Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 1

Similar documents
Survey of Math: Chapter 21: Consumer Finance Savings Page 1

Survey of Math Chapter 21: Savings Models Handout Page 1

Chapter 21: Savings Models

Chapter 21: Savings Models Lesson Plan

Math of Finance Exponential & Power Functions

Computing compound interest and composition of functions

Chapter 5. Learning Objectives. Principals Applied in this Chapter. Time Value of Money. Principle 1: Money Has a Time Value.

Chapter 5. Time Value of Money

Before How can lines on a graph show the effect of interest rates on savings accounts?

4.1 Exponential Functions. Copyright Cengage Learning. All rights reserved.

PREMIUM VERSION PREVIEW

Exponential Modeling. Growth and Decay

Computing interest and composition of functions:

MATH20180: Foundations of Financial Mathematics

Financial Applications Involving Exponential Functions

Finding the Sum of Consecutive Terms of a Sequence

MLC at Boise State Logarithms Activity 6 Week #8

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Daily Outcomes: I can evaluate, analyze, and graph exponential functions. Why might plotting the data on a graph be helpful in analyzing the data?

* The Unlimited Plan costs $100 per month for as many minutes as you care to use.

Mathematics (Project Maths Phase 2)

ESSENTIAL MATHEMATICS 4 WEEK 10 NOTES TERM 3. Compound interest

CASH FLOW. Dr. Derek Farnsworth Assistant Professor

Interest Compounded Annually. Table 3.27 Interest Computed Annually

1. Geometric sequences can be modeled by exponential functions using the common ratio and the initial term.

c. Graph this on your calculator and determine about when the average was 600 pages.

Chapter 6 Analyzing Accumulated Change: Integrals in Action

The Advanced Budget Project Part D The Budget Report

Lesson Exponential Models & Logarithms

Year Years Since 2004 Account Balance $50, $52, $55,

Mathematics for Economists

CHAPTER 8. Valuing Bonds. Chapter Synopsis

Energy Price Processes

Writing Exponential Equations Day 2

3.1 Exponential Functions and Their Graphs Date: Exponential Function

3: Balance Equations

Benchmarking. Club Fund. We like to think about being in an investment club as a group of people running a little business.

SA2 Unit 4 Investigating Exponentials in Context Classwork A. Double Your Money. 2. Let x be the number of assignments completed. Complete the table.

Chapter 3 Mathematics of Finance

4. Financial Mathematics

My Notes CONNECT TO HISTORY

MANAGING YOUR BUSINESS S CASH FLOW. Managing Your Business s Cash Flow. David Oetken, MBA CPM

BACKGROUND KNOWLEDGE for Teachers and Students

Examination Copy COMAP Inc. Not For Resale

Math 1526 Summer 2000 Session 1

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

7-4. Compound Interest. Vocabulary. Interest Compounded Annually. Lesson. Mental Math

Graph A Graph B Graph C Graph D. t g(t) h(t) k(t) f(t) Graph

Finance 197. Simple One-time Interest

HCSC Employees Pension Plan Cash Balance Participants

Interest Formulas. Simple Interest

Math 1090 Mortgage Project Name(s) Mason Howe Due date: 4/10/2015

3 + 30e 0.10(3/12) > <

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

Notes on a California Perspective of the Dairy Margin Protection Program (DMPP)

Linear Modeling Business 5 Supply and Demand

Engineering Economy Chapter 4 More Interest Formulas

Section 5.1 Simple and Compound Interest

Business Mathematics Lecture Note #9 Chapter 5

Interest Rates. Countrywide Building Society. Saving Data Sheet. Gross (% per annum)

Logarithmic Functions and Simple Interest

Simple and Compound Interest

PRELIMINARY EXAMINATION 2018 MATHEMATICS GRADE 12 PAPER 1. Time: 3 hours Total: 150 PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

Debt. Last modified KW

Chapter 5. Interest Rates ( ) 6. % per month then you will have ( 1.005) = of 2 years, using our rule ( ) = 1.

It is a measure to compare bonds (among other things).

a n a m = an m a nm = a nm

MGT201 Lecture No. 11

Basics. 7: Compounding Frequency. Lingua Franca (Language of the Trade) 7.1 Nominal and Effective Interest. Nominal and Effective.

-SQA- SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION

NOTES ON CALCULUS AND UTILITY FUNCTIONS

The three formulas we use most commonly involving compounding interest n times a year are

2.6.3 Interest Rate 68 ESTOLA: PRINCIPLES OF QUANTITATIVE MICROECONOMICS

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

Part 2: Skeletal Profit and Loss Statement: Calculating the P & L Components

Answers. Investigation 3. ACE Assignment Choices. Applications < < < < < 1.9

Econ 110: Introduction to Economic Theory. 11th Class 2/14/11

Adjusting Nominal Values to Real Values *

Math 122 Calculus for Business Admin. and Social Sciences

Answers are on next slide. Graphs follow.

Answers are on next slide. Graphs follow.

Exponential Functions with Base e

Adjusting Nominal Values to

Math 1070 Sample Exam 2

Financial Literacy in Mathematics

Money and Banking. Lecture I: Interest Rates. Guoxiong ZHANG, Ph.D. September 11th, Shanghai Jiao Tong University, Antai

Lecture 3 Basic risk management. An introduction to forward contracts.

THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT5250 Financial Mathematics Homework 2 Due Date: March 24, 2018

Money and Banking. Lecture I: Interest Rates. Guoxiong ZHANG, Ph.D. September 12th, Shanghai Jiao Tong University, Antai

Hello I'm Professor Brian Bueche, welcome back. This is the final video in our trilogy on time value of money. Now maybe this trilogy hasn't been as

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Correlated to: Minnesota K-12 Academic Standards in Mathematics, 9/2008 (Grade 7)

Office of the Treasurer of The Regents

Reporting Average Annual Returns

GENERAL COMPETENCE FOR UNIT: Formulating, solving and interpreting solutions of mathematical models for problems in relation to business and commerce.

Chapter 2: BASICS OF FIXED INCOME SECURITIES

MATH THAT MAKES ENTS

Math 1070 Final Exam Practice Spring 2014

Solution Set 1 Foundations of Finance. Problem Set 1 Solution: Time Value of Money and Equity Markets

Writing Exponential Equations Day 2

Transcription:

Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 1 The mathematical concepts we use to describe finance are also used to describe how populations of organisms vary over time, how disease spreads through a population, how rumours spread through a population, even the motion of particles suspended in a fluid, as well as many other situations. Mathematics is so beautiful because the techniques you learn to solve one type of problem typically can be used to solve other problems! Money deposited in a savings account in a bank will earn interest. The initial amount you deposit is called the principal, and the money which is earned is called the interest. How does the money grow? What will your balance be after one year? There is a lot that goes into answering these questions, since interest can be paid in different ways. Growth of Savings: Simple Interest Simple interest pays interest only on the principal, not on any interest which has accumulated. Simple interest is rarely used for saving accounts, but it is used for bonds. Example You put $98.45 in a savings account which pays simple interest of 6% a month. How much money do you have in the savings account after 4 months? Solution To answer this question, we can build from what we know. Simple interest means we pay interest only on the initial amount deposited (principal), which was $98.45. The interest amount will be 6%= 6/100 = 0.06 of the principal, and added to the account balance once a month. Interest Period Date Interest Added Accumulated Amount 0 Jan 1 0 $98.45 1 Feb 1 $98.45 0.06=$5.91 $98.45 + $5.91 = $104.36 2 Mar 1 $98.45 0.06=$5.91 $104.36 + $5.91 = $110.26 3 Apr 1 $98.45 0.06=$5.91 $110.26 + $5.91 = $116.17 4 May 1 $98.45 0.06=$5.91 $116.17 + $5.91 = $122.08 This table is the form an Excel spreadsheet would take to calculate simple interest. initialization and it is the second row that contains formulas. Notice the first row is an We see that the growth is by a constant amount ($98.45 0.06=$5.91) every time period (month in this case). This is the requirement for linear or arithmetic growth. It gets the name linear since the graph of the amount versus the time is a straight line (linear function).

Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 2 Simple Interest Formula For simple interest of r% paid every time period with a principal P, we get Time Period Accumulated Amount 0 P 1 (P ) + P r 2 (P + P r) + P r = P + 2P r 3 (P + 2P r) + P r = P + 3P r 4 (P + 3P r) + P r = P + 4P r k. P + P rk ie., for a principal of P with simple interest of r% paid every time period, we get an accumulated amount after k time periods of A = P + P rk = P (1 + kr). The formula gives you another way of calculating a quantity that could be done using a spreadsheet style table. Example You put $98.45 in a savings account which pays simple interest of 6% a month. How much money do you have in the savings account after 4 months? Solution Identify P = $98.45, r = 6% and time period of one month. So for four months, k = 4. A = P (1 + kr) = $98.45(1 + 4 0.06) = $122.08 Growth of Savings: Compound Interest Compound interest pays interest on the principal and the accumulated interest, not just the principal. Example You put $98.45 in a savings account which pays compound interest of 6% a month. How much money do you have in the savings account after 4 months? Solution To answer this question, we can build from what we know. Compound interest means we pay interest on the accumulated amount in the account. The interest amount will be 6%= 6/100 = 0.06 of this amount, and added to the account balance once a month. Compounding Period Date Interest Added Accumulated Amount 0 Jan 1 0 $98.45 1 Feb 1 $98.45 0.06=$5.91 $98.45 + $5.91 = $104.36 2 Mar 1 $104.36 0.06=$6.26 $104.36 + $6.26 = $110.62 3 Apr 1 $110.62 0.06=$6.64 $110.62 + $6.64 = $117.26 4 May 1 $117.26 0.06=$7.04 $117.26 + $7.04 = $124.29 We see that the amount of growth increases as time increases. The amount of growth is proportional to the amount present, which is the requirement for geometric growth.

Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 3 Interest Terminology Savings problems typically involve a bit more terminology than we ve used so far. The compounding period is the time which elapses before compound interest is paid. The time when compounding is done effects the accumulated amount, since the current amount affects the amount of interest added, and the current amount will change if we compound more frequently. The nominal rate is the stated rate of interest for a specified length of time. The nominal rate does not take into account how interest is compounded! The effective rate is the actual percentage rate of increase for a length of time which takes into account compounding. It represents the amount of simple interest that would yield exactly as much interest over that length of time. The effective annual rate (EAR) is the effective rate given over a year. For savings accounts, the EAR is also called the annual percentage yield (APY). Compound Interest Formula For a nominal annual rate r, compounded n times per year, we have i = r/n as the interest rate per compounding period. Now let s try to derive a formula for compound interest. Compounding Period Amount 0 P 1 P + P i = P (1 + i) 2 P (1 + i) + P (1 + i)i = P (1 + i) 2 3 P (1 + i) 2 + P (1 + i) 2 i = P (1 + i) 3 4 P (1 + i) 3 + P (1 + i) 3 i = P (1 + i) 4 k. P (1 + i) k

Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 4 ie., for a principal of P with compound interest of i% paid every compounding period, we get an accumulated amount after k compounding periods of A = P (1 + i) k. Example You put $98.45 in a savings account which pays compound interest of 6% a month. How much money do you have in the savings account after 4 months? Solution Identify P = $98.45, i = 6%. So for four months, k = 4. A = P (1 + i) k = $98.45(1 + 0.06) 4 = $124.29 Example $1000 is deposited at 6% per year. Find the balance at the end of one year, if the interest paid is a) simple interest b) compounded quarterly. Solution a) The principal is P =$1000, and the nominal rate is r =6% = 0.06. After one year, k = 1. If we use simple interest, we have an accumulated balance of A = P (1 + kr) = $1000.00(1 + 1 0.06) = $1060.00 b) For interest compounded quarterly, we can get the accumulated amount by constructing a table. The r = 6%, when compounded quarterly, means we get i = r/n = 6%/4 = 0.015 interest applied every three months over the year. Compounding Period Date Interest Added Accumulated Amount 0 Jan 1, 2005 0 $1000.00 1 Apr 1, 2005 $1000.00 0.015=$15.00 $1000.00 + $15.00 = $1015.00 2 Jul 1, 2005 $1015.00 0.015=$15.23 $1015.00 + $15.23 = $1030.23 3 Oct 1, 2005 $1030.23 0.015=$15.45 $1030.23 + $15.45 = $1045.68 4 Jan 1, 2006 $1045.68 0.015=$15.68 $1045.68 + $15.68 = $1061.36 Since after one year, the interest earned was $61.36, which is 6.136% of the principal, the APR is 6.136%. We could also use a formula to answer part (b). b) The nominal annual rate is r =6% = 0.06, when compounded quarterly, means we have n = 4, so i = r/n = 0.06/4 = 0.015. One year corresponds to k = 4, so after one year we have A = P (1 + i) k = $1000.00(1 + 0.015) 4 = $1061.36. The formulas allow us to answer questions which would be difficult to answer using a table. Example $1000 is deposited at 7.5% per year. Find the balance at the end of one year, and two years, if the interest paid is compounded daily. Solution The nominal annual rate is r =7.5% = 0.075, when compounded daily, means we have n = 365, so i = r/n = 0.075/365 = 0.000205479. One year corresponds to k = 365, so after one year we have A = P (1 + i) k = $1000.00(1 + 0.000205479) 365 = $1077.88. Two years corresponds to k = 2 365 = 730, so after two years we have A = P (1 + i) k = $1000.00(1 + 0.000205479) 730 = $1161.82.

Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 5 A Limit to Compounding (This is Table 21.1 in the text) Sketch the graph of the accumulated amount for 10 years if the principal is P =$1000 and the annual interest rate is r = 10% for simple interest, compound interest compounded yearly, compound interest compounded quarterly, and compound interest compounded daily (assume 365 days in a year). To get the values, we can use the formulas we derived. Here is the process for getting a point beyond t = 0; the rest are calculated in a similar fashion. Simple interest after 1 year: A = P (1 + rt) = $1000(1 + 0.10 1) = $1100.00 after 1 year. Compound interest compounded yearly (i = r/n = 0.10/1 = 0.10, and k = 1): A = P (1 + i) k = $1000(1 + 0.10) 1 = $1100.00 after 1 year. Compound interest compounded quarterly (i = r/n = 0.10/4 = 0.025, and k = 4): A = P (1 + i) k = $1000(1 + 0.025) 4 = $1103.81 after 1 year. Compound interest compounded daily (i = r/n = 0.10/365 = 0.000273973, and k = 365): A = P (1 + i) k = $1000(1 + 0.000273973) 365 = $1105.16 after 1 year. black: simple interest. red: compound interest, compounded yearly. green: compound interest, compounded quarterly. blue: compound interest, compounded daily.

Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 6 Things to note: The curves are all essentially the same for short times. There are more points for compounding quarterly than yearly since interest is paid more often during the year. There is not much difference over 10 years to compounding quarterly and compounding daily. Compounding more frequently leads to a larger accumulated balance, but there is a limit to this process. The limit would be if we compounded continuously. Compounding Continuously Consider a principal P = $1 and a rate of r=100% which is compounded over shorter and shorter time periods. We are interested in how much the accumulated amount will be after one year. Compound interest compounded n times a year (i = 1/n, and k = n (to get one year)): A = P (1 + i) k = ( 1 + 1 n) n after 1 year. There is a table in the text of these numbers, here is a sketch We see that the accumulated amount is approaching a number: ( 1 + 1 n) n 2.71828... if n is very large. This number is similar to π = 3.14... in that it is mathematically significant and appears in many situations, and so we give it a special designation: e ( 1 + 1 n) n 2.71828... if n is very large.

Survey of Math: Chapter 21: Consumer Finance Savings (Lecture 1) Page 7 This leads the the continuous interest formula, which is A = P e r after 1 year if interest is compounded continuously at annual rate r. A = P e rt after t years if interest is compounded continuously at annual rate r. The function e rt is called the exponential function. The continuous interest formula is the upper limit on the accumulated amount that can accrue due to compounding interest. Review of interest formulas (principal P and annual rate r) Simple interest: A = P (1 + kr) is the amount at time k. Compound interest, compounded n times over 1 year: A = P (1 + i) k is the amount at time k, where i = r/n. Continuously compounded interest: A = P e rt is the amount at time t. The formulas allow us to answer questions which would be difficult to answer using a table, and also to answer questions quickly without a lot of calculation. However, the tables allow us to answer questions that do not match the conditions under which the formulas were derived. Therefore, both formulas and spreadsheet tables are useful in understanding how personal finance works.