Exact Inference. Factor Graphs through Max-Sum Algorithm Figures from Bishop PRML Sec. 8.3/8.4. x 3. f s. x 2. x 1

Size: px
Start display at page:

Download "Exact Inference. Factor Graphs through Max-Sum Algorithm Figures from Bishop PRML Sec. 8.3/8.4. x 3. f s. x 2. x 1"

Transcription

1 Exact Inference x 1 x 3 x 2 f s Geoffrey Roeder roeder@cs.toronto.edu 8 February 2018 Factor Graphs through Max-Sum Algorithm Figures from Bishop PRML Sec. 8.3/8.4

2 Building Blocks UGMs, Cliques, Factor Graphs

3 Markov Random Fields / UGMs Parameterization: maximal cliques x 1 x 2 x 3 x 4

4 Example: Equivalent DGM and UGM x 1 x 2 x N 1 x N x 1 x 2 x N x N 1 p(x) =p(x 1 )p(x 2 x 1 )p(x 3 x 2 ) p(x N x N 1 ). vert this to an undirected graph representation, p(x) = 1 Z ψ 1,2(x 1,x 2 )ψ 2,3 (x 2,x 3 ) ψ N 1,N (x N 1,x N ) ψ 1,2 (x 1,x 2 ) = p(x 1 )p(x 2 x 1 ) ψ 2,3 (x 2,x 3 ) = p(x 3 x 2 ). ψ N 1,N (x N 1,x N ) = p(x N x N 1 )

5 Conversion: Moralization (Marry the Parents of Every Child) x 1 x 3 x 1 x 3 x 2 x 2 (a) x 4 (b) x 4 p(x) =p(x 1 )p(x 2 )p(x 3 )p(x 4 x 1,x 2,x 3 ).

6 DGMs and UGMs represent distinct distributions A B C F A B C D U P D

7 Motivations: Exact Inference in a Chain

8 Query probability of a configuration for node X_n: p(x_n) x 1 x 2 x N 1 x N x 1 x 2 x N x N 1 p(x) = 1 Z ψ 1,2(x 1,x 2 )ψ 2,3 (x 2,x 3 ) ψ N 1,N (x N 1,x N ). p(x n )= x 1 x n 1 p(x). x n+1 x N

9 Query probability of a configuration for node X_n: p(x_n) x 1 x 2 x N 1 x N x 1 x 2 x N x N 1 p(x) = 1 Z ψ 1,2(x 1,x 2 )ψ 2,3 (x 2,x 3 ) ψ N 1,N (x N 1,x N ). p(x n )= x 1 x n 1 p(x). x n+1 x N Naively: N variables, K states per variable: computation complexity? p(x n )= x 1 x n 1 p(x). x n+1 x N

10 Query probability of a configuration for node X_n: p(x_n) x 1 x 2 x N 1 x N x 1 x 2 x N x N 1 p(x) = 1 Z ψ 1,2(x 1,x 2 )ψ 2,3 (x 2,x 3 ) ψ N 1,N (x N 1,x N ). p(x n )= x 1 x n 1 p(x). x n+1 x N We ignored the conditional independence! Notice for x_n: summation ψ N 1,N (x N 1,x N ) x N

11 Be clever about order of computation: x 1 x 2 x N 1 x N p(x n )= 1 Z [ [ ]] ψ n 1,n (x n 1,x n ) ψ 2,3 (x 2,x 3 ) ψ 1,2 (x 1,x 2 ) xn 1 x 2 x 1 }{{} µ α (x n ) [ ] ψ n,n+1 (x n,x n+1 ) ψ N 1,N (x N 1,x N ). (8.52) xn+1 x N }{{} µ β (x n ) p(x n )= 1 Z µ α(x n )µ β (x n )

12 Be clever about order of computation: x 1 x 2 x N 1 x N µ α (x n 1 ) µ α (x n ) µ β (x n ) µ β (x n+1 ) x 1 x n 1 x n x n+1 x N p(x n )= 1 Z µ α(x n )µ β (x n )

13 We get joint marginals over variables, too: x 1 x 2 x N 1 x N µ α (x n 1 ) µ α (x n ) µ β (x n ) µ β (x n+1 ) x 1 x n 1 x n x n+1 x N p(x n 1,x n )= 1 Z µ α(x n 1 )ψ n 1,n (x n 1,x n )µ β (x n ). obtain the joint distributions over all of the sets of var

14 Factor Graph Review

15 x 1 x 2 x 3 f a f b f c f d p(x) = Y s f(x s ) p(x) =f a (x 1,x 2 )f b (x 1,x 2 )f c (x 2,x 3 )f d (x 3 )

16 x 1 x 2 x 1 x 2 f x 1 x 2 f c f a f b (a) x 3 (b) x 3 (c) x 3 (a) p(x 1 )p(x 2 )p(x 3 x 1,x 2 ) (b) f(x 1,x 2,x 3 )=p(x 1 )p(x 2 )p(x 3 x 1,x 2 ) (c) f a (x 1 )=p(x 1 ),f b (x 2 )=p(x 2 ),f c (x 1,x 2,x 3 )=p(x 3 x 1,x 2 )

17 x 1 x 2 x 1 x 2 x 1 x 2 f a f(x 1,x 2,x 3 ) f b f c (a) x 3 (b) x 3 (c) x 3

18 Sum-Product Algorithm Generalize Exact Inference in Chains to Tree-Structured PGMs

19 Problem setup: notation Fs(x, Xs) f s µ fs x(x) x p(x) = x\x p(x) = p(x) F s (x, X s ) s ne(x) ne(x): set of factor nodes that are neighbours of x X_s: set of all variables in the subtree connected to the variable node x via factor node f_s F_s(x, X_s): the product of all the factors in the group associated with factor f_s

20 Problem setup: notation Fs(x, Xs) f s µ fs x(x) x p(x) = = [ s ne(x) s ne(x) F s (x, X s ) X s µ fs x(x). ] ne(x): set of factor nodes that are neighbours of x X_s: set of all variables in the subtree connected to the variable node x via factor node f_s F_s(x, X_s): the product of all the factors in the group associated with factor f_s

21 Problem setup: notation Fs(x, Xs) f s µ fs x(x) x p(x) = = [ s ne(x) s ne(x) F s (x, X s ) X s µ fs x(x). ] We evaluate the marginal p(x) as product of messages from surrounding factors!

22 Factor messages: decomposition [ ] p(x) = F s (x, X s ) s ne(x) X s = µ fs x(x). s ne(x) Each factor is itself described by a factor sub-graph, so we can decompose: F s (x, X s )=f s (x, x 1,...,x M )G 1 (x 1,X s1 )...G M (x M,X sm ) (Each variable associated with f_x is {x, x_1,, x_m}) Rewriting the factor-to-variable message: [ ] µ fs x(x) =... f s (x, x 1,...,x M ) G m (x m,x sm ) x 1 x M X xm = x 1... x M f s (x, x 1,...,x M ) m ne(f s )\x m ne(f s )\x µ xm f s (x m ) (8.66)

23 Factor messages: decomposition [ ] p(x) = F s (x, X s ) s ne(x) X s = µ fs x(x). s ne(x) Each factor is itself described by a factor sub-graph, so we can decompose: F s (x, X s )=f s (x, x 1,...,x M )G 1 (x 1,X s1 )...G M (x M,X sm ) (Each variable associated with f_x is {x, x_1,, x_m}) Rewriting the factor-to-variable message: [ ] µ fs x(x) =... f s (x, x 1,...,x M ) G m (x m,x sm ) x 1 x M X xm = x 1... x M f s (x, x 1,...,x M ) m ne(f s )\x m ne(f s )\x µ xm f s (x m ) (8.66)

24 Factor-to-variable messages: decomposition [ ] p(x) = F s (x, X s ) s ne(x) X s = µ fs x(x). s ne(x) Each factor is itself described by a factor sub-graph, so we can decompose: F s (x, X s )=f s (x, x 1,...,x M )G 1 (x 1,X s1 )...G M (x M,X sm ) (Each variable associated with f_x is {x, x_1,, x_m}) Rewriting the factor-to-variable message: [ ] µ fs x(x) =... f s (x, x 1,...,x M ) G m (x m,x sm ) x 1 x M X xm = x 1... x M f s (x, x 1,...,x M ) m ne(f s )\x m ne(f s )\x µ xm f s (x m ) (8.66) µ xm f s (x m ) X sm G m (x m,x sm ).

25 Variable-to-factor messages: decomposition x M µ xm f s (x M ) f s µ fs x(x) x x m G m (x m,x sm ) µ xm f s (x m ) X sm G m (x m,x sm ).

26 Factor-to-variable messages: one step back towards the leaves f L x m f s f l F l (x m,x ml ) F s (x, X s )=f s (x, x 1,...,x M )G 1 (x 1,X s1 )...G M (x M,X sm ) G m (x m,x sm )= ] F l (x m,x ml ) l ne(x m )\f s

27 Factor-to-variable messages: one step back towards the leaves f L x m f s f l F l (x m,x ml ) µ xm f s (x m ) = = l ne(x m )\f s ] [ X ml F l (x m,x ml ) l ne(x m )\f s µ fl x m (x m ) ]

28 Sum-Product Initialization at Leaves µ x f (x) =1 µ f x (x) =f(x) x f f x Sum-Product: Marginal distribution over x p(x) = = [ s ne(x) s ne(x) F s (x, X s ) X s µ fs x(x). ] See Bishop p. 409 for a fully worked, simple example!

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

Factor Graphs. Seungjin Choi

Factor Graphs. Seungjin Choi Factor Graphs Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 17 Tanner Graphs

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani All single-node marginals If we need the full set of marginals, repeating

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 All single-node marginals If we need the

More information

Probabilistic Graphical Models

Probabilistic Graphical Models CS420, Machine Learning, Lecture 8 Probabilistic Graphical Models Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html Content of This Lecture Introduction

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 22. PGM Probabilistic Inference Probabilistic inference on PGMs Computing marginal and conditional distributions from the joint

More information

Gibbs Fields: Inference and Relation to Bayes Networks

Gibbs Fields: Inference and Relation to Bayes Networks Statistical Techniques in Robotics (16-831, F10) Lecture#08 (Thursday September 16) Gibbs Fields: Inference and Relation to ayes Networks Lecturer: rew agnell Scribe:ebadeepta ey 1 1 Inference on Gibbs

More information

Global Joint Distribution Factorizes into Local Marginal Distributions on Tree-Structured Graphs

Global Joint Distribution Factorizes into Local Marginal Distributions on Tree-Structured Graphs Teaching Note October 26, 2007 Global Joint Distribution Factorizes into Local Marginal Distributions on Tree-Structured Graphs Xinhua Zhang Xinhua.Zhang@anu.edu.au Research School of Information Sciences

More information

UGM Crash Course: Conditional Inference and Cutset Conditioning

UGM Crash Course: Conditional Inference and Cutset Conditioning UGM Crash Course: Conditional Inference and Cutset Conditioning Julie Nutini August 19 th, 2015 1 / 25 Conditional UGM 2 / 25 We know the value of one or more random variables i.e., we have observations,

More information

Exact Inference (9/30/13) 2 A brief review of Forward-Backward and EM for HMMs

Exact Inference (9/30/13) 2 A brief review of Forward-Backward and EM for HMMs STA561: Probabilistic machine learning Exact Inference (9/30/13) Lecturer: Barbara Engelhardt Scribes: Jiawei Liang, He Jiang, Brittany Cohen 1 Validation for Clustering If we have two centroids, η 1 and

More information

Modelli Grafici Probabilistici (2): concetti generali

Modelli Grafici Probabilistici (2): concetti generali Modelli Grafici Probabilistici (2): concetti generali Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it Giuseppe.Boccignone@unimi.it

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 13, 2011 Today: Graphical models Bayes Nets: Conditional independencies Inference Learning Readings:

More information

A start of Variational Methods for ERGM Ranran Wang, UW

A start of Variational Methods for ERGM Ranran Wang, UW A start of Variational Methods for ERGM Ranran Wang, UW MURI-UCI April 24, 2009 Outline A start of Variational Methods for ERGM [1] Introduction to ERGM Current methods of parameter estimation: MCMCMLE:

More information

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data Group Prof. Daniel Cremers 7. Sequential Data Bayes Filter (Rep.) We can describe the overall process using a Dynamic Bayes Network: This incorporates the following Markov assumptions: (measurement) (state)!2

More information

Machine Learning. Graphical Models. Marc Toussaint University of Stuttgart Summer 2015

Machine Learning. Graphical Models. Marc Toussaint University of Stuttgart Summer 2015 Machine Learning Graphical Models Marc Toussaint University of Stuttgart Summer 2015 Outline A. Introduction Motivation and definition of Bayes Nets Conditional independence in Bayes Nets Examples B. Inference

More information

More Advanced Single Machine Models. University at Buffalo IE661 Scheduling Theory 1

More Advanced Single Machine Models. University at Buffalo IE661 Scheduling Theory 1 More Advanced Single Machine Models University at Buffalo IE661 Scheduling Theory 1 Total Earliness And Tardiness Non-regular performance measures Ej + Tj Early jobs (Set j 1 ) and Late jobs (Set j 2 )

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Portfolio Risk Management and Linear Factor Models

Portfolio Risk Management and Linear Factor Models Chapter 9 Portfolio Risk Management and Linear Factor Models 9.1 Portfolio Risk Measures There are many quantities introduced over the years to measure the level of risk that a portfolio carries, and each

More information

Bayes s Rule Example. defective. An MP3 player is selected at random and found to be defective. What is the probability it came from Factory I?

Bayes s Rule Example. defective. An MP3 player is selected at random and found to be defective. What is the probability it came from Factory I? Bayes s Rule Example A company manufactures MP3 players at two factories. Factory I produces 60% of the MP3 players and Factory II produces 40%. Two percent of the MP3 players produced at Factory I are

More information

CS 294-2, Grouping and Recognition (Prof. Jitendra Malik) Aug 30, 1999 Lecture #3 (Maximum likelihood framework) DRAFT Notes by Joshua Levy ffl Maximu

CS 294-2, Grouping and Recognition (Prof. Jitendra Malik) Aug 30, 1999 Lecture #3 (Maximum likelihood framework) DRAFT Notes by Joshua Levy ffl Maximu CS 294-2, Grouping and Recognition (Prof. Jitendra Malik) Aug 30, 1999 Lecture #3 (Maximum likelihood framework) DRAFT Notes by Joshua Levy l Maximum likelihood framework The estimation problem Maximum

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

Stratified Sampling in Monte Carlo Simulation: Motivation, Design, and Sampling Error

Stratified Sampling in Monte Carlo Simulation: Motivation, Design, and Sampling Error South Texas Project Risk- Informed GSI- 191 Evaluation Stratified Sampling in Monte Carlo Simulation: Motivation, Design, and Sampling Error Document: STP- RIGSI191- ARAI.03 Revision: 1 Date: September

More information

Is Greedy Coordinate Descent a Terrible Algorithm?

Is Greedy Coordinate Descent a Terrible Algorithm? Is Greedy Coordinate Descent a Terrible Algorithm? Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke University of British Columbia Optimization and Big Data, 2015 Context: Random

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

Machine Learning in Computer Vision Markov Random Fields Part II

Machine Learning in Computer Vision Markov Random Fields Part II Machine Learning in Computer Vision Markov Random Fields Part II Oren Freifeld Computer Science, Ben-Gurion University March 22, 2018 Mar 22, 2018 1 / 40 1 Some MRF Computations 2 Mar 22, 2018 2 / 40 Few

More information

15 : Approximate Inference: Monte Carlo Methods

15 : Approximate Inference: Monte Carlo Methods 10-708: Probabilistic Graphical Models 10-708, Spring 2016 15 : Approximate Inference: Monte Carlo Methods Lecturer: Eric P. Xing Scribes: Binxuan Huang, Yotam Hechtlinger, Fuchen Liu 1 Introduction to

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

Dynamic Programming (DP) Massimo Paolucci University of Genova

Dynamic Programming (DP) Massimo Paolucci University of Genova Dynamic Programming (DP) Massimo Paolucci University of Genova DP cannot be applied to each kind of problem In particular, it is a solution method for problems defined over stages For each stage a subproblem

More information

The exam is closed book, closed calculator, and closed notes except your three crib sheets.

The exam is closed book, closed calculator, and closed notes except your three crib sheets. CS 188 Spring 2016 Introduction to Artificial Intelligence Final V2 You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your three crib sheets.

More information

CSE 312 Winter Learning From Data: Maximum Likelihood Estimators (MLE)

CSE 312 Winter Learning From Data: Maximum Likelihood Estimators (MLE) CSE 312 Winter 2017 Learning From Data: Maximum Likelihood Estimators (MLE) 1 Parameter Estimation Given: independent samples x1, x2,..., xn from a parametric distribution f(x θ) Goal: estimate θ. Not

More information

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems NLA p.1/13 Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems... 0 0 0 etc. a n 1,n 1 x n 1 = b n 1 a n 1,n x n solve a n,n x n = b n then back substitution: takes n

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Summer 2015 Introduction to Artificial Intelligence Midterm 2 You have approximately 80 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. Mark

More information

Random Tree Method. Monte Carlo Methods in Financial Engineering

Random Tree Method. Monte Carlo Methods in Financial Engineering Random Tree Method Monte Carlo Methods in Financial Engineering What is it for? solve full optimal stopping problem & estimate value of the American option simulate paths of underlying Markov chain produces

More information

2 all subsequent nodes. 252 all subsequent nodes. 401 all subsequent nodes. 398 all subsequent nodes. 330 all subsequent nodes

2 all subsequent nodes. 252 all subsequent nodes. 401 all subsequent nodes. 398 all subsequent nodes. 330 all subsequent nodes ¼ À ÈÌ Ê ½¾ ÈÊÇ Ä ÅË ½µ ½¾º¾¹½ ¾µ ½¾º¾¹ µ ½¾º¾¹ µ ½¾º¾¹ µ ½¾º ¹ µ ½¾º ¹ µ ½¾º ¹¾ µ ½¾º ¹ µ ½¾¹¾ ½¼µ ½¾¹ ½ (1) CLR 12.2-1 Based on the structure of the binary tree, and the procedure of Tree-Search, any

More information

Introduction to Functions Section 2.1

Introduction to Functions Section 2.1 Introduction to Functions Section 2.1 Notation Evaluation Solving Unit of measurement 1 Introductory Example: Fill the gas tank Your gas tank holds 12 gallons, but right now you re running on empty. As

More information

CS 174: Combinatorics and Discrete Probability Fall Homework 5. Due: Thursday, October 4, 2012 by 9:30am

CS 174: Combinatorics and Discrete Probability Fall Homework 5. Due: Thursday, October 4, 2012 by 9:30am CS 74: Combinatorics and Discrete Probability Fall 0 Homework 5 Due: Thursday, October 4, 0 by 9:30am Instructions: You should upload your homework solutions on bspace. You are strongly encouraged to type

More information

Lecture 1: Lucas Model and Asset Pricing

Lecture 1: Lucas Model and Asset Pricing Lecture 1: Lucas Model and Asset Pricing Economics 714, Spring 2018 1 Asset Pricing 1.1 Lucas (1978) Asset Pricing Model We assume that there are a large number of identical agents, modeled as a representative

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Dynamic programming Christos Dimitrakakis Intelligent Autonomous Systems, IvI, University of Amsterdam, The Netherlands March 18, 2008 Introduction Some examples Dynamic programming

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Tolerance Intervals for Any Data (Nonparametric)

Tolerance Intervals for Any Data (Nonparametric) Chapter 831 Tolerance Intervals for Any Data (Nonparametric) Introduction This routine calculates the sample size needed to obtain a specified coverage of a β-content tolerance interval at a stated confidence

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

A relation on 132-avoiding permutation patterns

A relation on 132-avoiding permutation patterns Discrete Mathematics and Theoretical Computer Science DMTCS vol. VOL, 205, 285 302 A relation on 32-avoiding permutation patterns Natalie Aisbett School of Mathematics and Statistics, University of Sydney,

More information

The Uniform Distribution

The Uniform Distribution The Uniform Distribution EXAMPLE 1 The previous problem is an example of the uniform probability distribution. Illustrate the uniform distribution. The data that follows are 55 smiling times, in seconds,

More information

The Normal Distribution. (Ch 4.3)

The Normal Distribution. (Ch 4.3) 5 The Normal Distribution (Ch 4.3) The Normal Distribution The normal distribution is probably the most important distribution in all of probability and statistics. Many populations have distributions

More information

Brownian Motion, the Gaussian Lévy Process

Brownian Motion, the Gaussian Lévy Process Brownian Motion, the Gaussian Lévy Process Deconstructing Brownian Motion: My construction of Brownian motion is based on an idea of Lévy s; and in order to exlain Lévy s idea, I will begin with the following

More information

CS221 / Spring 2018 / Sadigh. Lecture 9: Games I

CS221 / Spring 2018 / Sadigh. Lecture 9: Games I CS221 / Spring 2018 / Sadigh Lecture 9: Games I Course plan Search problems Markov decision processes Adversarial games Constraint satisfaction problems Bayesian networks Reflex States Variables Logic

More information

Asymptotic methods in risk management. Advances in Financial Mathematics

Asymptotic methods in risk management. Advances in Financial Mathematics Asymptotic methods in risk management Peter Tankov Based on joint work with A. Gulisashvili Advances in Financial Mathematics Paris, January 7 10, 2014 Peter Tankov (Université Paris Diderot) Asymptotic

More information

Importance Sampling. Sargur N. Srihari

Importance Sampling. Sargur N. Srihari Importance Sampling Sargur N. srihari@cedar.buffalo.edu 1 Topics in Monte Carlo Methods 1. Sampling and Monte Carlo Methods 2. Importance Sampling 3. Markov Chain Monte Carlo Methods 4. Gibbs Sampling

More information

Dynamic Portfolio Execution Detailed Proofs

Dynamic Portfolio Execution Detailed Proofs Dynamic Portfolio Execution Detailed Proofs Gerry Tsoukalas, Jiang Wang, Kay Giesecke March 16, 2014 1 Proofs Lemma 1 (Temporary Price Impact) A buy order of size x being executed against i s ask-side

More information

Lecture 9: Games I. Course plan. A simple game. Roadmap. Machine learning. Example: game 1

Lecture 9: Games I. Course plan. A simple game. Roadmap. Machine learning. Example: game 1 Lecture 9: Games I Course plan Search problems Markov decision processes Adversarial games Constraint satisfaction problems Bayesian networks Reflex States Variables Logic Low-level intelligence Machine

More information

Particle methods and the pricing of American options

Particle methods and the pricing of American options Particle methods and the pricing of American options Peng HU Oxford-Man Institute April 29, 2013 Joint works with P. Del Moral, N. Oudjane & B. Rémillard P. HU (OMI) University of Oxford 1 / 46 Outline

More information

Another Variant of 3sat. 3sat. 3sat Is NP-Complete. The Proof (concluded)

Another Variant of 3sat. 3sat. 3sat Is NP-Complete. The Proof (concluded) 3sat k-sat, where k Z +, is the special case of sat. The formula is in CNF and all clauses have exactly k literals (repetition of literals is allowed). For example, (x 1 x 2 x 3 ) (x 1 x 1 x 2 ) (x 1 x

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

1 Solutions to Tute09

1 Solutions to Tute09 s to Tute0 Questions 4. - 4. are straight forward. Q. 4.4 Show that in a binary tree of N nodes, there are N + NULL pointers. Every node has outgoing pointers. Therefore there are N pointers. Each node,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning MDP March May, 2013 MDP MDP: S, A, P, R, γ, µ State can be partially observable: Partially Observable MDPs () Actions can be temporally extended: Semi MDPs (SMDPs) and Hierarchical

More information

Levin Reduction and Parsimonious Reductions

Levin Reduction and Parsimonious Reductions Levin Reduction and Parsimonious Reductions The reduction R in Cook s theorem (p. 266) is such that Each satisfying truth assignment for circuit R(x) corresponds to an accepting computation path for M(x).

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

Notes on the EM Algorithm Michael Collins, September 24th 2005

Notes on the EM Algorithm Michael Collins, September 24th 2005 Notes on the EM Algorithm Michael Collins, September 24th 2005 1 Hidden Markov Models A hidden Markov model (N, Σ, Θ) consists of the following elements: N is a positive integer specifying the number of

More information

Q1. [?? pts] Search Traces

Q1. [?? pts] Search Traces CS 188 Spring 2010 Introduction to Artificial Intelligence Midterm Exam Solutions Q1. [?? pts] Search Traces Each of the trees (G1 through G5) was generated by searching the graph (below, left) with a

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

Computational Independence

Computational Independence Computational Independence Björn Fay mail@bfay.de December 20, 2014 Abstract We will introduce different notions of independence, especially computational independence (or more precise independence by

More information

Interpolation. 1 What is interpolation? 2 Why are we interested in this?

Interpolation. 1 What is interpolation? 2 Why are we interested in this? Interpolation 1 What is interpolation? For a certain function f (x we know only the values y 1 = f (x 1,,y n = f (x n For a point x different from x 1,,x n we would then like to approximate f ( x using

More information

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T.

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T. Practice July 3rd, 2012 Laboratory for Information and Decision Systems, M.I.T. 1 2 Infinite-Horizon DP Minimize over policies the objective cost function J π (x 0 ) = lim N E w k,k=0,1,... DP π = {µ 0,µ

More information

A Theory of Loss-leaders: Making Money by Pricing Below Cost

A Theory of Loss-leaders: Making Money by Pricing Below Cost A Theory of Loss-leaders: Making Money by Pricing Below Cost Maria-Florina Balcan Avrim Blum T-H. Hubert Chan MohammadTaghi Hajiaghayi ABSTRACT We consider the problem of assigning prices to goods of fixed

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

CS360 Homework 14 Solution

CS360 Homework 14 Solution CS360 Homework 14 Solution Markov Decision Processes 1) Invent a simple Markov decision process (MDP) with the following properties: a) it has a goal state, b) its immediate action costs are all positive,

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I January

More information

3. Continuous Probability Distributions

3. Continuous Probability Distributions 3.1 Continuous probability distributions 3. Continuous Probability Distributions K The normal probability distribution A continuous random variable X is said to have a normal distribution if it has a probability

More information

Unobserved Heterogeneity Revisited

Unobserved Heterogeneity Revisited Unobserved Heterogeneity Revisited Robert A. Miller Dynamic Discrete Choice March 2018 Miller (Dynamic Discrete Choice) cemmap 7 March 2018 1 / 24 Distributional Assumptions about the Unobserved Variables

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Definition Let X be a discrete

More information

MATH 142 Business Mathematics II

MATH 142 Business Mathematics II MATH 142 Business Mathematics II Summer, 2016, WEEK 2 JoungDong Kim Week 2: 4.1, 4.2, 4.3, 4.4, 4.5 Chapter 4 Rules for the Derivative Section 4.1 Derivatives of Powers, Exponents, and Sums Differentiation

More information

Lecture 2. (1) Permanent Income Hypothesis. (2) Precautionary Savings. Erick Sager. September 21, 2015

Lecture 2. (1) Permanent Income Hypothesis. (2) Precautionary Savings. Erick Sager. September 21, 2015 Lecture 2 (1) Permanent Income Hypothesis (2) Precautionary Savings Erick Sager September 21, 2015 Econ 605: Adv. Topics in Macroeconomics Johns Hopkins University, Fall 2015 Erick Sager Lecture 2 (9/21/15)

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February

More information

Blockchain Economics

Blockchain Economics Blockchain Economics Joseph Abadi & Markus Brunnermeier (Preliminary and not for distribution) March 9, 2018 Abadi & Brunnermeier Blockchain Economics March 9, 2018 1 / 35 Motivation Ledgers are written

More information

CS188 Spring 2012 Section 4: Games

CS188 Spring 2012 Section 4: Games CS188 Spring 2012 Section 4: Games 1 Minimax Search In this problem, we will explore adversarial search. Consider the zero-sum game tree shown below. Trapezoids that point up, such as at the root, represent

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

6. Genetics examples: Hardy-Weinberg Equilibrium

6. Genetics examples: Hardy-Weinberg Equilibrium PBCB 206 (Fall 2006) Instructor: Fei Zou email: fzou@bios.unc.edu office: 3107D McGavran-Greenberg Hall Lecture 4 Topics for Lecture 4 1. Parametric models and estimating parameters from data 2. Method

More information

Lecture Note Set 3 3 N-PERSON GAMES. IE675 Game Theory. Wayne F. Bialas 1 Monday, March 10, N-Person Games in Strategic Form

Lecture Note Set 3 3 N-PERSON GAMES. IE675 Game Theory. Wayne F. Bialas 1 Monday, March 10, N-Person Games in Strategic Form IE675 Game Theory Lecture Note Set 3 Wayne F. Bialas 1 Monday, March 10, 003 3 N-PERSON GAMES 3.1 N-Person Games in Strategic Form 3.1.1 Basic ideas We can extend many of the results of the previous chapter

More information

Ch 5. Several Numerical Methods

Ch 5. Several Numerical Methods Ch 5 Several Numerical Methods I Monte Carlo Simulation for Multiple Variables II Confidence Interval and Variance Reduction III Solving Systems of Linear Equations IV Finite Difference Method ( 有限差分法

More information

The stochastic discount factor and the CAPM

The stochastic discount factor and the CAPM The stochastic discount factor and the CAPM Pierre Chaigneau pierre.chaigneau@hec.ca November 8, 2011 Can we price all assets by appropriately discounting their future cash flows? What determines the risk

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analysis of Variance and Design of Experiments-II MODULE I LECTURE - 8 INCOMPLETE BLOCK DESIGNS Dr Shalabh Department of Mathematics & Statistics Indian Institute of Technology Kanpur Generally, we are

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Top-down particle filtering for Bayesian decision trees

Top-down particle filtering for Bayesian decision trees Top-down particle filtering for Bayesian decision trees Balaji Lakshminarayanan 1, Daniel M. Roy 2 and Yee Whye Teh 3 1. Gatsby Unit, UCL, 2. University of Cambridge and 3. University of Oxford Outline

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Financial Economics 4: Portfolio Theory

Financial Economics 4: Portfolio Theory Financial Economics 4: Portfolio Theory Stefano Lovo HEC, Paris What is a portfolio? Definition A portfolio is an amount of money invested in a number of financial assets. Example Portfolio A is worth

More information

QUANTITATIVE FINANCE RESEARCH CENTRE

QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 288 March 2011 The Evaluation of Multiple Year Gas Sales Agreement with Regime

More information

COS 513: Gibbs Sampling

COS 513: Gibbs Sampling COS 513: Gibbs Sampling Matthew Salesi December 6, 2010 1 Overview Concluding the coverage of Markov chain Monte Carlo (MCMC) sampling methods, we look today at Gibbs sampling. Gibbs sampling is a simple

More information

Modelling, Estimation and Hedging of Longevity Risk

Modelling, Estimation and Hedging of Longevity Risk IA BE Summer School 2016, K. Antonio, UvA 1 / 50 Modelling, Estimation and Hedging of Longevity Risk Katrien Antonio KU Leuven and University of Amsterdam IA BE Summer School 2016, Leuven Module II: Fitting

More information

Optimal Stopping for American Type Options

Optimal Stopping for American Type Options Optimal Stopping for Department of Mathematics Stockholm University Sweden E-mail: silvestrov@math.su.se ISI 2011, Dublin, 21-26 August 2011 Outline of communication Multivariate Modulated Markov price

More information

A Markovian Futures Market for Computing Power

A Markovian Futures Market for Computing Power Fernando Martinez Peter Harrison Uli Harder A distributed economic solution: MaGoG A world peer-to-peer market No central auctioneer Messages are forwarded by neighbours, and a copy remains in their pubs

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information