Lecture 4 - Utility Maximization

Similar documents
Lecture 4 - Theory of Choice and Individual Demand

Lecture 7. The consumer s problem(s) Randall Romero Aguilar, PhD I Semestre 2018 Last updated: April 28, 2018

Lecture Note 7 Linking Compensated and Uncompensated Demand: Theory and Evidence. David Autor, MIT Department of Economics

Lecture Demand Functions

Intro to Economic analysis

14.03 Fall 2004 Problem Set 2 Solutions

Graphs Details Math Examples Using data Tax example. Decision. Intermediate Micro. Lecture 5. Chapter 5 of Varian

p 1 _ x 1 (p 1 _, p 2, I ) x 1 X 1 X 2

Utility Maximization and Choice

We want to solve for the optimal bundle (a combination of goods) that a rational consumer will purchase.

Consumer Theory. June 30, 2013

ECON Micro Foundations

Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals.

Budget Constrained Choice with Two Commodities

Lecture 1: The market and consumer theory. Intermediate microeconomics Jonas Vlachos Stockholms universitet

3/1/2016. Intermediate Microeconomics W3211. Lecture 4: Solving the Consumer s Problem. The Story So Far. Today s Aims. Solving the Consumer s Problem

Introductory to Microeconomic Theory [08/29/12] Karen Tsai

Choice. A. Optimal choice 1. move along the budget line until preferred set doesn t cross the budget set. Figure 5.1.

Chapter 3: Model of Consumer Behavior

Budget Constrained Choice with Two Commodities

Econ205 Intermediate Microeconomics with Calculus Chapter 1

Chapter 3. A Consumer s Constrained Choice

Mathematical Economics dr Wioletta Nowak. Lecture 2

PROBLEM SET 3 SOLUTIONS. 1. Question 1

Intermediate microeconomics. Lecture 1: Introduction and Consumer Theory Varian, chapters 1-5

Economics 121b: Intermediate Microeconomics Final Exam Suggested Solutions

14.54 International Trade Lecture 3: Preferences and Demand

If Tom's utility function is given by U(F, S) = FS, graph the indifference curves that correspond to 1, 2, 3, and 4 utils, respectively.

Chapter 4. Our Consumption Choices. What can we buy with this money? UTILITY MAXIMIZATION AND CHOICE

Econ 121b: Intermediate Microeconomics

Problem Set 1 Answer Key. I. Short Problems 1. Check whether the following three functions represent the same underlying preferences

MICROECONOMIC THEORY 1

CONSUMER OPTIMISATION

Mathematical Economics dr Wioletta Nowak. Lecture 1

Economics 2450A: Public Economics Section 1-2: Uncompensated and Compensated Elasticities; Static and Dynamic Labor Supply

True_ The Lagrangian method is one way to solve constrained maximization problems.

Chapter 4 UTILITY MAXIMIZATION AND CHOICE

Preferences - A Reminder

University of Toronto Department of Economics ECO 204 Summer 2013 Ajaz Hussain TEST 1 SOLUTIONS GOOD LUCK!

Lecture 5 - The Expenditure Function, with an Application to Gift Giving

EconS Constrained Consumer Choice

Consumer Theory. Introduction Budget Set/line Study of Preferences Maximizing Utility

UNIT 1 THEORY OF COSUMER BEHAVIOUR: BASIC THEMES

Mathematical Economics Dr Wioletta Nowak, room 205 C

Advanced Microeconomics

Microeconomics Pre-sessional September Sotiris Georganas Economics Department City University London

Chapter 3 Introduction to the General Equilibrium and to Welfare Economics

Overview Definitions Mathematical Properties Properties of Economic Functions Exam Tips. Midterm 1 Review. ECON 100A - Fall Vincent Leah-Martin

Consumer Theory. The consumer s problem: budget set, interior and corner solutions.

Solutions to Problem Set 1

Chapter 1 Microeconomics of Consumer Theory

Consumers cannot afford all the goods and services they desire. Consumers are limited by their income and the prices of goods.

Faculty: Sunil Kumar

EconS 301 Intermediate Microeconomics Review Session #4

1 Consumer Choice. 2 Consumer Preferences. 2.1 Properties of Consumer Preferences. These notes essentially correspond to chapter 4 of the text.

CHAPTER 4 APPENDIX DEMAND THEORY A MATHEMATICAL TREATMENT

Chapter Four. Utility Functions. Utility Functions. Utility Functions. Utility

Midterm 1 (A) U(x 1, x 2 ) = (x 1 ) 4 (x 2 ) 2

Answers to Microeconomics Prelim of August 24, In practice, firms often price their products by marking up a fixed percentage over (average)

Ecn Intermediate Microeconomic Theory University of California - Davis October 16, 2008 Professor John Parman. Midterm 1

Fundamental Theorems of Welfare Economics

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours

MODULE No. : 9 : Ordinal Utility Approach

The objectives of the producer

Consumer preferences and utility. Modelling consumer preferences

Microeconomics of Banking: Lecture 2

Homework 2 ECN205 Spring 2011 Wake Forest University Instructor: McFall

Theoretical Tools of Public Finance. 131 Undergraduate Public Economics Emmanuel Saez UC Berkeley

Intermediate Micro HW 2

PRODUCTION COSTS. Econ 311 Microeconomics 1 Lecture Material Prepared by Dr. Emmanuel Codjoe

1 Two Period Exchange Economy

Lecture 4: Consumer Choice

Macroeconomics for Development Week 3 Class

PAPER NO.1 : MICROECONOMICS ANALYSIS MODULE NO.6 : INDIFFERENCE CURVES

Module 2 THEORETICAL TOOLS & APPLICATION. Lectures (3-7) Topics

The Robinson Crusoe model; the Edgeworth Box in Consumption and Factor allocation

2. Find the equilibrium price and quantity in this market.

14.03 Fall 2004 Problem Set 3 Solutions

Taxation and Efficiency : (a) : The Expenditure Function

Part I. The consumer problems

GPP 501 Microeconomic Analysis for Public Policy Fall 2017

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011

Homework 3 Solutions

Lecture 15 - General Equilibrium with Production

not to be republished NCERT Chapter 2 Consumer Behaviour 2.1 THE CONSUMER S BUDGET

Econ 101A Midterm 1 Th 28 February 2008.

ECMB02F -- Problem Set 2 Solutions

THEORETICAL TOOLS OF PUBLIC FINANCE

Section 2 Solutions. Econ 50 - Stanford University - Winter Quarter 2015/16. January 22, Solve the following utility maximization problem:

Summer 2016 Microeconomics 2 ECON1201. Nicole Liu Z

FINANCE THEORY: Intertemporal. and Optimal Firm Investment Decisions. Eric Zivot Econ 422 Summer R.W.Parks/E. Zivot ECON 422:Fisher 1.

This appendix discusses two extensions of the cost concepts developed in Chapter 10.

Economics II - Exercise Session # 3, October 8, Suggested Solution

3. Consumer Behavior

Simple Model Economy. Business Economics Theory of Consumer Behavior Thomas & Maurice, Chapter 5. Circular Flow Model. Modeling Household Decisions

Please do not leave the exam room within the final 15 minutes of the exam, except in an emergency.

Arrow-Debreu Equilibrium

Econ 172A - Slides from Lecture 7

Optimal tax and transfer policy

(0.50, 2.75) (0,3) Equivalent Variation Compensating Variation

Transcription:

Lecture 4 - Utility Maximization David Autor, MIT and NBER 1

1 Roadmap: Theory of consumer choice This figure shows you each of the building blocks of consumer theory that we ll explore in the next few lectures. This entire apparatus stands entirely on the five axioms of consumer theory that we laid out in Lecture Note 3. It is an amazing edifice, when you think about it. 2 Utility maximization subject to budget constraint Ingredients Utility function (preferences) Budget constraint Price vector Consumer s problem Maximize utility subject to budget constraint. 2

Characteristics of solution: Budget exhaustion (non-satiation) For most solutions: psychic trade-off = market trade-off Psychic trade-off is MRS Market trade-off is the price ratio From a visual point of view utility maximization corresponds to point A in the diagram below The slope of the budget set is equal to px The slope of each indifference curve is given by the MRS at that point We can see that A P B, A I D, C P A. Why might we expect someone to choose A? 3

2.1 Interior and corner solutions There are two types of solution to this problem, interior solutions and corner solutions The figure below depicts an interior solution The next figure depicts a corner solution. In this specific example the shape of the indifference curves means that the consumer is indifferent to the consumption of good y. Utility increases only with consumption of x. Thus, the consumer purchases x exclusively. 4

In the following figure, the consumer s preference for y is sufficiently strong relative to x that the the psychic trade-off is always lower than the monetary trade-off. (This must be the case for many products that we don t buy.) 5

What this means is that the corners (more precisely, the axes), serve as constraints. The consumer would prefer to choose a bundle with negative quantities of x and positive quantities of y. That s not feasible in the real world. So to solve the problem using the Lagrangian method, we impose these non-negativity constraints to prevent a nonsensical solution. Another type of corner solution can result from indivisibilities the bundle (often called integer constraints). 6

Given the budget and set of prices, only two bundles are feasible unless the consumer could purchase non-integer quantities of good x. We usually abstract from indivisibility. Going back to the general case, how do we know a solution exists for consumer, i. e. how do we know the consumer would choose a unique bundle? The axiom of completeness guarantees this. Every bundle is on some indifference curve and can therefore be ranked. On page 3 for example: A I B, A B, B A. 2.2 Mathematical solution to the Consumer s Problem Mathematics maxu(x, y) x,y s.t. x + y I 1. 2. 3. L = U(x, y) + λ(i x y) x = U x λ = 0 y = Uy λ = 0 λ = I x y = 0 7

Rearranging (1) and (2): U x U y This means that the psychic trade-off is equal to the monetary trade-off between the two goods. Equation (3) states that budget is exhausted (non-satiation). Also notice that: = What is the meaning of λ? U x = λ U y = λ 2.3 Interpretation of λ, the Lagrange multiplier At the solution of the Consumer s problem (more specifically, an interior solution), the following conditions will hold: U/ x = U/ y = U/ xn = λ, p n and for many goods (x 1, x 2,..., x n ): U/ x 1 p 1 = U/ x 2 p 2 =... = U/ xn = λ p n This expression says that at the utility-maximizing point, the next dollar spent on each good yields the same marginal utility. So what about du(x,y ), where x and y are the consumer s optimal consumption di choices subject to her budget constraint? 8

What is du in that case, where U is U (x, y )? Return to Lagrangian: di L = U(x, y) + λ(i x y) x = U x λ = 0 = Uy λ = 0 y λ = I x y = 0 dl di x=x,y=y = x x I = By substituting λ = Ux x=x thesis are zero. We conclude that: y + y I + I ) x (U x x λp I y x + (U y I I λ and λ = Uy, we see that both expressions in pareny=y dl di = = λ I λ equals the shadow price of the budget constraint, i.e. ) y + I λ it expresses the quantity of utils that could be obtained with the next dollar of consumption. Note that this expression only holds when x = x and y = y. If x and y were not at their optimal values, then the total derivative of L with respect to I would also include additional cross-partial terms. These cross-partials are zero at x = x and y = y. What does the shadow price mean? It s essentially the utility value of relaxing the budget constraint by one unit (e.g., one dollar). Note that this shadow price is not uniquely defined since it corresponds to the marginal utility of income in utils, which is an ordinal value. Therefore, the shadow price is defined only up to a monotonic transformation. We could also have determined that dl/di = λ without calculations by applying the envelope theorem. The envelope theorem for constrained problems says that du di = = λ. Because (at the utility maximizing solution to this problem), x and y are I already optimized, an infinitesimal change in I does not alter these choices. Thus, at x and y, the effect of I on U depends only on its direct effect on the budget constraint and does not depend on its indirect effect (due to re-optimization) on the choices of x and y. This envelope result is only true in a small neighborhood around the solution to the original problem. 9

2.4 Corner solutions When at a corner solution, consumer buys zero of some good and spends the entire budget on other goods. What problem does this create for us when we try to solve the Lagrangian? The problem above is that a point of tangency doesn t exist for positive values of y. Hence we also need to impose non-negativity constraints : x 0, y 0. This will not be important for problems in this class, but it s easy to add these constraints to the maximization problem. 2.5 An Example Problem Consider the following example problem: 1 U(x, y) = 4 ln x + 3 ln y 4 10

Notice that this utility function satisfies all axioms: 1. Completeness, transitivity, continuity 2. Non-satiation: U x = 1 > 0 for all x. U 4x y = 3 > 0 for all y. In other words, 4y utility rises continually with greater consumption of either good, though the rate at which it rises declines (diminishing marginal utility of consumption). 3. Diminishing marginal rate of substitution: Along an indifference curve of this utility function: Ū = 1 4 ln x 0 + 3 4 ln y 0. Totally differentiate: 0 = 1 4x 0 dx + 3 dy 4y 0. Which provides the marginal rate of substitution dy dx Ū = Ux U y = 4y 0 12x 0. The marginal rate of substitution of x for y is increasing in the amount of y consumed and decreasing in the amount of x consumed; holding utility constant, the more y the consumer has, the more y she would give up for one additional unit of x. Example values: = 1, = 2, I = 12. Write the Lagrangian for this utility function given prices and income: Rearranging (1) and (2), we have 1 max U(x, y) = x,y 4 ln x + 3 ln y 4 s.t. x + y I 1 L = ln x + 3 ln y + λ(12 x 2y) 4 4 1. x = 1 λ 4x = 0 2. 3 = 2 y 4y λ = 0 3. λ = 12 x 2y = 0 U x U y = 1/4x = x 3/4y 3y = 1 2 The interpretation of this expression is that the MRS (psychic trade-off) is equal to the market trade-off (price-ratio). 11

What s dl? As before, this is equal to λ, which from (1) and (2) is equal to: di 1 λ = 4x = 3. 8y The next dollar of income could buy one additional x, which has marginal utility 1 4x or it could buy 1 3 additional y, which provides marginal utility (so, the marginal utility increment is 1 2 3 4y ). 2 It s important that dl/di = λ is defined in terms of the optimally chosen x, y. Unless we are at these optimal points, the envelope theorem does not apply. In that case, dl/di ( ) ( would also depend on the cross-partial terms: Ux x x I λ I + y Uy λp ) I y y. I Incidentally, you should be able to solve for the prices and budget given, x = 3, y = 4.5. 1 Having solved that, you can verify that = 3 = λ. That is, at prices p 4x y x = 1 and 8 = 2 and consumption choices x = 3, y = 4.5, the marginal utility of a dollar spent on either good x or good y is identical. 4y 2.6 Lagrangian with Non-negativity Constraints [Optional] max U(x, y) s.t. x + y I y 0 L = U(x, y) + λ(i x y) + µ (y 0) x = Ux λ = 0 = U y λ + µ = 0 µy = 0 Final equation above implies that µ = 0, y = 0, or both. (This is called a complementary slackness condition: either the constraint is slack, implying µ = 0, or the constraint is binding, implying that y = 0, and so in either case, we have that the product µy = 0.) We then have three cases. 12

1. y = 0, µ 0 (since µ 0 then it must be the case that µ > 0) Combining the last two expressions: U y λ + µ = 0 U y λ < 0 U y < λ U x = λ U x U y > This consumer would like to consume even more x and less y, but she cannot. 2. y 0, µ = 0 U y λ + µ = 0 U y λ = 0 U y = Ux = λ Standard FOC, here the non-negativity constraint is not binding. 3. y = 0, µ = 0 Same FOC as before: = U x U y Here the non-negativity constraint is satisfied with equality so it doesn t distort consumption. 3 Indirect Utility Function For any: Budget constraint Utility function Set of prices 13

We obtain a set of optimally chosen quantities: x 1 = x 1 (p 1, p 2,..., p n, I)... x n = x n (p 1, p 2,..., p n, I) So when we say max U(x 1,..., x n ) s.t. p 1 x 1 +... + p n x n I we get as a result: U(x 1(p 1,..., p n, I),..., x n(p 1,..., p n, I)) V (p 1,..., p n, I). We call V ( ) the Indirect Utility Function. This is the value of maximized utility under given prices and income. So remember the distinction: Direct utility: utility from consumption of (x 1,..., x n ) Indirect utility: utility obtained when facing the set of prices and income given by (p 1,..., p n, I) Example max U(x, y) = x.5 y.5 s.t. x + y I L = x.5 y.5 + λ(i x y) x =.5x.5 y.5 λ = 0 y =.5x.5 y.5 λ = 0 λ = I x y = 0 We obtain the following: which simplifies to: λ =.5x.5 y.5 =.5x.5 y.5, y x =. 14

Substituting into the budget constraint gives us pyy I y = 0 Half of the budget goes to each good. 1 1 y = I, x = I 2 2 I x = 2px, y = I 2 Thus, for a consumer with U (x, y) = x 0.5 y 0.5, budget I, and facing prices and will choose x and y and obtain utility: ( ).5 ( ). 5 I I U (x, y ) =. 2 2 Thus, the indirect utility for this consumer is ( ).5 (. I I V (,, I) = U (x (,, I), y (,, I)) = 2 2 Why bother calculating the indirect utility function? It saves us time. Instead of recalculating the utility level for every set of prices and budget constraints, we can plug in prices and income to get consumer utility. This comes in handy when working with individual demand functions. Demand functions give the quantity of goods purchased by a given consumer as a function of prices and income. ) 5 15

MIT OpenCourseWare https://ocw.mit.edu 14.03 / 14.003 Microeconomic Theory and Public Policy Fall 2016 For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.