = f(x t )dx t + 1 2 f(x t)σt 2 dt = S t dx t + 1 2 S tσt 2 dt = S t (dx t + 1 ) 2 σ2 t dt = S t (σ t dw t + r t dt) = S t σ t dw t + S t r t dt DIFFERENTIAL REPRESENTATION OF S t Winter 27 16 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 VASICEK MODEL dr t = (α βr t )dt + σdw t STEP 1: SET U t = R t α β EQUATION BECOMES: du t = βu t dt + σdw t STEP 2: NOTE THAT (FROM ITO S FORMULA) d(exp{βt}u t ) = exp{βt}du t + U t d exp{βt} = exp{βt}du t + U t β exp{βt}dt = exp{βt} (du t + U t βdt) = exp{βt}σdw t SO exp{βt}u t = U + exp{βs}σdw s OR U t = exp{ βt}u + exp{β(s t)}σdw s Winter 27 17 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 IN OTHER WORDS: U t IS NORMAL MEAN IS exp{ βt}u VARIANCE IS (exp{β(s t)}σ) 2 ds = exp{2β(s t)}σ 2 ds [ 1 = exp{2β(s t)}σ2 2β = 1 (1 exp{ 2βt}) σ2 2β ] s=t s= DEDUCE FOR R t = U t + α β THAT R t IS NORMAL E(R t ) = exp{ βt}u + α β Var (R t ) =Var (U t ) Winter 27 18 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 LEVY S THEOREM IF M t IS A CONTINUOUS (LOCAL) MARTINGALE, M =, [M, M] t = t FOR ALL t, THEN M t IS A CONTINUOUS BROWNIAN MOTION PROOF: SET f(x) = exp{hx} ITO: df(m t ) = f (M t )dm t + 1 2 f (M t )d[m, M] t = f (M t )dm t + 1 2 f (M t )dt. SINCE dm t TERM IS MG, AND f (x) = h 2 f(x): E(f(M t ) s ) = f(m s ) + 1 ( ) 2 h2 E f(m u )du s s = f(m s ) + 1 2 h2 E(f(M u ) s )du Set g(t) = E(exp{h(M t M s )} s ): s g(t) = 1 + 1 2 h2 s g(u)du Winter 27 19 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 SOLUTION: g(t) = exp{ 1 2 h2 (t s)} IN OTHER WORDS: E(exp{h(M t M s )} s ) = exp{ 1 2 h2 (t s)} CHARACTERISTIC FUNCTION ARGUMENT GIVES: M t M s IS INDEPENDENT OF s M t M s IS N(, t s) Winter 27 2 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 X t = X + Decomposition unique: ITÔ PROCESSES dw t term is martingale dt term is drift a s ds+ }{{} dt term (Doob-Meyer decomposition) b s dw s }{{} dw t term UNDER RISK NEUTRAL MEASURE P Discounted securities only have dw term: d S t = µ t S t dt+σ }{{} t S t dw t = Winter 27 21 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 UNDISCOUNTED SECURITIES UNDER P : d S t = σ t S t dw t 1) Numeraire = B t = exp( r udu) properties: db t = r t B t dt, [B, B] t =, [B, S] t = S t = S t B t ds t = B t d S t + S t db t = B t σ t St dw t }{{} + S t B t r t }{{} dt տր ր = σ t S t dw t + r t S t dt 2) Other numeraire: Λ t B t, Λ t has dw (2) t term d W, W (2) t = ρ t dt d S t Λ t = full use of Itô s formula Not same P!!! Winter 27 22 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 UNDISCOUNTED SECURITIES UNDER P : ds t = r t S t dt + σ t S t dw t LOG SCALE: ITO S FORMULA d log(s t ) = 1 ds t + 1 S t 2 ( 1 St 2 )d[s, S] t = 1 (r t S t dt + σ t S t dw t ) + 1 S t 2 ( 1 St 2 )σ 2 t S t dt = (r t 1 2 σ2 t )dt + σ t dw t Winter 27 23 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 PAYOFF: f(s T ) OPTIONS PRICES: PDE S DISCOUNTED PAYOFF: e rt f(s T ) = f( S T ) S T = e rt S T f( s) = e rt f(e rt s) CALL: f(s) = (s K) + f( s) = ( s e rt K) + CANDIDATE PRICE: DISCOUNTED: C( S t, t) satisfies: C( S, T) = f( S) AND (UNDER P ): d C( S t, t) { Hedge BS PDE = }MG term = C s( S t, t)d S t d S = σ t St dw t + C t( S t, t)dt + 1 2 C ss( S t, t) d[ S, S] t }{{} dt terms σt 2 S t 2 dt Winter 27 24 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 2 APPROACHES THE BS PDE: Solve (*) C t( s, t) + 1 C 2 ss( s, t)σ 2 s 2 = C( s, T) = f( s) THE MARTINGALE APPROACH: Set C( s, t) = E [ f( S T ) S t = s] Markov: C( St, t) = E [ f( S T ) F t ] = price under P This C either 1) Market is complete: C automatically satisfies (*) 2) Otherwise: check if C satisfies (*): yes: solution OK no: try something else Winter 27 25 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 REVERSAL OF DISCOUNTING Numeraire: B t = exp{rt} C(S t, t) = B t C( S t, t) ( ) St = B t C, t B t = e rt C(e rt S t, t) Hence: C(s, t) = e rt C(e rt s, t) = e rt E [ f( S T ) S t = e rt s] = e r(t t) E [f(s T ) S t = s] since f( s) = e rt f(e rt s) Winter 27 26 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 COMPUTATION OF EXPECTED VALUES log S T = log S t + ν(t t) }{{} ν = σ2 2 +σ (W T W t ) }{{} T t Z Z N(, 1) and so : S T = S t exp(ν(t t) + σ T t Z) C(s, t) = E[ f( S T ) S t = s] = E[ f( s exp(ν(t t) + σ T t Z)] = + f( sexp(ν(t t) + σ T t z)φ(z)dz where φ(z) = 1 2π exp( 1 2 z2 ) For non-discounted S t : ν = r 1 2 σ2 Winter 27 27 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 MORE GENERAL EUROPEAN CONTINGENT CLAIMS (ECC) η = PAYOFF AT TIME T }{{} FIXED LOOKBACK: η = ( max S t K) + t T ( 1 T ASIAN: η = S u du K T (S T K) + BARRIER η = UNLESS min S t X t T ) + ONLY THE IMAGINATION IS THE LIMIT... Winter 27 28 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 OPTION PRICES: GENERAL SCHEME SELF FINANCING STRATEGIES: η = C T dc t = θ () t db t + C t = θ () t B t + K i=1 K i=1 Same as (by numeraire invariance): η = 1 B T η : η = C T d C t = K θ (i) t d S (i) t i=1 C t = θ () t + K i=1 θ (i) t S (i) t ] θ (i) t ds (i) t θ (i) t S (i) t Key requirement ] Defines θ () t PROOF: ITÔ S FORMULA Winter 27 29 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 ON THE DISCOUNTED SCALE η = C T d C K t = θ (i) t d S (i) t UNDER P : SAME AS i=1 η = c + K T i=1 θ (i) t d S (i) t ( ) BY TAKING C t = E ( η F t ) If B = 1: c = C = PRICE AT (*): MARTINGALE REPRESENTATION THEOREM Winter 27 3 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 WHEN DOES THE REPRESENTATION THEOREM HOLD? Theorem: IF W (1),...,W (K) INDEPENDENT B.M. S F t = F W(1),...,W (K) t η @ F T, E η < : η = c + P i=1 T f t dw (i) t Brownian motions are like binomial trees Winter 27 31 Per A. Mykland

Stat 391/FinMath 346 Lecture 8 FROM BROWNIAN MOTION TO STOCK PRICE or: d S t = σ S t dw t log S t = log S 1 2 σ2 t + σ W t η @ F S T η @ F W T Get: η = c + = c + T T f t dw t f t σ S t }{{} θ t More complex if σ t or r t random... d S t Winter 27 32 Per A. Mykland