Lecture 22: Dynamic Filtering

Size: px
Start display at page:

Download "Lecture 22: Dynamic Filtering"

Transcription

1 ECE 830 Fall 2011 Statistical Signal Processing instructor: R. Nowak Lecture 22: Dynamic Filtering 1 Dynamic Filtering In many applications we want to track a time-varying (dynamic) phenomenon. Example 1 Tracking temperature or humidity in a museum room with an inaccurate device. Key: Temperature changes slowly with time so we should be able to average across time to obtain better estimates. How to do this? Model dynamics of temperature changes and noise/uncertainties in measurement. 2 Dynamical State Equation (Prior) Let x 1, x 2,... denotes quantity ( state ) of interest. The state is changing over time and we will model this variation stochastically as follows. The state at time n depends causally on the past. Let p(x n x n 1, x n 2,..., x 1 ) denote the conditional distribution of the state at time n given all the past states. This distribution is a n-variate function, and as n grows it becomes more and more complex (to specifiy, to compute, etc). A reasonable simplifying assumption is to assume that the probability distribution of the state at time n depends only on value of the state at time n 1, a so-called Markovian assumption, p(x n x n 1,..., x 1 ) = p(x n x n 1 ). Note that p(x n x n 1 ) is bivariate and therefore much simpler than the general causal model. To define the state process we must to specify (a) p(x 1 ), the initial state distribution (b) p(x n x n 1 ), n = 2, 3,..., the state transition probability density functions This is illustrated in the following example. Example 2 Santa Tracker On December 25th legend has it that Santa Claus makes his way around the globe, delivering toys to all the good girls and boys. Tracking Santa s delivery trip has attracted considerable 1

2 Lecture 22: Dynamic Filtering 2 interest by the signal processing research community in recent years, see Here is a simple approach to the problem. x(t) = Santa s position at time t on Christmas Eve x(t) t = v(t), velocity We can sample Santa s position once every second, producing a sequence of position values x 1, x 2,.... His velocity is also represented by a discrete-time process v 1, v 2,... We use the following model for Santa s dynamics: [ ] xn+1 v n+1 = [ ] [ xn v n ] + [ 0 σ 2 ] u n, u n N (0, 1), small Also, Santa s initial position is the North Pole, denoted by x 0. So we take p(x 1 ) = δ(x 1 x 0 ). In words, Santa s position at time x n+1 is equal to his position at time n plus a small step proportional to his velocity. His velocity is modeled as a Gaussian white noise process, representing the fact that he randomly speeds up and slows down as he makes his stops around the world. 3 Observation Model (Likelihood) Usually we cannot observe x n directly. Instead we observe z 1, z 2,..., which are noisy and/or indirect measurements related to the states. Example 3 Here are a few examples of observation processes. z n = x n + w n, w n N (0, σ 2 ), simple signal+noise model z n = Ax n + w n, where A is a matrix representing, for example, a blur z n = f(x n ) + w n, f is a non-linear function Let p(z n x n ) denote the likelihood of x n based on observation z n. We can combine the likelihoods and the priors p(x n x n 1 ) to compute the posterior distribution of x = (x 1,..., x n ) given z = (z 1,..., z n ) p(x z) p(z x)p(x) = n p(z i x i )p(x i x i 1 ). The posterior can be computed efficiently in an incremental fasion by exploiting Markovian structure of state transitions (prior). This incremental procedure is called Density Propagation. 4 Density Propagation Density Propagation is an incremental procedure for efficiently computing p(x n z 1,..., z n ). First let s establish some notation. i=1 Prior: S n (x n x n 1 ) := p(x n x n 1 ), P 1 (x 1 ) = p(x 1 ) Likelihood: L n (z n x n ) := p(z n x n ) Posterior: F n (x n ) := p(x n z 1,..., z n )

3 Lecture 22: Dynamic Filtering 3 Prediction: P n (x n ) := p(x n z 1,..., z n 1 ) P n (x n ) is the prediction of the value of x n using only observations up to time n 1, and this will play a key role in the Density Propagation algorithm. 4.1 Density Propogation Algorithm n = 1: predict x 1 : observe z 1 and x 1 p 1 (x 1 ) F 1 (x 1 ) = p(x 1 z 1 ) = p(z 1 x 1 )p(x 1 ) L 1 (z 1 x 1 )p 1 (x 1 ) n = 2: predict x 2 : p(x 1, x 2 z 1 ) = p(x 1, x 2, z 1 ) = p(x 2 x 1, z 1 )p(x 1 z 1 ) = p(x 2 x 1 )F 1 (x 1 ) = S 2 (x 2 x 1 )F 1 (x 1 ) p(x 2 z 1 ) = S 2 (x 2 x 1 )F 1 (x 1 )dx =: P 2 (x 2 ) observe z 2 and at time step n: predict x n : F 2 (x 2 ) = p(x 2 z 1, z 2 ) = p(x 2, z 1, z 2 ) p(z 1, z 2 ) = p(z 2 x 2 )p(x 2 z 1 ) p(z 1, z 2 ) L 2 (z 2 x 2 )P 2 (x 2 ) P n (x n ) = p(x n z 1,..., z n 1 ) = S n (x n x n 1 )F n 1 (x n 1 )dx n 1 observe z n and F n (x n ) = p(x n z 1,..., z n ) L n (z n x n )P n (x n )

4 Lecture 22: Dynamic Filtering Block Diagram Figure 1: Block diagram of dynamic filtering Filtering F n (x n ) = L n (z n x n )P n (x n ) Figure 2: The filtering or focus portion of the dynamical filtering block diagram Prediction P n+1 (x n+1 ) = S n (x n+1 x n )F n (x n )dx n

5 Lecture 22: Dynamic Filtering 5 Figure 3: The prediction or diffusion portion of the dynamical filtering block diagram. 5 Estimating x n We have many possibilities. Given, F n (x n ) = p(x n z 1,..., z n ) We can minimize various risk functions based on a loss and the posterior distribution F n. l 2 : x n = arg min E Fn [(x n x) 2 ] ex = x n F n (x n )dx n l 1 : l 0/1 : x n = arg min E Fn [ x n x ] ex x n = arg max x F n(x n )

CSC 411: Lecture 08: Generative Models for Classification

CSC 411: Lecture 08: Generative Models for Classification CSC 411: Lecture 08: Generative Models for Classification Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 08-Generative Models 1 / 23 Today Classification

More information

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 NTNU Page 1 of 5 Institutt for fysikk Contact during the exam: Professor Ingve Simonsen Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 Allowed help: Alternativ D All written material This

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February

More information

Introduction to Sequential Monte Carlo Methods

Introduction to Sequential Monte Carlo Methods Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data Group Prof. Daniel Cremers 7. Sequential Data Bayes Filter (Rep.) We can describe the overall process using a Dynamic Bayes Network: This incorporates the following Markov assumptions: (measurement) (state)!2

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 Fall 2011 Lecture 8 Part 2 (Fall 2011) Probability Distributions Lecture 8 Part 2 1 / 23 Normal Density Function f

More information

Stochastic Optimal Control

Stochastic Optimal Control Stochastic Optimal Control Lecturer: Eilyan Bitar, Cornell ECE Scribe: Kevin Kircher, Cornell MAE These notes summarize some of the material from ECE 5555 (Stochastic Systems) at Cornell in the fall of

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I January

More information

Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14 Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions Liuren Wu, Baruch College Joint work with Peter Carr, New York University The American Finance Association meetings January 7,

More information

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va Chapter 3 - Lecture 3 Expected Values of Discrete Random Variables October 5th, 2009 Properties of expected value Standard deviation Shortcut formula Properties of the variance Properties of expected value

More information

Model Estimation. Liuren Wu. Fall, Zicklin School of Business, Baruch College. Liuren Wu Model Estimation Option Pricing, Fall, / 16

Model Estimation. Liuren Wu. Fall, Zicklin School of Business, Baruch College. Liuren Wu Model Estimation Option Pricing, Fall, / 16 Model Estimation Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 Liuren Wu Model Estimation Option Pricing, Fall, 2007 1 / 16 Outline 1 Statistical dynamics 2 Risk-neutral dynamics 3 Joint

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Consider

More information

LINEAR DYNAMICAL SYSTEMS: A MACHINE LEARNING FRAMEWORK FOR FINANCIAL TIME SERIES ANALYSIS

LINEAR DYNAMICAL SYSTEMS: A MACHINE LEARNING FRAMEWORK FOR FINANCIAL TIME SERIES ANALYSIS where R f(x)dx =. LINEAR DYNAMICAL SYSTEMS: A MACHINE LEARNING FRAMEWORK FOR FINANCIAL TIME SERIES ANALYSIS KEMBEY GBARAYOR JR Advisor: Professor Amy Greenwald Department of Computer Science, Brown University,

More information

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Liuren Wu, Baruch College Joint work with Peter Carr and Xavier Gabaix at New York University Board of

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem.

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Robert M. Gower. October 3, 07 Introduction This is an exercise in proving the convergence

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 implied Lecture Quantitative Finance Spring Term 2015 : May 7, 2015 1 / 28 implied 1 implied 2 / 28 Motivation and setup implied the goal of this chapter is to treat the implied which requires an algorithm

More information

I. Time Series and Stochastic Processes

I. Time Series and Stochastic Processes I. Time Series and Stochastic Processes Purpose of this Module Introduce time series analysis as a method for understanding real-world dynamic phenomena Define different types of time series Explain the

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

IE652 - Chapter 6. Stochastic Inventory Models

IE652 - Chapter 6. Stochastic Inventory Models IE652 - Chapter 6 Stochastic Inventory Models Single Period Stochastic Model (News-boy Model) The problem relates to seasonal goods A typical example is a newsboy who buys news papers from a news paper

More information

( ) 4 ( )! x f) h(x) = 2cos x + 1

( ) 4 ( )! x f) h(x) = 2cos x + 1 Chapter Prerequisite Skills BLM -.. Identifying Types of Functions. Identify the type of function (polynomial, rational, logarithmic, etc.) represented by each of the following. Justify your response.

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. 12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of Variance

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 1 Introduction January 16, 2018 M. Wiktorsson

More information

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19)

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 31 : Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods: 7.5 Maximum Likelihood

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Machine Learning in Computer Vision Markov Random Fields Part II

Machine Learning in Computer Vision Markov Random Fields Part II Machine Learning in Computer Vision Markov Random Fields Part II Oren Freifeld Computer Science, Ben-Gurion University March 22, 2018 Mar 22, 2018 1 / 40 1 Some MRF Computations 2 Mar 22, 2018 2 / 40 Few

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

Multi-period Portfolio Choice and Bayesian Dynamic Models

Multi-period Portfolio Choice and Bayesian Dynamic Models Multi-period Portfolio Choice and Bayesian Dynamic Models Petter Kolm and Gordon Ritter Courant Institute, NYU Paper appeared in Risk Magazine, Feb. 25 (2015) issue Working paper version: papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768

More information

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T.

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T. Practice July 3rd, 2012 Laboratory for Information and Decision Systems, M.I.T. 1 2 Infinite-Horizon DP Minimize over policies the objective cost function J π (x 0 ) = lim N E w k,k=0,1,... DP π = {µ 0,µ

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

Lecture 3: Review of Probability, MATLAB, Histograms

Lecture 3: Review of Probability, MATLAB, Histograms CS 4980/6980: Introduction to Data Science c Spring 2018 Lecture 3: Review of Probability, MATLAB, Histograms Instructor: Daniel L. Pimentel-Alarcón Scribed and Ken Varghese This is preliminary work and

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions Topic 6 - Continuous Distributions I Discrete RVs Recall the discrete distributions STAT 511 Professor Bruce Craig Binomial - X= number of successes (x =, 1,...,n) Geometric - X= number of trials (x =,...)

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

M.Sc. ACTUARIAL SCIENCE. Term-End Examination

M.Sc. ACTUARIAL SCIENCE. Term-End Examination No. of Printed Pages : 15 LMJA-010 (F2F) M.Sc. ACTUARIAL SCIENCE Term-End Examination O CD December, 2011 MIA-010 (F2F) : STATISTICAL METHOD Time : 3 hours Maximum Marks : 100 SECTION - A Attempt any five

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Discrete Random Variables and Probability Distributions

Discrete Random Variables and Probability Distributions Chapter 4 Discrete Random Variables and Probability Distributions 4.1 Random Variables A quantity resulting from an experiment that, by chance, can assume different values. A random variable is a variable

More information

CSE 312 Winter Learning From Data: Maximum Likelihood Estimators (MLE)

CSE 312 Winter Learning From Data: Maximum Likelihood Estimators (MLE) CSE 312 Winter 2017 Learning From Data: Maximum Likelihood Estimators (MLE) 1 Parameter Estimation Given: independent samples x1, x2,..., xn from a parametric distribution f(x θ) Goal: estimate θ. Not

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee CS 3331 Numerical Methods Lecture 2: Functions of One Variable Cherung Lee Outline Introduction Solving nonlinear equations: find x such that f(x ) = 0. Binary search methods: (Bisection, regula falsi)

More information

Page 1 of 5 Spectral Analysis of EUR/USD Currency Rate Fluctuation Based on Maximum Entropy Method. Present work continues the cycle of articles dedicated to the new Adaptive Trend & Cycles Following Method,

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10.

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10. e-pg Pathshala Subject : Computer Science Paper: Machine Learning Module: Decision Theory and Bayesian Decision Theory Module No: CS/ML/0 Quadrant I e-text Welcome to the e-pg Pathshala Lecture Series

More information

15 : Approximate Inference: Monte Carlo Methods

15 : Approximate Inference: Monte Carlo Methods 10-708: Probabilistic Graphical Models 10-708, Spring 2016 15 : Approximate Inference: Monte Carlo Methods Lecturer: Eric P. Xing Scribes: Binxuan Huang, Yotam Hechtlinger, Fuchen Liu 1 Introduction to

More information

RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK. JEL Codes: C51, C61, C63, and G13

RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK. JEL Codes: C51, C61, C63, and G13 RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK JEL Codes: C51, C61, C63, and G13 Dr. Ramaprasad Bhar School of Banking and Finance The University of New South Wales Sydney 2052, AUSTRALIA Fax. +61 2

More information

Making Complex Decisions

Making Complex Decisions Ch. 17 p.1/29 Making Complex Decisions Chapter 17 Ch. 17 p.2/29 Outline Sequential decision problems Value iteration algorithm Policy iteration algorithm Ch. 17 p.3/29 A simple environment 3 +1 p=0.8 2

More information

TEACHING NOTE 98-01: CLOSED-FORM AMERICAN CALL OPTION PRICING: ROLL-GESKE-WHALEY

TEACHING NOTE 98-01: CLOSED-FORM AMERICAN CALL OPTION PRICING: ROLL-GESKE-WHALEY TEACHING NOTE 98-01: CLOSED-FORM AMERICAN CALL OPTION PRICING: ROLL-GESKE-WHALEY Version date: May 16, 2001 C:\Class Material\Teaching Notes\Tn98-01.wpd It is well-known that an American call option on

More information

Course information FN3142 Quantitative finance

Course information FN3142 Quantitative finance Course information 015 16 FN314 Quantitative finance This course is aimed at students interested in obtaining a thorough grounding in market finance and related empirical methods. Prerequisite If taken

More information

Worksheet A ALGEBRA PMT

Worksheet A ALGEBRA PMT Worksheet A 1 Find the quotient obtained in dividing a (x 3 + 2x 2 x 2) by (x + 1) b (x 3 + 2x 2 9x + 2) by (x 2) c (20 + x + 3x 2 + x 3 ) by (x + 4) d (2x 3 x 2 4x + 3) by (x 1) e (6x 3 19x 2 73x + 90)

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Slides for DN2281, KTH 1

Slides for DN2281, KTH 1 Slides for DN2281, KTH 1 January 28, 2014 1 Based on the lecture notes Stochastic and Partial Differential Equations with Adapted Numerics, by J. Carlsson, K.-S. Moon, A. Szepessy, R. Tempone, G. Zouraris.

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

Lectures on Trading with Information Competitive Noisy Rational Expectations Equilibrium (Grossman and Stiglitz AER (1980))

Lectures on Trading with Information Competitive Noisy Rational Expectations Equilibrium (Grossman and Stiglitz AER (1980)) Lectures on Trading with Information Competitive Noisy Rational Expectations Equilibrium (Grossman and Stiglitz AER (980)) Assumptions (A) Two Assets: Trading in the asset market involves a risky asset

More information

STOR Lecture 15. Jointly distributed Random Variables - III

STOR Lecture 15. Jointly distributed Random Variables - III STOR 435.001 Lecture 15 Jointly distributed Random Variables - III Jan Hannig UNC Chapel Hill 1 / 17 Before we dive in Contents of this lecture 1. Conditional pmf/pdf: definition and simple properties.

More information

Partial Differential Equations of Fluid Dynamics

Partial Differential Equations of Fluid Dynamics Partial Differential Equations of Fluid Dynamics Ville Vuorinen,D.Sc.(Tech.) 1 1 Department of Energy Technology, Internal Combustion Engine Research Group Department of Energy Technology Outline Introduction

More information

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems NLA p.1/13 Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems... 0 0 0 etc. a n 1,n 1 x n 1 = b n 1 a n 1,n x n solve a n,n x n = b n then back substitution: takes n

More information

The Bernoulli distribution

The Bernoulli distribution This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography

Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography Aku Seppänen Inverse Problems Group Department of Applied Physics University of Eastern Finland

More information

STATISTICS and PROBABILITY

STATISTICS and PROBABILITY Introduction to Statistics Atatürk University STATISTICS and PROBABILITY LECTURE: PROBABILITY DISTRIBUTIONS Prof. Dr. İrfan KAYMAZ Atatürk University Engineering Faculty Department of Mechanical Engineering

More information

IEOR E4004: Introduction to OR: Deterministic Models

IEOR E4004: Introduction to OR: Deterministic Models IEOR E4004: Introduction to OR: Deterministic Models 1 Dynamic Programming Following is a summary of the problems we discussed in class. (We do not include the discussion on the container problem or the

More information

Random Variables and Probability Functions

Random Variables and Probability Functions University of Central Arkansas Random Variables and Probability Functions Directory Table of Contents. Begin Article. Stephen R. Addison Copyright c 001 saddison@mailaps.org Last Revision Date: February

More information

Modeling via Stochastic Processes in Finance

Modeling via Stochastic Processes in Finance Modeling via Stochastic Processes in Finance Dimbinirina Ramarimbahoaka Department of Mathematics and Statistics University of Calgary AMAT 621 - Fall 2012 October 15, 2012 Question: What are appropriate

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

Estimation of dynamic term structure models

Estimation of dynamic term structure models Estimation of dynamic term structure models Greg Duffee Haas School of Business, UC-Berkeley Joint with Richard Stanton, Haas School Presentation at IMA Workshop, May 2004 (full paper at http://faculty.haas.berkeley.edu/duffee)

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Information, Interest Rates and Geometry

Information, Interest Rates and Geometry Information, Interest Rates and Geometry Dorje C. Brody Department of Mathematics, Imperial College London, London SW7 2AZ www.imperial.ac.uk/people/d.brody (Based on work in collaboration with Lane Hughston

More information

Continuous Processes. Brownian motion Stochastic calculus Ito calculus

Continuous Processes. Brownian motion Stochastic calculus Ito calculus Continuous Processes Brownian motion Stochastic calculus Ito calculus Continuous Processes The binomial models are the building block for our realistic models. Three small-scale principles in continuous

More information

Dynamic Portfolio Execution Detailed Proofs

Dynamic Portfolio Execution Detailed Proofs Dynamic Portfolio Execution Detailed Proofs Gerry Tsoukalas, Jiang Wang, Kay Giesecke March 16, 2014 1 Proofs Lemma 1 (Temporary Price Impact) A buy order of size x being executed against i s ask-side

More information

Financial Risk: Credit Risk, Lecture 2

Financial Risk: Credit Risk, Lecture 2 Financial Risk: Credit Risk, Lecture 2 Alexander Herbertsson Centre For Finance/Department of Economics School of Business, Economics and Law, University of Gothenburg E-mail: Alexander.Herbertsson@economics.gu.se

More information

The Correlation Smile Recovery

The Correlation Smile Recovery Fortis Bank Equity & Credit Derivatives Quantitative Research The Correlation Smile Recovery E. Vandenbrande, A. Vandendorpe, Y. Nesterov, P. Van Dooren draft version : March 2, 2009 1 Introduction Pricing

More information

What was in the last lecture?

What was in the last lecture? What was in the last lecture? Normal distribution A continuous rv with bell-shaped density curve The pdf is given by f(x) = 1 2πσ e (x µ)2 2σ 2, < x < If X N(µ, σ 2 ), E(X) = µ and V (X) = σ 2 Standard

More information

Rowan University Department of Electrical and Computer Engineering

Rowan University Department of Electrical and Computer Engineering Rowan University Department of Electrical and Computer Engineering Estimation and Detection Theory Fall 203 Practice EXAM Solution This is a closed book exam. One letter-size sheet is allowed. There are

More information

Analysis of the Bitcoin Exchange Using Particle MCMC Methods

Analysis of the Bitcoin Exchange Using Particle MCMC Methods Analysis of the Bitcoin Exchange Using Particle MCMC Methods by Michael Johnson M.Sc., University of British Columbia, 2013 B.Sc., University of Winnipeg, 2011 Project Submitted in Partial Fulfillment

More information

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Simerjot Kaur (sk3391) Stanford University Abstract This work presents a novel algorithmic trading system based on reinforcement

More information

Math 1314 Week 6 Session Notes

Math 1314 Week 6 Session Notes Math 1314 Week 6 Session Notes A few remaining examples from Lesson 7: 0.15 Example 17: The model Nt ( ) = 34.4(1 +.315 t) gives the number of people in the US who are between the ages of 45 and 55. Note,

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

Math Week in Review #10. Experiments with two outcomes ( success and failure ) are called Bernoulli or binomial trials.

Math Week in Review #10. Experiments with two outcomes ( success and failure ) are called Bernoulli or binomial trials. Math 141 Spring 2006 c Heather Ramsey Page 1 Section 8.4 - Binomial Distribution Math 141 - Week in Review #10 Experiments with two outcomes ( success and failure ) are called Bernoulli or binomial trials.

More information

Modeling Credit Exposure for Collateralized Counterparties

Modeling Credit Exposure for Collateralized Counterparties Modeling Credit Exposure for Collateralized Counterparties Michael Pykhtin Credit Analytics & Methodology Bank of America Fields Institute Quantitative Finance Seminar Toronto; February 25, 2009 Disclaimer

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

On the calibration of the Schwartz two-factor model to WTI crude oil options and the extended Kalman Filter

On the calibration of the Schwartz two-factor model to WTI crude oil options and the extended Kalman Filter https://doi.org/10.1007/s10479-018-2770-x S.I.: APPLICATION OF O. R. TO FINANCIAL MARKETS On the calibration of the Schwartz two-factor model to WTI crude oil options and the extended Kalman Filter Christian-Oliver

More information