Law of the Minimal Price

Similar documents
Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Properties of a Diversified World Stock Index

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Approximating the Numéraire Portfolio by Naive Diversification

arxiv: v4 [q-fin.pr] 10 Aug 2009

Basic Concepts and Examples in Finance

Asset Pricing Theory PhD course at The Einaudi Institute for Economics and Finance

Hedging under Arbitrage

The Birth of Financial Bubbles

Asset Pricing Theory PhD course The Einaudi Institute for Economics and Finance

Hedging under arbitrage

Pricing in markets modeled by general processes with independent increments

LECTURE 4: BID AND ASK HEDGING

Continuous time Asset Pricing

Optimal trading strategies under arbitrage

Risk Neutral Pricing. to government bonds (provided that the government is reliable).

Mean-Variance Hedging under Additional Market Information

A Two-Factor Model for Low Interest Rate Regimes

An Explicit Example of a Shadow Price Process with Stochastic Investment Opportunity Set

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES

Arbitrage and Asset Pricing

THE MARTINGALE METHOD DEMYSTIFIED

Pricing and Hedging for Incomplete Jump Diffusion Benchmark Models

Risk Minimization Control for Beating the Market Strategies

Illiquidity, Credit risk and Merton s model

Approximation of Jump Diffusions in Finance and Economics

Exponential utility maximization under partial information

Hedging of Contingent Claims under Incomplete Information

On the Lower Arbitrage Bound of American Contingent Claims

There are no predictable jumps in arbitrage-free markets

On Asymptotic Power Utility-Based Pricing and Hedging

Pricing Exotic Options Under a Higher-order Hidden Markov Model

Mathematics in Finance

SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1. By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD

Convergence of Discretized Stochastic (Interest Rate) Processes with Stochastic Drift Term.

On Using Shadow Prices in Portfolio optimization with Transaction Costs

Risk, Return, and Ross Recovery

Risk-Neutral Valuation

Asymmetric information in trading against disorderly liquidation of a large position.

Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line

STATE TAMENESS: A NEW APPROACH FOR CREDIT CONSTRAINS

Changes of the filtration and the default event risk premium

Interest rate models in continuous time

25857 Interest Rate Modelling

A model for a large investor trading at market indifference prices

Curriculum Vitae. Constantinos Kardaras

Volatility Smiles and Yield Frowns

Ross Recovery theorem and its extension

Non-semimartingales in finance

Convex duality in optimal investment under illiquidity

Valuing power options under a regime-switching model

The Life Cycle Model with Recursive Utility: Defined benefit vs defined contribution.

Hedging Credit Derivatives in Intensity Based Models

How to hedge Asian options in fractional Black-Scholes model

American Foreign Exchange Options and some Continuity Estimates of the Optimal Exercise Boundary with respect to Volatility

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Guarantee valuation in Notional Defined Contribution pension systems

Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor Information. Class Information. Catalog Description. Textbooks

Asset Markets and Monetary Policy

Portfolio optimization with transaction costs

Pricing Volatility Derivatives under the Modified Constant Elasticity of Variance Model

Optimal investment and contingent claim valuation in illiquid markets

Viability, Arbitrage and Preferences

3 Arbitrage pricing theory in discrete time.

Volatility Smiles and Yield Frowns

Dynamic Hedging and PDE Valuation

On Utility Based Pricing of Contingent Claims in Incomplete Markets

On the Distributional Characterization of Log-returns of a World Stock Index

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

Basic Arbitrage Theory KTH Tomas Björk

BPHD Financial Economic Theory Fall 2013

The Black-Scholes Equation

VaR Estimation under Stochastic Volatility Models

CLAIM HEDGING IN AN INCOMPLETE MARKET

Forward Dynamic Utility

A Cautious Note on the Design of Volatility Derivatives

Insider information and arbitrage profits via enlargements of filtrations

arxiv: v13 [q-fin.gn] 29 Jan 2016

arxiv: v1 [q-fin.pr] 8 Jan 2010

Umut Çetin and L. C. G. Rogers Modelling liquidity effects in discrete time

Are stylized facts irrelevant in option-pricing?

Introduction to Affine Processes. Applications to Mathematical Finance

Basic Concepts in Mathematical Finance

Arbeitsgruppe Stochastik. PhD Seminar: HJM Forwards Price Models for Commodities. M.Sc. Brice Hakwa

An application of an entropy principle to short term interest rate modelling

A Note on the No Arbitrage Condition for International Financial Markets

INTRODUCTION TO THE ECONOMICS AND MATHEMATICS OF FINANCIAL MARKETS. Jakša Cvitanić and Fernando Zapatero

Term Structure of Credit Spreads of A Firm When Its Underlying Assets are Discontinuous

No arbitrage of the first kind and local martingale numéraires

SHORT-TERM RELATIVE ARBITRAGE IN VOLATILITY-STABILIZED MARKETS

Conditional Density Method in the Computation of the Delta with Application to Power Market

Polynomial processes in stochastic portofolio theory

Optimal Option Pricing via Esscher Transforms with the Meixner Process

Lecture 8: The Black-Scholes theory

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

Semigroup Properties of Arbitrage Free Pricing Operators. John Heaney and Geoffrey Poitras

CONSISTENCY AMONG TRADING DESKS

Capital Allocation in Insurance: Economic Capital and the Allocation of the Default Option Value

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

Bruno Dupire April Paribas Capital Markets Swaps and Options Research Team 33 Wigmore Street London W1H 0BN United Kingdom

Transcription:

Law of the Minimal Price Eckhard Platen School of Finance and Economics and Department of Mathematical Sciences University of Technology, Sydney Lit: Platen, E. & Heath, D.: A Benchmark Approach to Quantitative Finance Springer Finance, 700 pp., 199 illus., Hardcover, ISBN-10 3-540-26212-1 (2006). Platen, E.: A benchmark approach to finance. Mathematical Finance 16(1), 131-151 (2006). Platen, E.: A benchmark approach to asset management. J. Asset Managem. 6(6), 390-405 (2006).

Law of One Price All replicating portfolios of a payoff have the same price! Debreu (1959), Sharpe (1964), Lintner (1965), Merton (1973a, 1973b), Ross (1976), Harrison & Kreps (1979), Cochrane (2001),... will be, in general, violated under the benchmark approach. c Copyright Eckhard Platen 08 Law Minimal Price 1

1 0 ln(savings bond) ln(fair zero coupon bond) ln(savings account) -1-2 -3-4 -5-6 -7-8 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 1: Logarithms of savings bond, fair zero coupon bond and savings account. c Copyright Eckhard Platen 08 Law Minimal Price 2

Two Asset Market Example trading times t i = i h, h > 0 risky asset S 1 (S&P500 accumulation index) asset ratio A 1 t i,h = S1 t i +h S 1 t i (0, ) can reach any finite strictly positive value savings account S 0 (US savings account) asset ratio A 0 t i,h = S0 t i +h S 0 t i > 0 c Copyright Eckhard Platen 08 Law Minimal Price 3

70 60 50 40 30 20 10 0 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 2: Discounted S&P500. c Copyright Eckhard Platen 08 Law Minimal Price 4

8 ln(s&p500 accumulation index) ln(savings account) 6 4 2 0-2 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 3: ln(s&p500 accumulation index) and ln(savings account). c Copyright Eckhard Platen 08 Law Minimal Price 5

portfolio S δ strict positivity of S δ π 0 δ,t i = δ 0 t i S 0 t i S δ t i [0, 1] A δ t i,h = Sδ t i +h S δ t i = π 0 δ,t i A 0 t i,h + ( 1 π 0 δ,t i ) A 1 t i,h find best performing strictly positive portfolio c Copyright Eckhard Platen 08 Law Minimal Price 6

expected growth g δ t i,h = E t i (ln ( )) A δ t i,h g δ t i,h π 0 δ,t i = E ti ( A 0 ti,h A1 t i,h A δ t i,h ) second derivative negative = one genuine maximum at π 0 δ,t i (, ) for g δ t i,h π 0 δ,t i = 0 c Copyright Eckhard Platen 08 Law Minimal Price 7

Three cases: (i) π 0 δ,t i [0, 1] classical case (ii) π 0 δ,t i < 0 savings account performs poorly, risk premium = index is best performing portfolio (iii) π 0 δ,t i > 1 index performs poorly = savings account is best performing portfolio c Copyright Eckhard Platen 08 Law Minimal Price 8

classical case (i): π 0 δ,t i [0, 1] = E ti ( A 1 ti,h A δ t i,h ) = E ti ( A 0 ti,h A δ t i,h ) = 1 = genuine maximum g δ t i,h = gδ t i,h S 0 t i and S 1 t i are constituents of S δ t i S 0 t i S δ ti and S 1 t i S δ ti are martingales = fair = all benchmarked portfolios are fair = Law of One Price holds c Copyright Eckhard Platen 08 Law Minimal Price 9

other cases rewrite first order condition g δ t i,h π 0 δ,t i = E ti ( Q ti,h π 0 δ,t i (Q ti,h) 2 1 + π 0 δ,t i Q ti,h ) = 0 with S 0 t+h Q t,h = S 1 t+h S 0 t S 1 t 1 = 1 π 0 δ,t = lim h 0 h E t(q t,h ) ( 1 lim h 0 h E (Qt,h ) 2 t 1+π 0 δ,t Q t,h ) c Copyright Eckhard Platen 08 Law Minimal Price 10

5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 4: US-benchmarked savings account. c Copyright Eckhard Platen 08 Law Minimal Price 11

annualized returns of benchmarked savings account n = 1052 ˆµ = 1 n 1 n + 1 h Q t i,h 0.0396 ˆσ = 1 n i=0 n i=0 1 h (Q t i,h) 2 0.19 negative fraction π 0 δ,t = ˆµˆσ 2 1.1 = savings account unlikely to be fair c Copyright Eckhard Platen 08 Law Minimal Price 12

Extreme Maturity Bond need model with downward trending to reflect reality S0 t S δ t assume short rate deterministic savings bond P (t, T) = S0 t S 0 T select index S 1 as numeraire portfolio S δ c Copyright Eckhard Platen 08 Law Minimal Price 13

benchmarked fair zero coupon bond ˆP(t, T) = P(t, T) S δ t = E t ( 1 S δ T ) martingale = real world pricing formula ( 1 ) P(t, T) = S δ t E t S δ T c Copyright Eckhard Platen 08 Law Minimal Price 14

discounted numeraire portfolio S δ t = Sδ t St 0 for continuous market generally satisfies SDE d S δ t = α t dt + S δ t α t dw t is time transformed squared Bessel process c Copyright Eckhard Platen 08 Law Minimal Price 15

model the drift of discounted index as α t = α η exp{η t} = Minimal Market Model MMM, see Pl. & Heath (2006) net growth rate η 0.0511 with R 2 of 0.88 c Copyright Eckhard Platen 08 Law Minimal Price 16

5 4.5 log discounted index trend line 4 3.5 3 2.5 2 1.5 1 0.5 0 1945 1950 1960 1970 1980 1990 2000 time Figure 5: Logarithm of discounted index. c Copyright Eckhard Platen 08 Law Minimal Price 17

normalized index Y t = S δ t α t dy t = (1 η Y t ) dt + Y t dw t quadratic variation of Y t d Y t =... + 1 2 dw t V t,h = i t l=1 ( Ytl Y tl 1 ) 2 [ Y ] t = t 4 scaling parameter α 0.01429 with R 2 of 0.995 c Copyright Eckhard Platen 08 Law Minimal Price 18

16 14 [sqrt(y)] trend line 12 10 8 6 4 2 0-2 1945 1955 1965 1975 1985 1995 2005 time Figure 6: Quadratic Variation of Y t. c Copyright Eckhard Platen 08 Law Minimal Price 19

fair zero coupon bond (MMM) ( { }) P(t, T) = P 2 η S δ t (t, T) 1 exp α(exp{η T} exp{η t}) initial prices in 1920: P (0, T) = 0.025496 P(0, T) = 0.000795 P(0,T) P (0,T) < 0.0312 = 3.12% c Copyright Eckhard Platen 08 Law Minimal Price 20

0.12 benchmarked savings bond benchmarked fair zero coupon bond 0.1 0.08 0.06 0.04 0.02 0 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 7: Benchmarked savings bond and benchmarked fair zero coupon bond. c Copyright Eckhard Platen 08 Law Minimal Price 21

1 0.9 savings bond fair zero coupon bond savings account 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 8: Savings bond, fair zero coupon bond and savings account. c Copyright Eckhard Platen 08 Law Minimal Price 22

self-financing hedge portfolio hedge ratio δ t = P(t, T) S δ t = P (t, T) exp { 2 η S δ t α(exp{η T} exp{η t}) } 2 η α(exp{η T} exp{η t}) c Copyright Eckhard Platen 08 Law Minimal Price 23

1 0 ln(zero coupon bond) Self-financing hedge portfolio -1-2 -3-4 -5-6 -7-8 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 9: Logarithm of zero coupon bond and self-financing hedge portfolio. c Copyright Eckhard Platen 08 Law Minimal Price 24

0.0001 8e-005 6e-005 4e-005 2e-005 0-2e-005-4e-005 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 10: Benchmarked P&L. c Copyright Eckhard Platen 08 Law Minimal Price 25

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 11: Fraction invested in the index. c Copyright Eckhard Platen 08 Law Minimal Price 26

Financial Market jth primary security account S j t j {0, 1,..., d} savings account S 0 t t 0 c Copyright Eckhard Platen 08 Law Minimal Price 27

strategy δ = {δ t = (δ 0 t, δ1 t,..., δd t ), t 0} predictable portfolio S δ t = d j=0 δ j t S j t self-financing ds δ t = d j=0 δ j t ds j t c Copyright Eckhard Platen 08 Law Minimal Price 28

Numeraire Portfolio Definition 1 S δ V + x E t numeraire portfolio if S δ t+h S δ t+h S δ t S δ t 1 for all nonnegative S δ and t, h [0, ). 0 S δ best performing portfolio Long (1990), Becherer (2001), Pl. (2002, 2006), Bühlmann & Pl. (2003), Goll & Kallsen (2003), Karatzas & Kardaras (2007) c Copyright Eckhard Platen 08 Law Minimal Price 29

Main Assumption of the Benchmark Approach Assumption 2 There exists a numeraire portfolio S δ V + x. c Copyright Eckhard Platen 08 Law Minimal Price 30

Supermartingale Property benchmarked value Ŝ δ t = Sδ t S δ t Corollary 3 For nonnegative S δ Ŝ δ t E t ) (Ŝδ s 0 t s < nonnegative Ŝ δ supermartingale c Copyright Eckhard Platen 08 Law Minimal Price 31

Definition 4 Price is fair if, when benchmarked, forms martingale. Ŝ δ t = E t ) (Ŝδ s for 0 t s <. c Copyright Eckhard Platen 08 Law Minimal Price 32

Lemma 5 The minimal nonnegative supermartingale that reaches a given benchmarked contingent claim is a martingale. see Pl. & Heath (2006) c Copyright Eckhard Platen 08 Law Minimal Price 33

Law of the Minimal Price Theorem 6 If a fair portfolio replicates a nonnegative payoff, then this represents the minimal replicating portfolio. least expensive minimal hedge economically correct price in a competitive market c Copyright Eckhard Platen 08 Law Minimal Price 34

0.12 benchmarked savings bond benchmarked fair zero coupon bond 0.1 0.08 0.06 0.04 0.02 0 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 12: Benchmarked savings bond and benchmarked fair zero coupon bond. c Copyright Eckhard Platen 08 Law Minimal Price 35

claim H T E 0 ( HT S δ T ) < Corollary 7 Minimal price for replicable H T is given by real world pricing formula ( HT ) S δ H t = S δ t E t S δ T. c Copyright Eckhard Platen 08 Law Minimal Price 36

normalized benchmarked savings account Λ T = Ŝ0 T Ŝ 0 0 1 = Λ 0 E 0 (Λ T ) real world pricing formula = = similar for any numeraire S δ H 0 = E 0 ( Λ T S 0 0 S 0 T S δ H 0 H T ) ) S E 0 (Λ 0 0 T H ST 0 T E 0 (Λ T ) c Copyright Eckhard Platen 08 Law Minimal Price 37

1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 13: Candidate Radon-Nikodym derivative of hypothetical risk neutral measure of real market. c Copyright Eckhard Platen 08 Law Minimal Price 38

special case when savings account is fair: = Λ T = dq dp forms martingale; E 0(Λ T ) = 1; equivalent risk neutral probability measure Q exists; Bayes formula = risk neutral pricing formula S δ H 0 = E Q 0 ( S 0 0 S 0 T H T ) Harrison & Kreps (1979), Ingersoll (1987), Constatinides (1992), Duffie (2001), Cochrane (2001),... otherwise risk neutral price real world price c Copyright Eckhard Platen 08 Law Minimal Price 39

long term growth rate g δ = lim sup t ( ) 1 S δ t ln t S0 δ Theorem 8 For S δ V + x g δ g δ. pathwise best in the long run Karatzas & Shreve (1998), Pl. (2004), Karatzas & Kardaras (2007) c Copyright Eckhard Platen 08 Law Minimal Price 40

Pl. (2004) Definition 9 if Nonnegative portfolio S δ outperforms systematically S δ (i) S0 δ = S δ 0 ; ) (ii) P (S δt S δt ) (iii) P (S δt > S δt = 1 > 0. relative arbitrage Fernholz & Karatzas (2005) c Copyright Eckhard Platen 08 Law Minimal Price 41

1 0 ln(fair zero coupon bond) ln(savings account) -1-2 -3-4 -5-6 -7-8 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 14: Logarithms of fair zero coupon bond and savings account. c Copyright Eckhard Platen 08 Law Minimal Price 42

Theorem 10 Numeraire portfolio cannot be outperformed systematically. c Copyright Eckhard Platen 08 Law Minimal Price 43

portfolio ratio A δ t,h = Sδ t+h S δ t expected growth g δ t,h = E t ( ( )) ln A δ t,h t, h 0 c Copyright Eckhard Platen 08 Law Minimal Price 44

derivative of expected growth S δ V + x S δ S δ ε nonnegative perturbed S δ A δ ε t,h = ε Aδ t,h + (1 ε) Aδ t,h for t, h 0, ε > 0 g δ ε t,h ε = lim ε=0 ε ε 0 1 ( ) g δ ε t,h gδ t,h c Copyright Eckhard Platen 08 Law Minimal Price 45

Definition 11 S δ growth optimal if g δ ε t,h ε 0 ε=0 for all t, h 0 and nonnegative S δ. alternative definition to expected log-utility Kelly (1956) Hakansson (1971) Merton (1973a) Roll (1973) Markowitz (1976) Theorem 12 The numeraire portfolio is growth optimal. c Copyright Eckhard Platen 08 Law Minimal Price 46

Strong Arbitrage market participants can only exploit arbitrage limited liability = nonnegative total wealth of each market participant Definition 13 A nonnegative S δ is a strong arbitrage if S δ 0 = 0 and P ( S δ t > 0) > 0. Pl. (2002)-mathematical arguments Loewenstein & Willard (2000)-economic arguments c Copyright Eckhard Platen 08 Law Minimal Price 47

Theorem 14 There is no strong arbitrage. c Copyright Eckhard Platen 08 Law Minimal Price 48

= there is no pricing based on strong arbitrage Delbaen & Schachermayer (1998) free lunches with vanishing risk (FLVR) may exist Loewenstein & Willard (2000) free snacks & cheap thrills may exist c Copyright Eckhard Platen 08 Law Minimal Price 49

1 0.8 0.6 0.4 0.2 0-0.2 1930 1940 1950 1960 1970 1980 1990 2000 time Figure 15: P(t, T) minus savings account. c Copyright Eckhard Platen 08 Law Minimal Price 50

0.0018 0.0016 0.0014 0.0012 0.001 0.0008 0.0006 0.0004 0.0002 0-0.0002-0.0004 1920 1922 1924 1926 1928 time Figure 16: P(t, T) minus savings account. c Copyright Eckhard Platen 08 Law Minimal Price 51

Under BA candidate risk neutral Q may not be equivalent to P since its Radon-Nikodym derivative may be a strict supermartingale. Under BA existence of equivalent risk neutral probability measure is more a mathematical convenience than an economic necessity. c Copyright Eckhard Platen 08 Law Minimal Price 52

References Becherer, D. (2001). The numeraire portfolio for unbounded semimartingales. Finance Stoch. 5, 327 341. Bühlmann, H. & E. Platen (2003). A discrete time benchmark approach for insurance and finance. ASTIN Bulletin 33(2), 153 172. Cochrane, J. H. (2001). Asset Pricing. Princeton University Press. Constatinides, G. M. (1992). A theory of the nominal structure of interest rates. Rev. Financial Studies 5, 531 552. Debreu, G. (1959). Theory of Value. Wiley, New York. Delbaen, F. & W. Schachermayer (1998). The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215 250. Duffie, D. (2001). Dynamic Asset Pricing Theory (3rd ed.). Princeton, University Press. Fernholz, E. R. & I. Karatzas (2005). Relative arbitrage in volatility-stabilized markets. Annals of Finance 1(2), 149 177. Goll, T. & J. Kallsen (2003). A complete explicit solution to the log-optimal portfolio problem. Ann. Appl. Probab. 13(2), 774 799. Hakansson, N. H. (1971). Capital growth and the mean-variance approach to portfolio selection. J. Financial and Quantitative Analysis 6(1), 517 557. Harrison, J. M. & D. M. Kreps (1979). Martingale and arbitrage in multiperiod securities markets. J. Economic Theory 20, 381 408. Ingersoll, J. E. (1987). Theory of Financial Decision Making. Studies in Financial Economics. Rowman and Littlefield. Karatzas, I. & C. Kardaras (2007). The numeraire portfolio in semimartingale financial models. Finance Stoch. 11(4), 447 493. Karatzas, I. & S. E. Shreve (1998). Methods of Mathematical Finance, Volume 39 of Appl. Math. Springer. Kelly, J. R. (1956). A new interpretation of information rate. Bell Syst. Techn. J. 35, 917 926. Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econom. Statist. 47, 13 37. Loewenstein, M. & G. A. Willard (2000). Local martingales, arbitrage, and viability: Free snacks and cheap thrills. Econometric Theory 16(1), 135 161. Long, J. B. (1990). The numeraire portfolio. J. Financial Economics 26, 29 69. Markowitz, H. (1976). Investment for the long run: New evidence for an old rule. J. Finance XXXI(5), 1273 1286. Merton, R. C. (1973a). An intertemporal capital asset pricing model. Econometrica 41, 867 888. c Copyright Eckhard Platen 08 Law Minimal Price 53

Merton, R. C. (1973b). Theory of rational option pricing. Bell J. Econ. Management Sci. 4, 141 183. Platen, E. (2002). Arbitrage in continuous complete markets. Adv. in Appl. Probab. 34(3), 540 558. Platen, E. (2004). A benchmark framework for risk management. In Stochastic Processes and Applications to Mathematical Finance, pp. 305 335. Proceedings of the Ritsumeikan Intern. Symposium: World Scientific. Platen, E. (2006). A benchmark approach to finance. Math. Finance 16(1), 131 151. Platen, E. & D. Heath (2006). A Benchmark Approach to Quantitative Finance. Springer Finance. Springer. Roll, R. (1973). Evidence on the Growth-Optimum model. J. Finance 28(3), 551 566. Ross, S. A. (1976). The arbitrage theory of capital asset pricing. J. Economic Theory 13, 341 360. Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. J. Finance 19, 425 442. c Copyright Eckhard Platen 08 Law Minimal Price 54