Testing the predictions of the Solow model:

Similar documents
Testing the predictions of the Solow model: What do the data say?

Macroeconomic Models of Economic Growth

ECON 450 Development Economics

I. The Solow model. Dynamic Macroeconomic Analysis. Universidad Autónoma de Madrid. Autumn 2014

I. The Solow model. Dynamic Macroeconomic Analysis. Universidad Autónoma de Madrid. Autumn 2014

1 The Solow Growth Model

Applied Economics. Growth and Convergence 1. Economics Department Universidad Carlos III de Madrid

Introduction to economic growth (2)

Growth 2. Chapter 6 (continued)

The neoclassical model of economic growth. Trevor Swan (1956) Give rise to the Solow Swan model

202: Dynamic Macroeconomics

Chapter 2 Savings, Investment and Economic Growth

004: Macroeconomic Theory

Exercises in Growth Theory and Empirics

The Facts of Economic Growth and the Introdution to the Solow Model

Lecture notes 2: Physical Capital, Development and Growth

AK and reduced-form AK models. Consumption taxation. Distributive politics

Traditional growth models Pasquale Tridico

Neoclassical Growth Theory

MACROECONOMICS. Economic Growth II: Technology, Empirics, and Policy MANKIW. In this chapter, you will learn. Introduction

Chapter 7. Economic Growth I: Capital Accumulation and Population Growth (The Very Long Run) CHAPTER 7 Economic Growth I. slide 0

Human capital and the ambiguity of the Mankiw-Romer-Weil model

Topic 2. Productivity, technological change, and policy: macro-level analysis

The New Growth Theories - Week 6

CHAPTER SEVEN - Eight. Economic Growth

SOLUTIONS PROBLEM SET 5

Macroeconomics Lecture 2: The Solow Growth Model with Technical Progress

Class Notes. Intermediate Macroeconomics. Li Gan. Lecture 7: Economic Growth. It is amazing how much we have achieved.

I. The Solow model. Dynamic Macroeconomic Analysis. Universidad Autónoma de Madrid. September 2015

Dynamic Macroeconomics

Chapter 7 Externalities, Human Capital and Endogenous Growth

AK and reduced-form AK models. Consumption taxation.

EC 205 Macroeconomics I

Incentives and economic growth

Chapter 8 Economic Growth I: Capital Accumulation and Population Growth

The Role of Physical Capital

Testing the Solow Growth Theory

Savings, Investment and the Real Interest Rate in an Endogenous Growth Model

Trade and Development

The Effect of Interventions to Reduce Fertility on Economic Growth. Quamrul Ashraf Ashley Lester David N. Weil. Brown University.

ECO 4933 Topics in Theory

Topic 3: Endogenous Technology & Cross-Country Evidence

Macroeconomic Models of Economic Growth

Chapter 6. Endogenous Growth I: AK, H, and G

Chapter 8. Economic Growth II: Technology, Empirics and Policy 10/6/2010. Introduction. Technological progress in the Solow model

ECON 3560/5040 Week 3

). In Ch. 9, when we add technological progress, k is capital per effective worker (k = K

Chapter 2 Savings, Investment and Economic Growth

Intermediate Macroeconomics

Technical change is labor-augmenting (also known as Harrod neutral). The production function exhibits constant returns to scale:

Final Exam II (Solutions) ECON 4310, Fall 2014

2014/2015, week 4 Cross-Country Income Differences. Romer, Chapter 1.6, 1.7, 4.2, 4.5, 4.6

LEC 2: Exogenous (Neoclassical) growth model

0. Finish the Auberbach/Obsfeld model (last lecture s slides, 13 March, pp. 13 )

Labor Economics Field Exam Spring 2014

Final Exam II ECON 4310, Fall 2014

Chapter 9 Dynamic Models of Investment

14.05 Intermediate Applied Macroeconomics Exam # 1 Suggested Solutions

Economic Growth: Extensions

A Two-sector Ramsey Model

h Edition Economic Growth in a Cross Section of Countries

MACROECONOMICS. Economic Growth I: Capital Accumulation and Population Growth MANKIW. In this chapter, you will learn. Why growth matters

Intermediate Macroeconomics

Macroeconomics I, UPF Professor Antonio Ciccone SOLUTIONS PROBLEM SET 1

Lastrapes Fall y t = ỹ + a 1 (p t p t ) y t = d 0 + d 1 (m t p t ).

A Note on the Solow Growth Model with a CES Production Function and Declining Population

Government Debt, the Real Interest Rate, Growth and External Balance in a Small Open Economy

Chapter 8. Alternative Theories of Endogenous Growth. Instructor: Dmytro Hryshko

MACROECONOMICS. Economic Growth II: Technology, Empirics, and Policy. N. Gregory Mankiw. PowerPoint Slides by Ron Cronovich

Solow instead assumed a standard neo-classical production function with diminishing marginal product for both labor and capital.

Macroeconomics. Review of Growth Theory Solow and the Rest

Economic Growth and Convergence across the OIC Countries 1

Why thinking about economic growth? Kaldor facts old and new Basic tools and concepts

Chapter 4. Economic Growth

ECONOMIC GROWTH 1. THE ACCUMULATION OF CAPITAL

The Measurement Procedure of AB2017 in a Simplified Version of McGrattan 2017

Economic Growth: capital accumulation and innovation

Solow Growth Accounting

SGPE Summer School: Macroeconomics Lecture 5

Economics 270c. Development Economics Lecture 11 April 3, 2007

Macroeconomics: Modern Macroeconomics 1

ECON 3020: ACCELERATED MACROECONOMICS. Question 1: Inflation Expectations and Real Money Demand (20 points)

Growth Theory: Review

Economic Growth II. macroeconomics. fifth edition. N. Gregory Mankiw. PowerPoint Slides by Ron Cronovich Worth Publishers, all rights reserved

Foreign Direct Investment and Economic Growth in Some MENA Countries: Theory and Evidence

Chapter 5 Fiscal Policy and Economic Growth

Chapter 8: Economic Growth II: Technology, Empirics, and Policy*

macro macroeconomics Economic Growth I Economic Growth I I (chapter 7) N. Gregory Mankiw

Labor Economics Field Exam Spring 2011

Long run growth 3: Sources of growth

Shall we play a game? Solow growth model Steady state Break-even investment Rule of 70 Depreciation Dilution

Introduction to economic growth (3)

Economic Growth: Lecture 11, Human Capital, Technology Diffusion and Interdependencies

Return to Capital in a Real Business Cycle Model

Economic Growth: Malthus and Solow Copyright 2014 Pearson Education, Inc.

14.02 Quiz 3. Time Allowed: 90 minutes. Fall 2012

Understanding the world economy Sample quantitative exercise

14.05 Lecture Notes. Endogenous Growth

Savings, Investment and Economic Growth

Lecture Notes 1: Solow Growth Model

Transcription:

Testing the predictions of the Solow model: 1. Convergence predictions: state that countries farther away from their steady state grow faster. Convergence regressions are designed to test this prediction. 2. Position of the steady state: We may also test the Solow model predictions concerning this point. To do this, it is assumed that the bulk of convergence has taken place, and countries are in a neighborhood of their steady state. Predictions 1 were discussed in previous lecture. We consider now prediction 2.

Testing Prediction n 2: to what extent the distribution of GDP per capita across countries reflects countries different propensity to save (investment ratio)? Steady state restriction: /, / log y i *(t) = loga t + log is here uniform across countries, but s i is country specific Predictions : 1. Coefficient of > 0 2. Coefficient of log < 0 3. Coefficient of = Coefficient of log 4. coefficient =

Implied α

Predictions 1, 2, 3, are corroborated. Prediction 4 is not : estimated coefficient of log s i > 1 is far larger than expected value 0.49.. (in competitive economies α 0.33 is share of capital income in GDP). Equivalently : estimated value of α = 0.59 is far higher than expected (0.33)

Remark:, MPK = α in competitive economy: capital rental RK = K MPK = α R = r + δ

General motivation Can we explain the cross country distribution of GDP per capita with a broader theory of capital accumulation? The assumption that the quality of labor is homogeneous across countries is too simplistic Human knowledge (human competence) accumulates through time, just as any other producible factor If capital is interpreted in the broader sense of physical + human capital the output elasticity of capital (the fraction of capital income in GDP) is plausibly much higher than 0.33. This may reconcile the Solow model predictions with the empirical facts.

The model Dividing both sides of production function by AL (efficiency units) 1 1 where ;

Remark: according to MRW the technology to produce H and K are identical. Both forms of capital result directly from investment of final output in the accumulation of stocks. H s Y H Net investment in education h h Net investment in machinery k k K s Y K Assume for simplicity same rate of depreciation: δ h = δ k = δ

in steady state and are constant, which requires that: Dividing side by side: Solving for k* and h* we obtain / / Using, we can write: / / Taking logs, some terms cancel out and the expression above simplifies to: 1 1

log y*( t) log A( t) log s k log s h [ n g ] 1 1 1 is the elasticity of relative to sk is the elasticity of relative to sh Remark: the augmented Solow model is a true generalization of Solow 1956: by assuming β = 0, the last term vanishes and we are back in the Solow model.

Countries differ in terms of technology A j (t) saving rates s k, j and s h, j, and population growth rates n j

Technology: A j = ε j A where ε is an exogenous i. i. d. technology shock This means initial technology explanatory variables s k and s h. A j is assumed uncorrelated to the exogenous

Focus on a world in which convergence to steady state has already taken place.. log y*( t) log A( t) log s k log s h [ n g ] 1 1 1, the estimated equation for the H augmented Solow model is : C log, log, [ g ] log (19) s s n, 1 1 1 k j h j j j t C = constant is uniform across countries!

Implied α.30.31.36 Implied β.28.22.26 Observations 98 98 107

Findings on H augmented Solow the implied α is now consistent with the evidence α 0.3

1. Omitted variable bias means that technology is not truly exogenous but depends on various factors, that are omitted in the model. It depends in particular on investments in R&D, that are likely to interact with investments in human and physical capital. Moreover, if technology is embodied in machinery, countries investing more in equipment will adopt newer technologies. 2. Reverse causality means that there is a channel of causality running from technology to accumulation of physical and human capital. In countries with a more efficient institutional and technological structure, there are conditions that are more favorable to investment.

estimate of β is too large check predictions following from estimates of α and β against microeconometric evidence of earning and marginal productivity effects of education: If markets are competitive as assumed in the model, the marginal productivity effects of education should be reflected by the earnings of educated and noneducated workers. This provides a way of estimating the size of β from microeconomic evidence This check suggests that the MRW estimate of β is too large! A related problem is that regression results are very sensitive to the way in which we measure human capital H

Conclusion on Solow with physical and human capital It is hard to explain cross-country differences in GDP per capita, only in terms of their differences concerning the ratio (physical capital formation) and the investment in education. We have to admit that a fundamental reason why GDP per capita differs across-countries is that there are differences in technology We need a theory to explain why

E. Prescott (1998) performs a calibration analysis based on the augmented Solow model, and confirms the above conclusion Prescott s intangible capital Human capital is but one form of intangible capital which is largely unmeasured and missing in government statistics. Intangible capital includes not only school training to population in working age, but also on the job training, firm specific learning by doing, organization capital, and various forms of unmeasured R&D investment. Unmeasured investments I in official statistics imply that there is also unmeasured output Y, because Y = C + I. The unconventional part of Prescott s calibration exercise is addressed at dealing with this problem, but we skip this for simplicity.

Prescott s argument ln yj* = costant + (1 α β) 1 [αlnskj + βlnshj (α + β)ln(n + g +)] +εj According to IMF estimates physical capital investment as a share of GDP is about 20% for rich and poor countries after 1960. This implies that, countries do not differ much in their investment ratios s k. Thus, the burden of explaining cross country differences in ln yj* falls largely on the human capital investment share s h. If we preserve the share s h in a plausible range for rich and poor countries, it is required that the elasticity β of output with respect to intangible capital H is very high, indeed higher than is suggested by available evidence.

Prescott s Conclusion: The burden of explaining per capita income differences must partly fall on understanding why the constant in equation (19) is NOT uniform across countries, that is, what is needed, is a theory about efficiency. Prescott holds to the basic neoclassical assumption that technical knowledge is transferable across countries at low cost: International differences in total factor productivity must then be explained through institutionally based differences in work practices, not in useful knowledge. These differences affect the level of A

Introduction to endogenous growth 1. The reason why in neoclassical model with exogenous technological progress capital per worker K/L grows through time in steady state at rate g, but MPK does not fall, is that MPK is just preserved by the exogenous growth of efficiency A t. 2. This leaves the problem of explaining the determinants of efficiency growth. 3. This explanation may be obtained in various ways. The explanation offered by the large family of endogenous growth theories has one property in common: the steady state growth rate of efficiency, that causes the steady state growth rate of per capita output depends on the savings rate, hence on preferences. 4. This requires assuming that technology embeds a special linearity assumption.

One approach to explaining why technology A differs across countries is making A endogenous As example, consider the argument made by M. Frankel (1962) where is an externality effect: a higher K/L ratio in the economy increases firm level efficiency the special case α + β = 1 yields

Inada conditions are not fulfilled! 1 divide by 1 1 1 1 1

1 1 1 1 persistent growth of per capita output if 1 1 1 That is if The growth rate of GDP per capita is: 1 1 1 1 1

Persistent growth in the Y = AK model

Why doesn t capital [and human capital] flow from rich to poor countries? (R. Lucas, 1990) Unlike in MRW, countries are not islands Financial capital and human capital flow across countries. If we assume that financial and human capital flow where returns are higher, we should expect a tendency towards the equalization of the rates on returns on both forms of capital. Neoclassical model with financial flows assumes perfect mobility of financial capital equalization of rates of returns is instantaneous. Any initial difference in initial conditions concerning capital per worker would be instantaneously equalized! Lucas 1990 reply to the question in the title draws upon his 1988 human capital model. It is a two sector AK model: perfectly competitive economy, with externality effects.

Lucas 1988: Final output Y produced by human and physical capital (no raw labour) no exogenous technological progress human capital accumulation equation different from MRW economy is perfectly competitive, but may embed externalities. Here the role of externalities is not different from Frankel s AK model. 1 t t (1) Y t K t uhl t h t (1 u t ) h t (2) is an exogenous constants expressing the efficiency in the process of knowledge accumulation (human capital accumulation). h is per capita human capital u is fraction of time spent by h in final output sector L is population growing at the exponential rate n

Divide equation (1) by L, and define y = Y/L, k = K/L (capital per worker) y = k α (uh) (1 α) (3) h t (1 u t ) h t endogenous growth is related to the linear structure of system (3), (3 ) There are constant returns to the scale of factors k and h. In particular: g h * = θ(1 u*) Since human capital production is linear with respect to h input, the steady state growth rate g* is determined by the steady state fraction of time (1 u*) spent accumulating h. u* is an endogenous decision variable, that depends on preferences!! (3 )

y = k α (uh) (1 α) g y = αg k + (1 α)(g u + g h ) (4) in steady state: g y * = g k *, g u * = 0, u(t) = u* = constant (5) (1 α) g y * = (1 α) g h * g y * = g h * Growth of output per capita is explained by growth of human capital per person

g y * = g h * g h * = θ(1 u*) In a optimizing framework, u(t) and u* depend on preferences: Other things equal, lower u(t) today implies: higher future human capital stock h(t + dt) lower per capita output y(t) to day, and lower per capita consumption c(t) today

1 Lucas (1) y t kt uh t t 1 t y t k t A Solow Notice that k is here capital per worker! now compare output per worker in USA and India, y USA_1980 / y India_1980 15 (Summers and Heston 1988, pp 18 21)

Solow model: with A t uniform in USA and India implies huge differences in the rates of return to k. If A t is uniform, and constant we can normalize A t = 1. y t k t k t y 1/ The gross rate of return to K is r = αk α 1 (α 1)/α = αy Lucas takes α = 0.4 (average of US and India capital shares) r r India USA = y y India USA ( 1)/ = t 1 15 ( 1)/ 58

Lucas model Dividing equation (1) by the stock H Y = uhl of human capital in Y sector Output per efficient worker in Y sector is: where output per efficient worker in y sector capital per efficient worker in y sector the marginal product of capital is: / / (6)

To estimate output per efficient worker Lucas has to resort to the 1959 estimates by Ann Krueger: After taking into account education attainments, the ratio of output per efficient worker in 1959 USA and India is y uh y uh USA India 3. Notice that if we consider output per capita instead of output per efficient worker, the ratio would be far higher, because average education attainment in 1959 USA is far higher than in 1959 India

With = 0.4 (average of USA and India capital shares) this gives: r r USA India = / = y uh y uh USA India ( 1)/ 3 1/ 1/5 Lucas observes that the ratio is still too large to be consistent with the evidence on capital flows.

For this reason, he adds an externality in equation (1): 1 t t (1) Y t K t uhl t h 1 y t k t uh t t h so that output per efficient worker is now: 1/ / the reason for the externality is that private human capital accumulation augments the socially available useful knowledge, which increases the productivity of private factors in the output sector. The productivity of one worker increases if the average education attainment and productivity of the workers she is working with is higher. (6 )

From Denison s USA data concerning 1909 1958, Lucas estimates the external effect 0.36. A 10% increase in the average quality of those with whom I work increases my productivity by 3.6%. the net MPK and interest rate is now r = α (*) 1/ / (**) Substitute for in equation * from equation ** r = α / / = α / /

Lucas 1990 indication: 1. On the crucial assumption that socially available useful knowledge is country specific, in the sense that there are not knowledge spillovers across countries, the estimated exactly eliminates the [capital] return differential in a 1959 India U.S. comparison. 2. To explain per capita income differences between the rich countries and those that, unlike modern India, have failed to enter the mechanism of modern economic growth, we must break free of the straight jacket of the convex neoclassical model without externalities. Problem: As Lucas admits, the weakness in this argument is that it does not provide an explanation of why the poorest nations are unable to exploit the useful knowledge created outside.