ACT4000, MIDTERM #1 ADVANCED ACTUARIAL TOPICS FEBRUARY 9, 2009 HAL W. PEDERSEN

Similar documents
Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

ACT2020, MIDTERM #2 ECONOMIC AND FINANCIAL APPLICATIONS MARCH 16, 2009 HAL W. PEDERSEN

ACT 4000, MIDTERM #2 ADVANCED ACTUARIAL TOPICS MARCH 22, 2007 HAL W. PEDERSEN

Option pricing models

non linear Payoffs Markus K. Brunnermeier

FINANCIAL OPTION ANALYSIS HANDOUTS

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE.

MULTIPLE CHOICE QUESTIONS

Introduction to Binomial Trees. Chapter 12

Multi-Period Binomial Option Pricing - Outline

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005

Pricing Options with Binomial Trees

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Chapter 9 - Mechanics of Options Markets

OPTION VALUATION Fall 2000

Options Markets: Introduction

1b. Write down the possible payoffs of each of the following instruments separately, and of the portfolio of all three:

Chapter 14 Exotic Options: I

Fixed Income and Risk Management

Homework Assignments

M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina

Investment Guarantees Chapter 7. Investment Guarantees Chapter 7: Option Pricing Theory. Key Exam Topics in This Lesson.

UCLA Anderson School of Management Daniel Andrei, Option Markets 232D, Fall MBA Midterm. November Date:

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester

Introduction to Binomial Trees. Chapter 12

Advanced Corporate Finance. 5. Options (a refresher)

Lecture Quantitative Finance Spring Term 2015

TRUE/FALSE 1 (2) TRUE FALSE 2 (2) TRUE FALSE. MULTIPLE CHOICE 1 (5) a b c d e 3 (2) TRUE FALSE 4 (2) TRUE FALSE. 2 (5) a b c d e 5 (2) TRUE FALSE

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Review of Derivatives I. Matti Suominen, Aalto

S u =$55. S u =S (1+u) S=$50. S d =$48.5. S d =S (1+d) C u = $5 = Max{55-50,0} $1.06. C u = Max{Su-X,0} (1+r) (1+r) $1.06. C d = $0 = Max{48.

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

Appendix: Basics of Options and Option Pricing Option Payoffs

Introduction to Financial Derivatives

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2.

Chapter 14. Exotic Options: I. Question Question Question Question The geometric averages for stocks will always be lower.

M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark).

In Chapter 14, we examined how the binomial interest rate model can be used to

Solutions of Exercises on Black Scholes model and pricing financial derivatives MQF: ACTU. 468 S you can also use d 2 = d 1 σ T

Actuarial Models : Financial Economics

Course MFE/3F Practice Exam 1 Solutions

Valuation of Options: Theory

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences.

BUSM 411: Derivatives and Fixed Income

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG. Homework 3 Solution

************************

Fixed-Income Analysis. Assignment 7

Motivating example: MCI

P2.T5. Tuckman Chapter 7 The Science of Term Structure Models. Bionic Turtle FRM Video Tutorials. By: David Harper CFA, FRM, CIPM

MATH 425: BINOMIAL TREES

FINANCIAL OPTION ANALYSIS HANDOUTS

Binomial model: numerical algorithm

2O, p. 577, sol. 4.90: Setting the partial derivative of the loglikelihood with respect to λ equal to 0: = exp[d 1 σ T ] exp[-σ 2 T/2] exp[-d 1 2 / 2]

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Utility Indifference Pricing and Dynamic Programming Algorithm

(atm) Option (time) value by discounted risk-neutral expected value

* Professor of Finance Stern School of Business New York University.

UNIVERSITY OF AGDER EXAM. Faculty of Economicsand Social Sciences. Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure:

A Brief Review of Derivatives Pricing & Hedging

, Ill 401,000 8, L.:.2-t>JIL-

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

Math 181 Lecture 15 Hedging and the Greeks (Chap. 14, Hull)

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility

Risk-neutral Binomial Option Valuation

Lecture 16: Delta Hedging

ACTSC 445 Final Exam Summary Asset and Liability Management

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1

Notes for Lecture 5 (February 28)

Real Option Valuation. Entrepreneurial Finance (15.431) - Spring Antoinette Schoar

LECTURE 12. Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The time series of implied volatility

B6302 Sample Placement Exam Academic Year

Financial Markets & Risk

The Multistep Binomial Model

B8.3 Week 2 summary 2018

Chapter 17. Options and Corporate Finance. Key Concepts and Skills

Chapter 22: Real Options

Derivative Securities

= { < exp (-(r - y)(t - t)

Real Options and Game Theory in Incomplete Markets

Options (2) Class 20 Financial Management,

Chapter 22: Real Options

Degree project. Pricing American and European options under the binomial tree model and its Black-Scholes limit model

due Saturday May 26, 2018, 12:00 noon

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Derivatives Options on Bonds and Interest Rates. Professor André Farber Solvay Business School Université Libre de Bruxelles

Binomial Option Pricing

NASDAQ OMX OMS II. Margin methodology guide for Equity and Index derivatives. 8/29/2014 NASDAQ OMX Clearing (NOMX)

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Spring 2018 Instructor: Dr. Sateesh Mane.

UCLA Anderson School of Management Daniel Andrei, Derivative Markets MGMTMFE 406, Winter MFE Final Exam. March Date:

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold)

Transcription:

ACT4000, MIDTERM #1 ADVANCED ACTUARIAL TOPICS FEBRUARY 9, 2009 HAL W. PEDERSEN You have 70 minutes to complete this exam. When the invigilator instructs you to stop writing you must do so immediately. If you do not abide by this instruction you will be penalised. All invigilators have full authority to disqualify your paper if, in their judgement, you are found to have violated the code of academic honesty. Each question is worth 10 points. Provide sufficient reasoning to back up your answer but do not write more than necessary. This exam consists of 8 questions. Answer each question on a separate page of the exam book. Write your name and student number on each exam book that you use to answer the questions. Good luck! Question 1. You are considering investments in a single-period binomial market. (As you know, this means that we are currently at time 0 and at time 1 the world will be in one of two states which we will call the upstate and the downstate.) There are two assets available for trade. The first asset currently sells for 10 and at time 1 will be worth 12 in the upstate and 8 in the downstate. The second asset currently sells for 10 and at time 1 will be worth 15 in the upstate and 2 in the downstate. (i) (3 points) What is the current price of an asset that at time 1 pays 1 in the upstate and 0 in the downstate? (ii) (2 points) What is the current price of an asset that at time 1 pays 0 in the upstate and 1 in the downstate? (iii) (5 points) If you do not want any risk, is it possible for you to deposit 100 at time 0 and receive a certain payoff at time 1? Explain how this can be done or why it cannot be done. If this can be done, what is the effective interest-rate you will earn over the period? Question 2. An equity securities market model follows a multi-period binomial model. At each node of the binomial tree the current stock price S will branch to us in the upstate and ds in the downstate. You are given that the initial stock price is 10, u =1.35, d =0.85 and the interest-rate is 5% effective per period. The stock does not pay dividends. (i) (4 points) Compute the price of a European put option on the stock which expires in 4 periods and has a strike price of 9.0. (ii) (6 points) Compute the price of an American put option on the stock which expires in 4 periods and has a strike price of 9.0 and describe the optimal exercise policy for this American put option. 1

2 ACT4000 MIDTERM #1 Question 3. The insurance company you work for has recently began issuing a stock index GIC. The essence of the contract is that the investor places an amount of principal in an account for two years and the investor is guaranteed some minimum effective return over the two-year period. The investor s returns are based on the returns on the TSE 35 index. As pricing actuary, you are told that the product is to guarantee a 0% return and you are to set the maximum total return the investor will receive over the two years so that the insurance company will break even. The continuously compounded risk-free interest rate is 4% and the stock index is currently at 50 and will go to either 25 or 75 at the end of the two years. (i) (5 points) Compute the maximum total return the investor will receive over the two years so that the insurance company will break even. If this break even return does not exist then explain why. (ii) (2 points) What are the embedded options in this contract? (iii) (3 points) Write a general algebraic expression for the cost to the insurance company per $1 invested of providing a maximum return of R, foreachr>0? Question 4. Assume the Black-Scholes option pricing model. Consider a standard European call option on a stock. The strike price of the option is equal to the current price of the stock (i.e. the option is at-the-money). The option has one year to maturity and the stock does not pay dividends. Is the option s delta greater than 0.5, less than 0.5, or equal to 0.5. Justify your answer. Question 5 (Text Question 12.7, page 407). You are given the following data. S = $100 K = $95 σ = 30% r =0.08 δ =0.03 T =0.75 Compute the Black-Scholes price of a call.

ACT4000 MIDTERM #1 3 Question 6 (Text Question 13.2, page 439). You are given the following data assuming a Black-Scholes model. S = $40 σ = 30% r =0.08 δ =0 Suppose you sell a 40-strike put with 91 days to expiration. (i) (5 points) What is delta? (ii) (5 points) If the option is on 100 shares, what investment is required for a deltahedged portfolio? Question 7 (Text Question 10.1, page 338). You are given the following data. S = $100 K = 105 r = 8% (continuously compounded) T =0.5 δ =0 You are given u =1.3 andd =0.8. For a single-period binomial model compute the premium, and B for a European call option. Question 8. For a two-period binomial model, you are given the following data. Each period is one year. The current price for a non-dividend paying stock is $20. u =1.2840, where u is one plus the rate of capital gain on the stock per period if the stock price goes up. d =0.8607, where d is one plus the rate of capital loss on the stock per period if the stock price goes down. The continuously compounded risk-free interest rate is 5%. Calculate the price of an American call option on the stock with a strike price of $22.

" Q".dt 10 ~ a ~ Q~(.5-l : I> " 1 IS,1...+ 1- S,,/...t; ("'to f') : 74 1d I 2-1... + f g :- 11.1'1-( /d 110.~ ~ ( t 1'...J..:) ~~ =' ~ 'ld;:. ~.~ IA ~ S "tk - G. 7d I ~ ~==~ I/o $" 8 7d ;; ::: :: ;:: S-. :;::. A",,} w''- ~Lt:;. A~ 0'\. ~ IoJe..r I L.s I,," '1- 't ~d I (,0 'e, b.,.:.(,', ~ 10'. = (.:,'7.T~'J~ 100 /f...t/fd, ~f {.r....is {;,- IO~."'7 Yl.~ ()V\~ c.(\f'\. )~.f d ;>vr<... r 1v ~4' (" l (. ::: ( if 3') S - J = fa. f:, 7 i",.

( Dt/:;a',)l. d 5 (;/~+. Ok) /L 10 1'0 7~ : - 10 ~ ~ CdI'L 2, {o sllb ~/~ ~ +;; t 11..?" f-ca : 1-?: /5 + ::;8(~b) - 2.> = =9. - 0' ~ IS l 1.<".- J C) ---?.4.>. " ~8 o ~ (;,) 1d -<=. I ~ ~I\),,"''' 'lib [ It [ ;J I [~-p J[ J - i 1.(L) - 8 ( IS) - ~ J 1.- 0 I = -1;[jJ 10 [ -k{l) J -t- /0 [ -ij -/j')j - GU".cp'-(;~ t.~-fd.

c. -, " '. ) 'f '0 '" q r '- -t~c. ~r.4t.~ ft~ {.,r (.. 4sk,,1 ~$""b - G yo, >kl(j..1 [,'J + L - ] I~j[;J ::::- - 't, -I - ~A( Lc:t 13.J.!L 2 A>;cA I - " 2 ~ -2- [ Ig2- -,'~J[ -'3J -- 1.'1' If,~"c.. far of -PI - [J~y.{, ]..~(./t.,..'" f\ 0 i COlA "L ~<:.-I -60 ~~u,f. - h.s-vf '/1-'/ ---- c.ft e< /t.: 1- f'k fb., g + 11 It. ::. l,.,t 13. }~(. 10-r Cf?'75.. 1.1.. co>+> ~ of ~37.s to - (-~) qa1 1"if J"f

c.- - - J - ) I, of,(,b 7 :. ) bj=. ". '7 '; {o - ~ 1.> ( 1+-, ). Y']>15 3- -:. o,,0 ",t c.o.>+) <t 5 r(.. rill,lf I (1-< + 10) (/-1 ~) ~ ) - I - ---- - / $ ~ &T~ l - - J 17l "% -- / ~ - J 15 :: I -1.5,~4>O... ca ~/l.} 501k I-.i 0" / c.co (" C" l.. ""f CI k if j.s of(

u 1.3500 p* 0.40000 American 0.68467 European 0.60470 d 0.8500 Put Price Put Price cont. int_rate 0.0488 n 4 delta 0.0000 K 9.00 American 3.20038 European 3.20038 h 1.0000 Call Price Call Price Stock Prices 10 r=ln(1.05) 201.06556 9 (i) Answer = 0.60470 148.93745 126.59683 8 (ii) Answer = 0.68467 110.32404 93.77543 79.70912 7 Exercise at period 3 if stock has fallen three times. 81.72151 69.46328 59.04379 50.18722 6 (Exercise when intrinsic value is greater than value of future cash flows if not exercised.) 60.53445 51.45428 43.73614 37.17572 31.59936 5 44.84033 38.11428 32.39714 27.53757 23.40693 19.89589 4 33.21506 28.23280 23.99788 20.39820 17.33847 14.73770 12.52704 3 24.60375 20.91319 17.77621 15.10978 12.84331 10.91681 9.27929 7.88740 2 18.22500 15.49125 13.16756 11.19243 9.51356 8.08653 6.87355 5.84252 4.96614 1 13.50000 11.47500 9.75375 8.29069 7.04708 5.99002 5.09152 4.32779 3.67862 3.12683 0 S_0 10.00 8.50000 7.22500 6.14125 5.22006 4.43705 3.77150 3.20577 2.72491 2.31617 1.96874 0 1 2 3 4 5 6 7 8 9 10 Put Intrinsic Value European Put Payoff 10 0.00000 10 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 8 0.00000 0.00000 0.00000 8 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.00000 0.00000 0.00000 0.70931 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.00000 0.00000 0.00000 0.70931 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0.50000 1.77500 2.85875 3.77994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0.00000 0.00000 0.00000 3.77994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 0 American Put Prices European Put Prices 10 0.00000 10 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 8 0.00000 0.00000 0.00000 8 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.13235 0.23161 0.40532 0.70931 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.13235 0.23161 0.40532 0.70931 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 Price 0.68467 1.10994 1.78798 2.85875 3.77994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 Price 0.60470 0.96999 1.54308 2.43018 3.77994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Call Intrinsic Value European Call Payoff 10 0.00000 10 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 8 0.00000 0.00000 0.00000 8 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 24.21506 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 24.21506 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 15.60375 11.91319 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 11.91319 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 9.22500 6.49125 4.16756 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 4.16756 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 4.50000 2.47500 0.75375 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 American Call Prices European Call Prices 10 0.00000 10 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 8 0.00000 0.00000 0.00000 8 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 24.21506 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 24.21506 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 16.03232 11.91319 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 16.03232 11.91319 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 10.06173 6.91982 4.16756 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 10.06173 6.91982 4.16756 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 5.85781 3.54335 1.58764 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 5.85781 3.54335 1.58764 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 Price 3.20038 1.69546 0.60482 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 Price 3.20038 1.69546 0.60482 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

I --------- ---------- 'T d- ~( (., It - it." e If' 51: -/;\.. (.... ".,ll) e. -.S" ) S -.So c r I..L. :1' '" oj C5.f 0-(' vbl..,.t -t~ {h., d..: tj" 2-1'(1.- ~..f- ~+... ~., lj-t... i'-,,:r -1 tj+,..'r,l ",.-.ft.. >-tr.ftl. ~r:'':' "'}tv"i v~i>a.{ Gf t:~,:'r ~. btf( ~f<.\ft.j{-(k,'t1t-. 5V\"t~f,< c.<..j<..~ t.. -... h ur (J 1..-7~lIr ({lh <:If-l.., 1>10\. -f~,- "u/ I! lot l:~.:r IA" d~ "',..f... ~tt.. slr.h. Qr:'~ Lyr~\ /:0 CJ+/t..)" V41 l-,.too Ivwl.j{l(...I-..,c>fr-c.. f. C.. {" J{-,-,/!{ :;:: '(t'\,~(1( -,.vol...". f (1<-.<.,.",(4«1 (! {- r-- Q~; L-{ '"' t- <. tvr" ) Cb>f- -1::: -~~ S~,..",:L c: Ot"!4~f - V. (.." et"..1- =.)1».- (,,~I.. F{../ - AI'"-.."'f ~t..lt.;vt.j {:-o... Iv. ~jf,r ;::. e -.ost ({Id) + {I-(JJ.. S>~"''i {(. -.07'/10 - I e- -rh t 1+ a4-it] -,. ']

(}) TS E- ~ ),:s/-15 ( re {.,.,..'") o'5~'1"... <{ L5..... "') ( - "5 oj 1. t t n \ f I. S-oL -.S

S -t - (S-(I-t~))+- t+ - <: ",/ e~ 1."v.. ~iff'''h +- 'I.. JL;.' ll,,,,-- *" ( 1-$)+ = \.:S -+ 0 - ( -5 _vl):=. I-n;>l- S.;. I. S 5 --t- ( 1- _5) - 0 = I S.:=.S

It I I; I, \ [ e,g~ [ c.. o,gr.s- e ~ _ IS 1';:. L I.S- ~ -.cs - ) 1)::- J - e' v 8' (J 5 ~-'.c fe_i) _,o~ IS _''''8;" I e... -, e -t- 1-.:;: I,s3oi.$8'ttl

I t I rt j7l II [ -./ T" Jt- C' )~-te ''''>~'("<" f CI ~ c:.. t).> C' f- v' "i. -to f:..[ ~l :;-~ J v (,,5J (j;'" d,~..,)f I f J-- ~- V'L <::.. (].;>.;) <. ". V J I.. lb

."~" s ) I.5 s cal/ - f~+ :;: (S - C I~JL-J) -f - (-) -5/+

/,,/ /./ o - (I -. '5) ::: -.5

Ddt6;; f'j(rl,) J,. t-( s/1<-)!'-j L A,) = A 7'". \ I 7 z: Without dividends, the standard Black and Scholes (1973) pricing formula for the European call opt.ion is given by c( t) S(t)N(dd - e-r(t-t) J( N(d2), where In ( ) + (r + 4a2)(T - t) a.jy=t T - t d1 - avt - t. ' and The option's "delta" is given by g~~~~ = N(d1). With the option struck at-the-money, S(t) = K, and thus, In e~») = 0 [remember that In(l) = 0]. All other terms in d1 are positive. Therefore, d1 > 0, and N(dd > 0.5 (remember that N(O) = 0.5 and N( ) is an increasing function of its argument). Thus, an at-the-money option on a non-dividend-paying stock always has a delta slightly greater than one-half.

Black-Scholes Option Pricing Model S_0 Stock Price 100.00000 Summary K Strike Price 95.00000 Call Price 14.38631 sigma Volatility 0.30000 Call Delta 0.66626 r Interest Rate 0.08000 Call Gamma 0.01343 T Time to Expiration (Years) 0.75000 Put Price 3.85394 delta Dividend Yield 0.03000 Put Delta -0.31149 Put Gamma 0.01343 0.07125 0.12254 d_1 0.47167 d_2 0.21186 C(S,K,sigma,r,T,delta) = S_0*exp(-delta*T)*N(d_1)-K*exp(-r*T)*N(d_2) N(d_1) 0.68142 N(d_2) 0.58389 97.77512 P(S,K,sigma,r,T,delta) = K*exp(-r*T)*N(-d_2)-S_0*exp(-delta*T)*N(-d_1) 89.46763 Answer: Call Price 14.38631 Call Price = 14.38631 Put Price 3.85394

Black-Scholes Option Pricing Model S_0 Stock Price 40.00000 Summary K Strike Price 40.00000 Call Price 2.78040 sigma Volatility 0.30000 Call Delta 0.58240 r Interest Rate 0.08000 Call Gamma 0.06516 T Time to Expiration (Years) 0.24932 Put Price 1.99049 delta Dividend Yield 0.00000 Put Delta -0.41760 Put Gamma 0.06516 0.03116 0.03116 d_1 0.20805 d_2 0.05825 C(S,K,sigma,r,T,delta) = S_0*exp(-delta*T)*N(d_1)-K*exp(-r*T)*N(d_2) N(d_1) 0.58240 N(d_2) 0.52323 40.00000 P(S,K,sigma,r,T,delta) = K*exp(-r*T)*N(-d_2)-S_0*exp(-delta*T)*N(-d_1) 39.21010 Answer: Call Price 2.78040 (i) Put Delta = -0.41760 Put Price 1.99049 (ii) Short 100*Delta = 41.76 shares & deposit short sale proceeds plus 199.05 put option premiums in the bank.

One Period Interest Rate 0.0408 Cash Flow Matrix 1.0408 130.00 1.0408 80.00 Traded Asset -- Bank Account 1.0408 1 1.0408 Cash Flow Matrix Inverse -1.5372631 2.4980525 0.0200000-0.0200000 Time 0 1 Replicating Portfolio (Bank Account & Stock) -38.4315776 Traded Asset -- Stock 130.00 0.5000000 100.00 80.00 Price of Cash Flows 11.5684224 Time 0 1 Answer: Cash Flows to Price 25.00 Delta = 0.5, B=-38.4316, Price=11.5684 0.00 Time 0 1 Note: One Period Interest Rate = Exp(0.08*0.5)-1

u 1.2840 p* 0.45020 American 2.50300 European 1.96488 d 0.8607 Put Price Put Price int_rate 0.0500 n 2 delta 0.0000 K 22.00 American 2.05845 European 2.05845 h 1.0000 Call Price Call Price Stock Prices Put Intrinsic Value 10 Answer: 243.60165 9 American Call Price = 2.05845 189.72091 163.29279 8 147.75772 127.17507 109.45958 7 115.07611 99.04601 85.24890 73.37373 6 89.62314 77.13863 66.39322 57.14465 49.18440 5 69.79995 60.07682 51.70812 44.50518 38.30561 32.96963 4 54.36133 46.78880 40.27112 34.66135 29.83303 25.67729 22.10044 3 42.33749 36.43987 31.36380 26.99482 23.23444 19.99789 17.21218 14.81452 2 32.97312 28.37996 24.42664 21.02401 18.09536 15.57468 13.40512 11.53779 9.93058 1 25.68000 22.10278 19.02386 16.37384 14.09296 12.12981 10.44013 8.98582 7.73409 6.65673 0 S_0 20.00 17.21400 14.81609 12.75221 10.97583 9.44689 8.13094 6.99830 6.02344 5.18437 4.46219 0 1 2 3 4 5 6 7 8 9 10 European Put Payoff 10 0.00000 10 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 8 0.00000 0.00000 0.00000 8 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 4.78600 7.18391 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0.00000 7.18391 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 American Put Prices European Put Prices 10 0.00000 10 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 8 0.00000 0.00000 0.00000 8 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 Price 2.50300 4.78600 7.18391 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 Price 1.96488 3.75706 7.18391 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Call Intrinsic Value European Call Payoff 10 10 0.00000 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 8 0.00000 0.00000 0.00000 8 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 10.97312 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 10.97312 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 3.68000 0.10278 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 0.00000 0.10278 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 American Call Prices European Call Prices 10 0.00000 10 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 8 0.00000 0.00000 0.00000 8 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 7 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 6 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 10.97312 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 10.97312 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 4.75295 0.10278 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1 4.75295 0.10278 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 Price 2.05845 0.04401 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 Price 2.05845 0.04401 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Solution to (4) Answer: (C) First, we construct the two-period binomial tree for the stock price. Year 0 Year 1 Year 2 32.9731 25.680 20 22.1028 17.214 14.8161 The calculations for the stock prices at various nodes are as follows: S u = 20 1.2840 = 25.680 S d = 20 0.8607 = 17.214 S uu = 25.68 1.2840 = 32.9731 S ud = S du = 17.214 1.2840 = 22.1028 S dd = 17.214 0.8607 = 14.8161 The risk-neutral probability for the stock price to go up is rh 0.05 e d e 0.8607 p* = = = 0.4502. u d 1.2840 0.8607 Thus, the risk-neutral probability for the stock price to go down is 0.5498. If the option is exercised at time 2, the value of the call would be C uu = (32.9731 22) + = 10.9731 C ud = (22.1028 22) + = 0.1028 C dd = (14.8161 22) + = 0 If the option is European, then C u = e 0.05 [0.4502C uu + 0.5498C ud ] = 4.7530 and C d = e 0.05 [0.4502C ud + 0.5498C dd ] = 0.0440. But since the option is American, we should compare C u and C d with the value of the option if it is exercised at time 1, which is 3.68 and 0, respectively. Since 3.68 < 4.7530 and 0 < 0.0440, it is not optimal to exercise the option at time 1 whether the stock is in the up or down state. Thus the value of the option at time 1 is either 4.7530 or 0.0440. Finally, the value of the call is C = e 0.05 [0.4502(4.7530) + 0.5498(0.0440)] = 2.0585.

Remark: Since the stock pays no dividends, the price of an American call is the same as that of a European call. See pages 294-295 of McDonald (2006). The European option price can be calculated using the binomial probability formula. See formula (11.17) on page 358 and formula (19.1) on page 618 of McDonald (2006). The option price is e r(2h) 2 [ p * 2 2 2 Cuu + p *(1 p*) Cud + (1 p*) 2 Cdd ] 2 1 0 = e 0.1 [(0.4502) 2 10.9731 + 2 0.4502 0.5498 0.1028 + 0] = 2.0507