TRUE-FALSE: Determine whether each of the following statements is true or false.

Size: px
Start display at page:

Download "TRUE-FALSE: Determine whether each of the following statements is true or false."

Transcription

1 Chapter 6 Test Review Name TRUE-FALSE: Determine whether each of the following statements is true or false. 1) A random variable is continuous when the set of possible values includes an entire interval on the number line. 2) For a continuous random variable x, the area under the density curve over an interval a to b represents the probability that x is between a and b. ) For a continuous random variable x, P( x 6) = p() + p(4) + p(5) + p (6). 4) The binomial probability distribution is an example of a continuous probability distribution. MULTIPLE CHOICE: Circle the correct choice for each question. 5) Which of the following is true about every random variable I. It takes on numerical or categorical values. II. It describes the results of a random phenomenon. III. Its behavior can be described by a probability distribution. A) I only B) II only C) III only D) II and III E) I, II, and III 6) Let be the outcome of rolling a fair six-sided die. P( 2 5) < = A) 1/6 B) 1/ C) 1/2 D) 2/ E) 5/6 7) An ecologist studying starfish populations collects the following data on randomly selected 1 meter by 1 meter plots on a rocky coastline. - The number of starfish in the plot - The total weight of starfish in the plot. - The percentage of area in the plot that is covered by barnacles (a popular food for starfish) - Whether or not the plot is underwater midway between high and low tide. 8) How many of these measurements can be treated as continuous random variables and how many as discrete random variables? A) Three continuous, one discrete. B) Two continuous, two discrete. C) One continuous, three discrete. D) Two continuous, one discrete, and a fourth that cannot be treated as a random variable. E) One continuous, two discrete, and a fourth that cannot be treated as a random variable. 9) Sule s job is just a few bus stops away from his house. While it can be faster to take the bus to work, it s more variable, because of variations in traffic. He estimates that the commute time to work by bus is approximately Normally distributed with a mean of 12 minutes and a standard deviation of 4 minutes. The commute time if he walks to work is also approximately Normally distributed with a mean of 16 minutes with a standard deviation of 1 minute. What is the probability that the bus will be faster than walking? A) B) C) D) E)

2 10) Which of the following variables is a continuous variable? A) the lifetime of a 9-volt battery B) the number of cracked eggs in a carton of 12 eggs C) the number of people in a family D) the brand of laundry detergent used 11) Which is NOT correct: For any continuous variable, A) P ( a) = 1 P( < a) B) P( > a) = 1 P( a) C) P ( a) = P( < a) D) P( a < < b) = P( a b) For #12-14, consider the following: The local library allows the checking out of up to five books at any one time. Based on historical records, x = the number of books checked out by an individual has the following population distribution. x p(x) ) What is P(1 < x 4)? A).4 B).42 C).75 D).48 1) What is the mean number of books to be checked out by an individual? A) 15 B) 1.78 C) 7.5 D) 1 14) What is the standard deviation of books to be checked out by an individual? A) 1.49 B) C) D) ) Suppose the average height of policemen is 71 inches with a standard deviation of 4 inches, while the average for policewoman is 66 inches with a standard deviation of inches. If a committee looks at all ways of pairing up one male with one female officer, what will be the mean and standard deviation for the difference in heights for the set of possible partners? A) Mean of 5 inches with a standard deviation of 1 inch. B) Mean of 5 inches with a standard deviation of.5 inches. C) Mean of 5 inches with a standard deviation of 5 inches. D) Mean of 68.5 inches with a standard deviation of 1 inch. E) Mean of 68.5 inches with a standard deviation of.5 inches. 16) A widget manufacturer estimates that the total weekly cost in dollars, C, to produce x widgets is given by the linear function C(x) = x, where the intercept 500 represents a fixed cost of manufacture and the slope 10 represents the variable cost of producing a certain number of widgets. Analysis of weekly widget production reveals that the number of widgets produced in a week is a random variable with mean μ = 200 and standard deviation σ = 20. What are the mean and the standard deviation of C? A) mean of C = $2500, standard deviation of C = $200 B) mean of C = $2500, standard deviation of C = $700 C) mean of C = $100,010, standard deviation of C = $10,000 17) A national study found that the average family spent $422 a month on groceries, with a standard deviation of $84. The average amount spent on housing (rent or mortgage) was $1,120 a month, with a standard deviation $212. The expected total amount a family spends on food and housing is $1542. What is the standard deviation of the total? A) $128 B) $148 C) $228 D) $295

3 18) If x is a binomial random variable with n = 10 and p =.25, then 2 A) σ = B) σ = 2.5 C) σ = D) σ = ) Which of the following is not a property of a geometric experiment? A) It consists of a fixed number of trials n. B) Outcomes of different trials are independent. C) The probability of success is the same for all trials. D) Each trial can result in one of two possible outcomes. 20) The probability that any one driver will blow past the stop sign in front of Karen s house is.84. Of ten drivers randomly selected, what s the probability that less than seven drivers blow past it? A).061 B).048 C).145 D) ) If a is a binomial random variable with n = 10 and p =.4, then the binomial probability function can be written as A) =.4.6 px ( ) 10C4( x) (1 x ) B) px ( ) = 10C x(.4) (.6) C) px ( ) = C (.6) (.4) D) px ( ) = C (.4) (.6) 10 x For #22-24, consider the following: A fair die will be rolled until a five appears. Let x = the number of rolls required in order to roll a five. 22) What s Px ( = 6)? A).5 B).402 C).167 D).067 x 10 2) What s Px ( = 0)? A).167 B).8 C) 0 D) 1 24) What s Px ( > )? A).579 B).116 C).694 D) ) In a certain game of chance, your chances of winning are 0.2. If you play the game five times and outcomes are independent, which of the following represents the probability that you win at least once? A) ( ) B) 1 ( 0.2) 5 C) 1 ( 0.8) D) ( )( ) 4 E) ( 0.8 ) 5 + ( )( ) 4

4 26) Roll one 8-sided die 10 times. The probability of getting exactly sevens in those 10 rolls is given by A) B) C) D) E) 27) The binomial expression C gives the probability of A) at least 2 successes in 8 trials if the probability of success in one trial is 1/. B) at least 2 successes in 8 trials if the probability of success in one trial is 2/. C) exactly 2 successes in 8 trials if the probability of success in one trial is 1/. D) exactly 2 successes in 8 trials if the probability of success in one trial is 2/. E) at least 6 successes in 8 trials if the probability of success in one trial is 2/. 28) Which of the following is a binomial random variable? A) The number of tosses before a 5 appears when tossing a fair die. B) The number of points a hockey team receives in 10 games, where two points are awarded for wins, one point for ties, and no points for losses. C) The number of hearts out of five cards drawn from a deck of 52 cards, without replacement. D) The number of motorists not wearing seat belts in a random sample of five drivers. 29) Suppose we have a random variable where the probability associated with the value for k=0, 8. What is the mean of? A) 0.45 B) 0.55 C) 1.98 D).6 E) 4.4 0) An inspection procedure at a manufacturing plant involves picking three items at random and then accepting the whole lot if at least two of the three items in perfect condition. If in reality 90% of the whole lot are perfect, what is the probability that the lot will be accepted? A) B) C) D) E) ) A judge is chosen at random reaches a just decision roughly 80% of the time. What is the probability that in three randomly chosen cases at least two out of three judges reach a just conclusion? A) B) C) D) E)

5 1) T 2) T ) F 4) F 5) D 6) C 7) --- 8) D 9) A 10) A 11) A 12) A 1) B 14) A 15) C 16) A 17) C 18) C 19) A 20) A 21) B 22) D 2) C 24) A 25) C 26) B 27) C 28) D 29) D 0) E 1) E 1) T 2) T ) F 4) F 5) D 6) C 7) --- 8) D 9) A 10) A 11) A 12) A 1) B 14) A 15) C 16) A 17) C 18) C 19) A 20) A 21) B 22) D 2) C 24) A 25) C 26) B 27) C 28) D 29) D 0) E 1) E 1) T 2) T ) F 4) F 5) D 6) C 7) --- 8) D 9) A 10) A 11) A 12) A 1) B 14) A 15) C 16) A 17) C 18) C 19) A 20) A 21) B 22) D 2) C 24) A 25) C 26) B 27) C 28) D 29) D 0) E 1) E 1) T 2) T ) F 4) F 5) D 6) C 7) --- 8) D 9) A 10) A 11) A 12) A 1) B 14) A 15) C 16) A 17) C 18) C 19) A 20) A 21) B 22) D 2) C 24) A 25) C 26) B 27) C 28) D 29) D 0) E 1) E 1) T 2) T ) F 4) F 5) D 6) C 7) --- 8) D 9) A 10) A 11) A 12) A 1) B 14) A 15) C 16) A 17) C 18) C 19) A 20) A 21) B 22) D 2) C 24) A 25) C 26) B 27) C 28) D 29) D 0) E 1) E

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic.

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic. A Statistics Section 6.1 Day 1 ultiple Choice ractice Name: 1. A variable whose value is a numerical outcome of a random phenomenon is called a) a random variable. b) a parameter. c) biased. d) a random

More information

Name Period AP Statistics Unit 5 Review

Name Period AP Statistics Unit 5 Review Name Period AP Statistics Unit 5 Review Multiple Choice 1. Jay Olshansky from the University of Chicago was quoted in Chance News as arguing that for the average life expectancy to reach 100, 18% of people

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Unit 04 Review. Probability Rules

Unit 04 Review. Probability Rules Unit 04 Review Probability Rules A sample space contains all the possible outcomes observed in a trial of an experiment, a survey, or some random phenomenon. The sum of the probabilities for all possible

More information

Test 6A AP Statistics Name:

Test 6A AP Statistics Name: Test 6A AP Statistics Name: Part 1: Multiple Choice. Circle the letter corresponding to the best answer. 1. A marketing survey compiled data on the number of personal computers in households. If X = the

More information

FINAL REVIEW W/ANSWERS

FINAL REVIEW W/ANSWERS FINAL REVIEW W/ANSWERS ( 03/15/08 - Sharon Coates) Concepts to review before answering the questions: A population consists of the entire group of people or objects of interest to an investigator, while

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

X P(X) (c) Express the event performing at least two tests in terms of X and find its probability.

X P(X) (c) Express the event performing at least two tests in terms of X and find its probability. AP Stats ~ QUIZ 6 Name Period 1. The probability distribution below is for the random variable X = number of medical tests performed on a randomly selected outpatient at a certain hospital. X 0 1 2 3 4

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Binomal and Geometric Distributions

Binomal and Geometric Distributions Binomal and Geometric Distributions Sections 3.2 & 3.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 7-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Problem Set 07 Discrete Random Variables

Problem Set 07 Discrete Random Variables Name Problem Set 07 Discrete Random Variables MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean of the random variable. 1) The random

More information

X = x p(x) 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6. x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 values for the random variable X

X = x p(x) 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6. x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 values for the random variable X Calculus II MAT 146 Integration Applications: Probability Calculating probabilities for discrete cases typically involves comparing the number of ways a chosen event can occur to the number of ways all

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

AP Statistics Review Ch. 6

AP Statistics Review Ch. 6 AP Statistics Review Ch. 6 Name 1. Which of the following data sets is not continuous? a. The gallons of gasoline in a car. b. The time it takes to commute in a car. c. Number of goals scored by a hockey

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Test 7A AP Statistics Name: Directions: Work on these sheets.

Test 7A AP Statistics Name: Directions: Work on these sheets. Test 7A AP Statistics Name: Directions: Work on these sheets. Part 1: Multiple Choice. Circle the letter corresponding to the best answer. 1. Suppose X is a random variable with mean µ. Suppose we observe

More information

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP Note 1: The exercises below that are referenced by chapter number are taken or modified from the following open-source online textbook that was adapted by

More information

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations.

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations. Chapter 8 Notes Binomial and Geometric Distribution Often times we are interested in an event that has only two outcomes. For example, we may wish to know the outcome of a free throw shot (good or missed),

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test.

Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test. Honors Statistics Aug 23-8:26 PM 3. Review team test Aug 23-8:31 PM 1 Nov 27-10:28 PM 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Nov 27-9:53 PM 2 May 8-7:44 PM May 1-9:09 PM 3 Dec 1-2:08 PM Sep

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Stats CH 6 Intro Activity 1

Stats CH 6 Intro Activity 1 Stats CH 6 Intro Activit 1 1. Purpose can ou tell the difference between bottled water and tap water? You will drink water from 3 samples. 1 of these is bottled water.. You must test them in the following

More information

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean.

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean. Lecture 3 Sampling distributions. Counts, Proportions, and sample mean. Statistical Inference: Uses data and summary statistics (mean, variances, proportions, slopes) to draw conclusions about a population

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

Unit2: Probabilityanddistributions. 3. Normal distribution

Unit2: Probabilityanddistributions. 3. Normal distribution Announcements Unit: Probabilityanddistributions 3 Normal distribution Sta 101 - Spring 015 Duke University, Department of Statistical Science February, 015 Peer evaluation 1 by Friday 11:59pm Office hours:

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Chapter Six Probability Distributions

Chapter Six Probability Distributions 6.1 Probability Distributions Discrete Random Variable Chapter Six Probability Distributions x P(x) 2 0.08 4 0.13 6 0.25 8 0.31 10 0.16 12 0.01 Practice. Construct a probability distribution for the number

More information

Expected Value of a Random Variable

Expected Value of a Random Variable Knowledge Article: Probability and Statistics Expected Value of a Random Variable Expected Value of a Discrete Random Variable You're familiar with a simple mean, or average, of a set. The mean value of

More information

Math 160 Professor Busken Chapter 5 Worksheets

Math 160 Professor Busken Chapter 5 Worksheets Math 160 Professor Busken Chapter 5 Worksheets Name: 1. Find the expected value. Suppose you play a Pick 4 Lotto where you pay 50 to select a sequence of four digits, such as 2118. If you select the same

More information

X P(X=x) E(X)= V(X)= S.D(X)= X P(X=x) E(X)= V(X)= S.D(X)=

X P(X=x) E(X)= V(X)= S.D(X)= X P(X=x) E(X)= V(X)= S.D(X)= 1. X 0 1 2 P(X=x) 0.2 0.4 0.4 E(X)= V(X)= S.D(X)= X 100 200 300 400 P(X=x) 0.1 0.2 0.5 0.2 E(X)= V(X)= S.D(X)= 2. A day trader buys an option on a stock that will return a $100 profit if the stock goes

More information

Chapter 6: Random Variables and Probability Distributions

Chapter 6: Random Variables and Probability Distributions Chapter 6: Random Variables and Distributions These notes reflect material from our text, Statistics, Learning from Data, First Edition, by Roxy Pec, published by CENGAGE Learning, 2015. Random variables

More information

STA 6166 Fall 2007 Web-based Course. Notes 10: Probability Models

STA 6166 Fall 2007 Web-based Course. Notes 10: Probability Models STA 6166 Fall 2007 Web-based Course 1 Notes 10: Probability Models We first saw the normal model as a useful model for the distribution of some quantitative variables. We ve also seen that if we make a

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

d) Find the standard deviation of the random variable X.

d) Find the standard deviation of the random variable X. Q 1: The number of students using Math lab per day is found in the distribution below. x 6 8 10 12 14 P(x) 0.15 0.3 0.35 0.1 0.1 a) Find the mean for this probability distribution. b) Find the variance

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables You are dealt a hand of 5 cards. Find the probability distribution table for the number of hearts. Graph

More information

expected value of X, and describes the long-run average outcome. It is a weighted average.

expected value of X, and describes the long-run average outcome. It is a weighted average. X The mean of a set of observations is their ordinary average, whereas the mean of a random variable X is an average of the possible values of X The mean of a random variable X is often called the expected

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

LECTURE 6 DISTRIBUTIONS

LECTURE 6 DISTRIBUTIONS LECTURE 6 DISTRIBUTIONS OVERVIEW Uniform Distribution Normal Distribution Random Variables Continuous Distributions MOST OF THE SLIDES ADOPTED FROM OPENINTRO STATS BOOK. NORMAL DISTRIBUTION Unimodal and

More information

Math 14 Lecture Notes Ch. 4.3

Math 14 Lecture Notes Ch. 4.3 4.3 The Binomial Distribution Example 1: The former Sacramento King's DeMarcus Cousins makes 77% of his free throws. If he shoots 3 times, what is the probability that he will make exactly 0, 1, 2, or

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

***SECTION 8.1*** The Binomial Distributions

***SECTION 8.1*** The Binomial Distributions ***SECTION 8.1*** The Binomial Distributions CHAPTER 8 ~ The Binomial and Geometric Distributions In practice, we frequently encounter random phenomenon where there are two outcomes of interest. For example,

More information

Note: Some questions require the use of either a standard normal probability table or technology that can calculate normal probabilities.

Note: Some questions require the use of either a standard normal probability table or technology that can calculate normal probabilities. Chapter 6 Review (6.1-6.2) Chapter 6 Test B Multiple Choice Note: Some questions require the use of either a standard normal probability table or technology that can calculate normal probabilities. Section

More information

Binomial Distributions

Binomial Distributions Binomial Distributions Binomial Experiment The experiment is repeated for a fixed number of trials, where each trial is independent of the other trials There are only two possible outcomes of interest

More information

A useful modeling tricks.

A useful modeling tricks. .7 Joint models for more than two outcomes We saw that we could write joint models for a pair of variables by specifying the joint probabilities over all pairs of outcomes. In principal, we could do this

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Random Variables Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8.1 What is a Random Variable? Random Variable: assigns a number to each outcome of a random circumstance, or,

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions 8-1

8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions 8-1 8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions For Example: On August 8, 2011, the Dow dropped 634.8 points, sending shock waves through the financial community.

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution)

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) I. Concept Questions 1. Give an example of a random variable in the context of Drawing a card from a deck of cards.

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Chapter 3: Probability Distributions and Statistics

Chapter 3: Probability Distributions and Statistics Chapter 3: Probability Distributions and Statistics Section 3.-3.3 3. Random Variables and Histograms A is a rule that assigns precisely one real number to each outcome of an experiment. We usually denote

More information

When the observations of a quantitative random variable can take on only a finite number of values, or a countable number of values.

When the observations of a quantitative random variable can take on only a finite number of values, or a countable number of values. 5.1 Introduction to Random Variables and Probability Distributions Statistical Experiment - any process by which an observation (or measurement) is obtained. Examples: 1) Counting the number of eggs in

More information

Record on a ScanTron, your choosen response for each question. You may write on this form. One page of notes and a calculator are allowed.

Record on a ScanTron, your choosen response for each question. You may write on this form. One page of notes and a calculator are allowed. Ch 16, 17 Math 240 Exam 4 v1 Good SAMPLE No Book, Yes 1 Page Notes, Yes Calculator, 120 Minutes Dressler Record on a ScanTron, your choosen response for each question. You may write on this form. One page

More information

Example 1: Identify the following random variables as discrete or continuous: a) Weight of a package. b) Number of students in a first-grade classroom

Example 1: Identify the following random variables as discrete or continuous: a) Weight of a package. b) Number of students in a first-grade classroom Section 5-1 Probability Distributions I. Random Variables A variable x is a if the value that it assumes, corresponding to the of an experiment, is a or event. A random variable is if it potentially can

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 6 Exam A Name The given values are discrete. Use the continuity correction and describe the region of the normal distribution that corresponds to the indicated probability. 1) The probability of

More information

1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys?

1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys? Chapters 6 8 Review 1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys? (A) 1 (B) 3 1 (C) 3 (D) 4 1 (E) None of the above..

More information

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!!

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!! Student s Printed Name: Instructor: XID: Section #: Read each question very carefully. You are permitted to use a calculator on all portions of this exam. You are NOT allowed to use any textbook, notes,

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Chapter 8: The Binomial and Geometric Distributions 8.1 Binomial Distributions 8.2 Geometric Distributions 1 Let me begin with an example My best friends from Kent School had three daughters. What is the

More information

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS A random variable is the description of the outcome of an experiment in words. The verbal description of a random variable tells you how to find or calculate

More information

Chapter 6 Section 1 Day s.notebook. April 29, Honors Statistics. Aug 23-8:26 PM. 3. Review OTL C6#2. Aug 23-8:31 PM

Chapter 6 Section 1 Day s.notebook. April 29, Honors Statistics. Aug 23-8:26 PM. 3. Review OTL C6#2. Aug 23-8:31 PM Honors Statistics Aug 23-8:26 PM 3. Review OTL C6#2 Aug 23-8:31 PM 1 Apr 27-9:20 AM Jan 18-2:13 PM 2 Nov 27-10:28 PM 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Nov 27-9:53 PM 3 Ask about 1 and

More information

Name PID Section # (enrolled)

Name PID Section # (enrolled) STT 315 - Lecture 3 Instructor: Aylin ALIN 04/02/2014 Midterm # 2 A Name PID Section # (enrolled) * The exam is closed book and 80 minutes. * You may use a calculator and the formula sheet that you brought

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen 5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen Review From Yesterday Bernoulli Trials have 3 properties: 1. 2. 3. Binomial Probability Distribution In a binomial experiment with

More information

Multinomial Coefficient : A Generalization of the Binomial Coefficient

Multinomial Coefficient : A Generalization of the Binomial Coefficient Multinomial Coefficient : A Generalization of the Binomial Coefficient Example: A team plays 16 games in a season. At the end of the season, the team has 8 wins, 3 ties and 5 losses. How many different

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

Let X be the number that comes up on the next roll of the die.

Let X be the number that comes up on the next roll of the die. Chapter 6 - Discrete Probability Distributions 6.1 Random Variables Introduction If we roll a fair die, the possible outcomes are the numbers 1, 2, 3, 4, 5, and 6, and each of these numbers has probability

More information

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin 3 times where P(H) = / (b) THUS, find the probability

More information

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI 08-0- Lesson 9 - Binomial Distributions IBHL - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin times where P(H) = / (b) THUS, find the probability

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

***SECTION 7.1*** Discrete and Continuous Random Variables

***SECTION 7.1*** Discrete and Continuous Random Variables ***SECTION 7.1*** Discrete and Continuous Random Variables UNIT 6 ~ Random Variables Sample spaces need not consist of numbers; tossing coins yields H s and T s. However, in statistics we are most often

More information

The Binomial Distribution

The Binomial Distribution MATH 382 The Binomial Distribution Dr. Neal, WKU Suppose there is a fixed probability p of having an occurrence (or success ) on any single attempt, and a sequence of n independent attempts is made. Then

More information

2.) What is the set of outcomes that describes the event that at least one of the items selected is defective? {AD, DA, DD}

2.) What is the set of outcomes that describes the event that at least one of the items selected is defective? {AD, DA, DD} Math 361 Practice Exam 2 (Use this information for questions 1 3) At the end of a production run manufacturing rubber gaskets, items are sampled at random and inspected to determine if the item is Acceptable

More information

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Discrete Probability Distributions McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Overview Introduction 5-1 Probability Distributions 5-2 Mean, Variance, Standard Deviation, and Expectation

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

1. (9; 3ea) The table lists the survey results of 100 non-senior students. Math major Art major Biology major

1. (9; 3ea) The table lists the survey results of 100 non-senior students. Math major Art major Biology major Math 54 Test #2(Chapter 4, 5, 6, 7) Name: Show all necessary work for full credit. You may use graphing calculators for your calculation, but you must show all detail and use the proper notations. Total

More information

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1 6.1 Discrete and Continuous Random Variables Random Variables A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types

More information

List of Online Quizzes: Quiz7: Basic Probability Quiz 8: Expectation and sigma. Quiz 9: Binomial Introduction Quiz 10: Binomial Probability

List of Online Quizzes: Quiz7: Basic Probability Quiz 8: Expectation and sigma. Quiz 9: Binomial Introduction Quiz 10: Binomial Probability List of Online Homework: Homework 6: Random Variables and Discrete Variables Homework7: Expected Value and Standard Dev of a Variable Homework8: The Binomial Distribution List of Online Quizzes: Quiz7:

More information

Honors Statistics. Aug 23-8:26 PM. 1. Collect folders and materials. 2. Continue Binomial Probability. 3. Review OTL C6#11 homework

Honors Statistics. Aug 23-8:26 PM. 1. Collect folders and materials. 2. Continue Binomial Probability. 3. Review OTL C6#11 homework Honors Statistics Aug 23-8:26 PM 1. Collect folders and materials 2. Continue Binomial Probability 3. Review OTL C6#11 homework 4. Binomial mean and standard deviation 5. Past Homework discussion 6. Return

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes MDM 4U Probability Review Properties of Probability Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes Theoretical

More information