Contents Utility theory and insurance The individual risk model Collective risk models

Similar documents
Introduction Models for claim numbers and claim sizes

Cambridge University Press Risk Modelling in General Insurance: From Principles to Practice Roger J. Gray and Susan M.

Institute of Actuaries of India Subject CT6 Statistical Methods

Modern Actuarial Risk Theory

MODELS FOR QUANTIFYING RISK

2.1 Random variable, density function, enumerative density function and distribution function

Stochastic Claims Reserving _ Methods in Insurance

Financial Models with Levy Processes and Volatility Clustering

SYLLABUS OF BASIC EDUCATION SPRING 2018 Construction and Evaluation of Actuarial Models Exam 4

Modern Actuarial Risk Theory

Quantile Regression. By Luyang Fu, Ph. D., FCAS, State Auto Insurance Company Cheng-sheng Peter Wu, FCAS, ASA, MAAA, Deloitte Consulting

UPDATED IAA EDUCATION SYLLABUS

CAS Course 3 - Actuarial Models

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii)

Market Risk Analysis Volume I

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

Syllabus 2019 Contents

Implementing Models in Quantitative Finance: Methods and Cases

[D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright

arxiv: v1 [q-fin.rm] 13 Dec 2016

Changes to Exams FM/2, M and C/4 for the May 2007 Administration

Two hours UNIVERSITY OF MANCHESTER. 23 May :00 16:00. Answer ALL SIX questions The total number of marks in the paper is 90.

Market Risk Analysis Volume II. Practical Financial Econometrics

A First Course in Probability

TABLE OF CONTENTS - VOLUME 2

Dynamic Copula Methods in Finance

o Hours per week: lecture (4 hours) and exercise (1 hour)

Actuarial Society of India EXAMINATIONS

PROBABILITY. Wiley. With Applications and R ROBERT P. DOBROW. Department of Mathematics. Carleton College Northfield, MN

Describing Uncertain Variables

Master s in Financial Engineering Foundations of Buy-Side Finance: Quantitative Risk and Portfolio Management. > Teaching > Courses

INSTITUTE OF ACTUARIES OF INDIA

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS

Statistical Modeling Techniques for Reserve Ranges: A Simulation Approach

Obtaining Predictive Distributions for Reserves Which Incorporate Expert Opinions R. Verrall A. Estimation of Policy Liabilities

Intro to GLM Day 2: GLM and Maximum Likelihood

Proxies. Glenn Meyers, FCAS, MAAA, Ph.D. Chief Actuary, ISO Innovative Analytics Presented at the ASTIN Colloquium June 4, 2009

Content Added to the Updated IAA Education Syllabus

Homework Problems Stat 479

An Alternative Approach to Credibility for Large Account and Excess of Loss Treaty Pricing By Uri Korn

2017 IAA EDUCATION SYLLABUS

Introduction to Loss Distribution Approach

Keywords Akiake Information criterion, Automobile, Bonus-Malus, Exponential family, Linear regression, Residuals, Scaled deviance. I.

WC-5 Just How Credible Is That Employer? Exploring GLMs and Multilevel Modeling for NCCI s Excess Loss Factor Methodology

Bonus-malus systems 6.1 INTRODUCTION

1. You are given the following information about a stationary AR(2) model:

DRAFT 2011 Exam 7 Advanced Techniques in Unpaid Claim Estimation, Insurance Company Valuation, and Enterprise Risk Management

Statistics and Finance

Discrete-time Asset Pricing Models in Applied Stochastic Finance

Optimal reinsurance strategies

STK Lecture 7 finalizing clam size modelling and starting on pricing

ScienceDirect. A Comparison of Several Bonus Malus Systems

M.Sc. ACTUARIAL SCIENCE. Term-End Examination

Subject CS2A Risk Modelling and Survival Analysis Core Principles

Reinsurance Pricing Basics

A Review of Berquist and Sherman Paper: Reserving in a Changing Environment

Computational Methods in Finance

A Comprehensive, Non-Aggregated, Stochastic Approach to. Loss Development

Statistical Models and Methods for Financial Markets

Mathematical Methods in Risk Theory

Computational Statistics Handbook with MATLAB

Reserving Risk and Solvency II

From Financial Engineering to Risk Management. Radu Tunaru University of Kent, UK

Introduction Recently the importance of modelling dependent insurance and reinsurance risks has attracted the attention of actuarial practitioners and

Curriculum. Written by Administrator Sunday, 03 February :33 - Last Updated Friday, 28 June :10 1 / 10

Chapter 2 Uncertainty Analysis and Sampling Techniques

A Comprehensive, Non-Aggregated, Stochastic Approach to Loss Development

The actuar Package. March 24, bstraub... 1 hachemeister... 3 panjer... 4 rearrangepf... 5 simpf Index 8. Buhlmann-Straub Credibility Model

Monte Carlo Methods in Financial Engineering

And The Winner Is? How to Pick a Better Model

Applied Stochastic Processes and Control for Jump-Diffusions

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Financial and Actuarial Mathematics

2017 IAA EDUCATION GUIDELINES

Market Risk Analysis Volume IV. Value-at-Risk Models

Lectures and Seminars in Insurance Mathematics and Related Fields at ETH Zurich. Spring Semester 2019

(FRED ESPEN BENTH, JAN KALLSEN, AND THILO MEYER-BRANDIS) UFITIMANA Jacqueline. Lappeenranta University Of Technology.

Bootstrapping vs. Asymptotic Theory in Property and Casualty Loss Reserving

Following Budapest. IAA Education Syllabus. Proposed motion and various related documents

Double Chain Ladder and Bornhutter-Ferguson

Value at Risk Ch.12. PAK Study Manual

A new -package for statistical modelling and forecasting in non-life insurance. María Dolores Martínez-Miranda Jens Perch Nielsen Richard Verrall

The Retrospective Testing of Stochastic Loss Reserve Models. Glenn Meyers, FCAS, MAAA, CERA, Ph.D. ISO Innovative Analytics. and. Peng Shi, ASA, Ph.D.

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS

Predictive Modeling GLM and Price Elasticity Model. David Dou October 8 th, 2014

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

Handbook of Financial Risk Management

Loss Simulation Model Testing and Enhancement

REVIEW OF STATISTICAL METHODS FOR ANALYSING HEALTHCARE ADDITIONAL MATERIAL. GLOSSARY OF CATEGORIES OF METHODS page 2

Where s the Beef Does the Mack Method produce an undernourished range of possible outcomes?

Practice Exam 1. Loss Amount Number of Losses

KARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI

SECOND EDITION. MARY R. HARDY University of Waterloo, Ontario. HOWARD R. WATERS Heriot-Watt University, Edinburgh

Applied Quantitative Finance

Operational Risk Aggregation

Slides for Risk Management

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x).

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of

Integre Technical Publishing Co., Inc. Chung February 8, :21 a.m. chung page 392. Index

Transcription:

Contents There are 10 11 stars in the galaxy. That used to be a huge number. But it s only a hundred billion. It s less than the national deficit! We used to call them astronomical numbers. Now we should call them economical numbers Richard Feynman (1918 1988) 1 Utility theory and insurance..................................... 1 1.1 Introduction............................................... 1 1.2 The expected utility model................................... 2 1.3 Classes of utility functions................................... 5 1.4 Stop-loss reinsurance....................................... 8 1.5 Exercises................................................. 13 2 The individual risk model....................................... 17 2.1 Introduction............................................... 17 2.2 Mixed distributions and risks................................. 18 2.3 Convolution............................................... 25 2.4 Transforms................................................ 28 2.5 Approximations............................................ 30 2.5.1 Normal approximation................................ 30 2.5.2 Translated gamma approximation....................... 32 2.5.3 NP approximation................................... 33 2.6 Application: optimal reinsurance.............................. 35 2.7 Exercises................................................. 36 3 Collective risk models.......................................... 41 3.1 Introduction............................................... 41 3.2 Compound distributions..................................... 42 3.2.1 Convolution formula for a compound cdf................ 44 3.3 Distributions for the number of claims......................... 45 3.4 Properties of compound Poisson distributions................... 47 3.5 Panjer s recursion.......................................... 49 3.6 Compound distributions and the Fast Fourier Transform.......... 54 3.7 Approximations for compound distributions.................... 57 3.8 Individual and collective risk model........................... 59 3.9 Loss distributions: properties, estimation, sampling.............. 61 3.9.1 Techniques to generate pseudo-random samples.......... 62 3.9.2 Techniques to compute ML-estimates................... 63 xv

xvi Contents 3.9.3 Poisson claim number distribution...................... 63 3.9.4 Negative binomial claim number distribution............. 64 3.9.5 Gamma claim severity distributions..................... 66 3.9.6 Inverse Gaussian claim severity distributions............. 67 3.9.7 Mixtures/combinations of exponential distributions........ 69 3.9.8 Lognormal claim severities............................ 71 3.9.9 Pareto claim severities................................ 72 3.10 Stop-loss insurance and approximations........................ 73 3.10.1 Comparing stop-loss premiums in case of unequal variances 76 3.11 Exercises................................................. 78 4 Ruin theory................................................... 87 4.1 Introduction............................................... 87 4.2 The classical ruin process.................................... 89 4.3 Some simple results on ruin probabilities....................... 91 4.4 Ruin probability and capital at ruin............................ 95 4.5 Discrete time model........................................ 98 4.6 Reinsurance and ruin probabilities............................ 99 4.7 Beekman s convolution formula.............................. 101 4.8 Explicit expressions for ruin probabilities...................... 106 4.9 Approximation of ruin probabilities........................... 108 4.10 Exercises................................................. 111 5 Premium principles and Risk measures........................... 115 5.1 Introduction............................................... 115 5.2 Premium calculation from top-down........................... 116 5.3 Various premium principles and their properties................. 119 5.3.1 Properties of premium principles....................... 120 5.4 Characterizations of premium principles....................... 122 5.5 Premium reduction by coinsurance............................ 125 5.6 Value-at-Risk and related risk measures........................ 126 5.7 Exercises................................................. 133 6 Bonus-malus systems........................................... 135 6.1 Introduction............................................... 135 6.2 A generic bonus-malus system............................... 136 6.3 Markov analysis........................................... 138 6.3.1 Loimaranta efficiency................................ 141 6.4 Finding steady state premiums and Loimaranta efficiency......... 142 6.5 Exercises................................................. 146 7 Ordering of risks............................................... 149 7.1 Introduction............................................... 149 7.2 Larger risks............................................... 152 7.3 More dangerous risks....................................... 154 7.3.1 Thicker-tailed risks................................... 154

Contents xvii 7.3.2 Stop-loss order...................................... 159 7.3.3 Exponential order.................................... 160 7.3.4 Properties of stop-loss order........................... 160 7.4 Applications............................................... 164 7.4.1 Individual versus collective model...................... 164 7.4.2 Ruin probabilities and adjustment coefficients............ 164 7.4.3 Order in two-parameter families of distributions.......... 166 7.4.4 Optimal reinsurance.................................. 168 7.4.5 Premiums principles respecting order................... 169 7.4.6 Mixtures of Poisson distributions....................... 169 7.4.7 Spreading of risks.................................... 170 7.4.8 Transforming several identical risks..................... 170 7.5 Incomplete information..................................... 171 7.6 Comonotonic random variables............................... 176 7.7 Stochastic bounds on sums of dependent risks................... 183 7.7.1 Sharper upper and lower bounds derived from a surrogate.. 183 7.7.2 Simulating stochastic bounds for sums of lognormal risks.. 186 7.8 More related joint distributions; copulas........................ 190 7.8.1 More related distributions; association measures.......... 190 7.8.2 Copulas............................................ 194 7.9 Exercises................................................. 196 8 Credibility theory.............................................. 203 8.1 Introduction............................................... 203 8.2 The balanced Bühlmann model............................... 204 8.3 More general credibility models.............................. 211 8.4 The Bühlmann-Straub model................................. 214 8.4.1 Parameter estimation in the Bühlmann-Straub model...... 217 8.5 Negative binomial model for the number of car insurance claims... 222 8.6 Exercises................................................. 227 9 Generalized linear models....................................... 231 9.1 Introduction............................................... 231 9.2 Generalized Linear Models.................................. 234 9.3 9.4 Some traditional estimation procedures and GLMs.............. 237 Deviance and scaled deviance................................ 245 9.5 Case study I: Analyzing a simple automobile portfolio........... 248 9.6 Case study II: Analyzing a bonus-malus system using GLM....... 252 9.6.1 GLM analysis for the total claims per policy............. 257 9.7 Exercises................................................. 262 10 IBNR techniques............................................... 265 10.1 Introduction............................................... 265 10.2 Two time-honored IBNR methods............................. 268 10.2.1 Chain ladder........................................ 268

xviii Contents 10.2.2 Bornhuetter-Ferguson................................ 270 10.3 A GLM that encompasses various IBNR methods............... 271 10.3.1 Chain ladder method as a GLM........................ 272 10.3.2 Arithmetic and geometric separation methods............ 273 10.3.3 De Vijlder s least squares method....................... 274 10.4 Illustration of some IBNR methods............................ 276 10.4.1 Modeling the claim numbers in Table 10.1............... 277 10.4.2 Modeling claim sizes................................. 279 10.5 Solving IBNR problems by R................................ 281 10.6 Variability of the IBNR estimate.............................. 283 10.6.1 Bootstrapping....................................... 285 10.6.2 Analytical estimate of the prediction error............... 288 10.7 An IBNR-problem with known exposures...................... 290 10.8 Exercises................................................. 292 11 More on GLMs................................................. 297 11.1 Introduction............................................... 297 11.2 Linear Models and Generalized Linear Models.................. 297 11.3 The Exponential Dispersion Family........................... 300 11.4 Fitting criteria............................................. 305 11.4.1 Residuals........................................... 305 11.4.2 Quasi-likelihood and quasi-deviance.................... 306 11.4.3 Extended quasi-likelihood............................. 308 11.5 The canonical link.......................................... 310 11.6 The IRLS algorithm of Nelder and Wedderburn................. 312 11.6.1 Theoretical description............................... 313 11.6.2 Step-by-step implementation........................... 315 11.7 Tweedie s Compound Poisson gamma distributions.............. 317 11.7.1 Application to an IBNR problem....................... 318 11.8 Exercises................................................. 320 The R in Modern ART............................................ 325 A.1 A short introduction to R.................................... 325 A.2 Analyzing a stock portfolio using R........................... 332 A.3 Generating a pseudo-random insurance portfolio................ 338 Hints for the exercises............................................... 341 Notes and references................................................ 357 Tables............................................................. 367 Index............................................................. 371

http://www.springer.com/978-3-540-70992-3