Honors Statistics. 3. Review OTL C6#3. 4. Normal Curve Quiz. Chapter 6 Section 2 Day s Notes.notebook. May 02, 2016.

Size: px
Start display at page:

Download "Honors Statistics. 3. Review OTL C6#3. 4. Normal Curve Quiz. Chapter 6 Section 2 Day s Notes.notebook. May 02, 2016."

Transcription

1 Honors Statistics Aug 23-8:26 PM 3. Review OTL C6#3 4. Normal Curve Quiz Aug 23-8:31 PM 1

2 May 1-9:09 PM Apr 28-10:29 AM 2

3 27, 28, 29, 30 Nov 21-8:16 PM Working out Choose a person aged 19 to 25 years at random and ask, In the past seven days, how many times did you go to an exercise or fitness center or work out? Call the responsey for short. Based on a large sample survey, here is a probability model for the answer you will get: 8 (a) Show that this is a legitimate probability distribution = 1 (b) Make a histogram of the probability distribution. Describe what you see. frequency (c) Describe the event Y < 7 in words. What is P(Y < 7)? Number of workout days What is the probability that a randomly selected persons aged 19 to 25 went to the gym less than seven days this week? P(Y < 7) = 1 - P(Y = 7) = = 0.98 (d) Express the event worked out at least once in terms of Y. What is the probability of this event? P(Y 1) = 1 - P(Y = 0) = = 0.32 Nov 29-10:57 AM 3

4 Working out Refer to Exercise 6. Consider the events A = works out at least once and B = works out less than 5 times per week. (a) What outcomes make up the event A? What is P(A)? outcomes = 1,2,3,4,5,6,7 P(Y 1) = 1 - P(Y = 0) = = 0.32 (b) What outcomes make up the event B? What is P(B)? outcomes = 0,1,2,3,4 P(Y < 5) = = 0.93 (c) What outcomes make up the event A and B? What isp(a and B)? Why is this probability not equal to P(A) P(B)? P(A and B) = = 0.25 The events working out at least once and working out less than 5 times per week are not INDEPENDENT events. So Multiplication cannot be used to determine the probability of P(A and B) Nov 29-11:00 AM Keno Keno is a favorite game in casinos, and similar games are popular with the states that operate lotteries. Balls numbered 1 to 80 are tumbled in a machine as the bets are placed, then 20 of the balls are chosen at random. Players select numbers by marking a card. The simplest of the many wagers available is Mark 1 Number. Your payoff is $3 on a $1 bet if the number you select is one of those chosen. Because 20 of 80 numbers are chosen, your probability of winning is 20/80, or Let X= the net amount you gain on a single play of the game. OR Based on what you "get" back OR µ x = -1(0.75) + 2(0.25) = Nov 29-11:02 AM 4

5 Size of American households In government data, a household consists of all occupants of a dwelling unit, while a family consists of two or more persons who live together and are related by blood or marriage. So all families form households, but some households are not families. Here are the distributions of household size and family size in the United States: Legitimate Distributions... Let X = the number of people in a randomly selected U.S. household and Y = the number of people in a randomly chosen U.S. family. (a) Make histograms suitable for comparing the probability distributions of X and Y. Describe any differences that you observe. Dec 5-5:48 PM ` > (b) Find the mean for each random variable. Explain why this difference makes sense. µ x = 1(0.25) + 2(0.32) + 3(0.17) + 4(0.15) + 5(0.07) + 6(0.03) + 7(0.01) = 2.6 The expected number of people in a randomly selected household is 2.6 people. If many, many random households were selected, they would on average have 2.6 people. µ y = 1(0.0) + 2(0.42) + 3(0.23) + 4(0.21) + 5(0.09) + 6(0.03) + 7(0.02) = 3.14 The expected number of people in a randomly selected family is 3.14 people. If many, many random families were selected, they would on average have 3.14 people. > (c) Find and interpret the standard deviations of both Xand Y. Nov 21-10:40 PM 5

6 > (c) Find and interpret the standard deviations of both X and Y. σ 2 x = (1-2.6) 2 (0.25) + (2-2.6) 2 (0.32) + (3-2.6) 2 (0.17) + (4-2.6) 2 (0.15) + (5-2.6) 2 (0.07) + (6-2.6) 2 (0.03) (7-2.6) 2 (0.01) = 2.02 σ x = 2.02 = The standard deviation of X is σ x = A the number of people in a randomly selected household will typically differ from the mean (2.6) by about people. σ 2 y = (1-3.14) 2 (0.0) + (2-3.14) 2 (0.42) + (3-3.14) 2 (0.23) + (4-3.14) 2 (0.21) + (5-3.14) 2 (0.09) + (6-3.14) 2 (0.03) (7-3.14) 2 (0.02) = σ x = = The standard deviation of X is σ y = A the number of people in a randomly selected family will typically differ from the mean (3.14) by about people. Dec 4-7:00 AM THIS IS ON THE CLASS WORKSHEET! Random numbers Let Y be a number between 0 and 1 produced by a random number generator. Assuming that the random variable Y has a uniform distribution, find the following probabilities: HOMEWORK PROBLEM #22 Random numbers a) P(Y 0.4) = (0.4)(1) = 0.40 b) P(Y < 0.4) = (0.4)(1) = 0.40 c) P(0.1 < Y 0.15 or 0.77 Y < 0.88) = (0.05)(1) + (0.11)(1) = 0.16 d) What important fact about continuous random variables does comparing your answer to a and b illustrate? The area of a line segment (Y = 0.4) is equal to zero Nov 29-11:16 AM 6

7 the University of Illinois found that their times for the mile run This interprets (in the context of this problem)... The probability of randomly choosing a random student who can run the mile in less than 6 minutes is approximately 6.68% or 6.7 out of 100. Nov 29-11:19 AM Professional tennis player Rafael Nadal hits the ball extremely hard. His This interprets (in the context of this problem)... The probability of randomly choosing one of Nadal's first serves that is faster than 120 mph is approximately 20.33% or 20 out of 100. Nov 29-11:21 AM 7

8 This interprets (in the context of this problem)... The probability of randomly choosing one of Nadal's first serves that is slower than mph is approximately 15% or 15 out of 100. Dec 1-9:51 PM follows a Normal distribution with mean 266 days and standard This interprets (in the context of this problem)... The probability of randomly choosing one pregnant lady that carries her baby at least 240 days is approximately 94.84% or 95 out of 100 pregnant women. Dec 4-7:12 AM 8

9 This interprets (in the context of this problem)... The probability of randomly choosing one pregnant lady that carries her baby at least days is approximately 20% or 20 out of 100 pregnant women. Dec 4-7:12 AM trucks) they own. Here is the probability model if we ignore the few households that own = 0(0.09) + 1(0.36) + 2(0.35) + 3(0.13) + 4(0.05) + 5(0.02) = 1.75 Dec 4-7:12 AM 9

10 random, which of the following would be the best interpretation of the value Dec 4-7:12 AM About what percentage of households have a number of cars within 2 Dec 4-11:45 AM 10

11 ace. Otherwise, you lose $1. If you make this wager very many times, what will be the Dec 4-11:45 AM Nov 27-10:28 PM 11

12 Nov 27-9:53 PM Nov 30-7:23 PM 12

13 Nov 30-7:23 PM Nov 30-7:23 PM 13

14 Nov 30-7:23 PM Nov 30-7:24 PM 14

15 May 11-9:19 AM Nov 30-7:22 PM 15

16 Nov 30-7:37 PM May 11-9:20 AM 16

17 Can you see why this is called a linear transformation? The equation describing the sequence of transformations has the form Y = a + bx, which you should recognize as a linear equation. Nov 30-7:39 PM Nov 28-11:07 PM 17

18 Dec 5-6:53 PM May 2-8:18 AM 18

19 new σ = old σ * b σ σ new σ = old σ σ σ σ σ σ 2 a+bx =b 2 * σ2 Dec 5-7:04 PM Dec 5-7:16 PM 19

20 Dec 5-7:16 PM 20 4 x i 4 2x i - 10 x i x i Dec 5-7:16 PM 20

21 Dec 5-7:16 PM Dec 5-7:16 PM 21

22 A large auto dealership keeps track of sales made during each hour of the day. Let X = the number of cars sold during the first hour of business on a randomly selected Friday. Based on previous records, the probability distribution of X is as follows: The random variable X has mean µ X = 1.1 and standard deviation σ X = Suppose the dealership s manager receives a $500 bonus from the company for each car sold. Let Y = the bonus received from car sales during the first hour on a randomly selected Friday. Find the mean and standard deviation of Y. 2. To encourage customers to buy cars on Friday mornings, the manager spends $75 to provide coffee and doughnuts. The manager s net profit T on a randomly selected Friday is the bonus earned minus this $75. Find the mean and standard deviation of T. Nov 30-7:28 PM Normal Curve (Continuous Random Variable) practice Scaling a Test In a large introductory statistics class, the distribution of raw scores on a test X follows a Normal Distribution with a mean of 17.2 and a standard deviation of 3.8. The professor decides to scale the scores by multiplying the raw scores by 4 and adding 10. a) Define the variable Y to be the scaled score of a randomly selected student from this class. Find the mean and the standard deviation of Y. b) What is the probability that a randomly selected student has a scaled test score of at least 90? Nov 30-8:11 PM 22

23 Dec 1-2:08 PM Sep 26-6:57 PM 23

24 Sep 26-6:58 PM Honors Statistics POP Quiz Chapter 6 Section 2 Nov 1-1:41 PM 24

25 A-Skip 35, 39, 40 Nov 21-8:16 PM Crickets The length in inches of a cricket chosen at random from a field is a random variable X with mean 1.2 inches and standard deviation 0.25 inches. Find the mean and standard deviation of the length Y of a randomly chosen cricket from the field in centimeters. There are 2.54 centimeters in an inch. Formula Centimeters = 2.54(inches) Given the following... µ x = 1.2 and σ x = 0.25 Find µ y and σ y If Y = 2.54X µ y = 2.54(1.2) = cm σ y = 2.54(0.25) = cm Nov 30-7:46 PM 25

26 Men s heights A report of the National Center for Health Statistics says that the height of a 20-year-old man chosen at random is a random variable H with mean 5.8 feet and standard deviation 0.24 feet. Find the mean and standard deviation of the height J of a randomly selected 20-year-old man in inches. There are 12 inches in a foot. Formula Inches = 12(feet) µ H = 5.8 and σ H = 0.24 Find µ J and σ J µ J = 12(5.8) = 69.6 inches σ J = 12(0.24) = 2.88 inches Dec 4-10:55 PM Get on the boat! A small ferry runs every half hour from one side of a large river to the other. The number of cars X on a randomly chosen ferry trip has the probability distribution shown below. You can check that µ X = 3.87 and σ X = > (a) The cost for the ferry trip is $5. Make a graph of the probability distribution for the random variable M = money collected on a randomly selected ferry trip. Describe its shape. > M = 5(X) 0.5 Probability > (b) Find and interpret µm. Dollars This distribution of money is NOT symmetric. It is skewed to the left. The data should be used to analyzed with the 5 number summary. µ M = 5(3.87) = $19.35 The expected money collected on a randomly selected ferry trip is $17. If many, many ferry trips are randomly selected, this is the average amount of money collected. (In the long run!!) > (c) Find and interpret σm. σ M = 5(1.29) = $6.45 The standard deviation of the mean is $6.45. The amounts collected on the ferry trips will typically differ from the mean of $19.35 by $6.45. Dec 4-10:58 PM 26

27 Exercises 39 and 40 refer to the following setting. Ms. Hall gave her class a 10- question multiple-choice quiz. Let X = the number of questions that a randomly selected student in the class answered correctly. The computer output below gives information about the probability distribution of X. To determine each student s grade on the quiz (out of 100), Ms. Hall will multiply his or her number of correct answers by 5 and then add 50. Let G = the grade of a randomly chosen student in the class. G = 5X + 50 Easy quiz (a) Find the mean of G. Show your method. µ G = 5(7.6) + 50 = 88 points (b) Find the standard deviation of G. Show your method. σ G = 5(1.32) = 6.6 points (c) How do the variance of X and the variance of G compare? Justify your answer. The variance is the square of the standard deviation. σ 2 X = (1.32) 2 = σ 2 G = 5 2 (1.32) 2 = The variance of G is 25 times the variance of X. Dec 4-11:04 PM Easy quiz G = 5X + 50 (a) Find the median of G. Show your method. Median G = 5(8.5) + 50 = 92.5 points (b) Find the IQR of G. Show your method. IQR G = 5(9-8) = 5 points (c) What shape would the probability distribution of G have? Justify your answer. The shape of G will be the same as the shape of X, because multiplying by a constant and adding a constant do not change the shape of a distribution. Dec 4-11:06 PM 27

28 Get on the boat! Refer to Exercise 37. The ferry company s expenses are $20 per trip. Define the random variable Y to be the amount of profit (money collected minus expenses) made by the ferry company on a randomly selected trip. That is, Y = M 20 Remember... µ M = $19.35 and (a) Find and interpret the mean of Y. µ Y = $ = $-0.65 (b) Find and interpret the standard deviation of Y. σ Y = $6.45 σ M = $6.45 The expected profit on a randomly selected ferry trip is $ (NOT GOOD BUSINESS) If many, many ferry trips are randomly selected, this is the average amount of profit loss. (In the long run!!) The standard deviation of the mean is $6.45. The profit on the ferry trips will typically differ from the mean of $-0.65 by $6.45. Dec 4-11:07 PM Get on the boat! Based on the analysis in Exercise 41, the ferry company decides to increase the cost of a trip to $6. We can calculate the company s profit Y on a randomly selected trip from the number of cars X. Find the mean and standard deviation of Y. Show your work. Y = 6X - 20 remember µ X = 3.87 and σ X = µ Y = 6(3.87) - 20 = $3.22 The expected money collected on a randomly selected ferry trip is $3.22. If many, many ferry trips are randomly selected, this is the average amount of money collected. (In the long run!!) σ Y = 6(1.29) = $7.74 The standard deviation of the mean is $7.74. The amounts collected on the ferry trips will typically differ from the mean of $3.22 by $7.74. Dec 4-11:08 PM 28

29 Making a profit Rotter Partners is planning a major investment. From experience, the amount of profit X (in millions of dollars) on a randomly selected investment of this type is uncertain, but an estimate gives the following probability distribution: Based on this estimate, µ x = 3 and σ X = Rotter Partners owes its lender a fee of $200,000 plus 10% of the profits X. So the firm actually retains Y = 0.9X 0.2 from the investment. Find the mean and standard deviation of Y. Show your work. µ Y = 0.9(3) = $2.5 million The expected net profit collected on a randomly selected investment $2.5 million. If many, many investments are randomly selected, this is the average amount of net profit. (In the long run!!) σ Y = 0.9(2.52) = $2.268 million The standard deviation of the mean is $2.27 million. The amounts of investment net profit will typically differ from the mean of $2.5 million by $2.27 million. Dec 4-11:08 PM Too cool at the cabin? During the winter months, the temperatures at the Starneses Colorado cabin can stay well below freezing (32 F or 0 C) for weeks at a time. To prevent the pipes from freezing, Mrs. Starnes sets the thermostat at 50 F. She also buys a digital thermometer that records the indoor temperature each night at midnight. Unfortunately, the thermometer is programmed to measure the temperature in degrees Celsius. Based on several years worth of data, the temperature T in the cabin at midnight on a randomly selected night follows a Normal distribution with mean 8.5 C and standard deviation 2.25 C. (a) Let Y = the temperature in the cabin at midnight on a randomly selected night in degrees Fahrenheit (recall that F = (9/5)C + 32). Find the mean and standard deviation of Y. 9 µ Y = ( )(8.5) + 32 = F 5 9 σ Y = ( )(2.25) = F 5 (b) Find the probability that the midnight temperature in the cabin is below 40 F. Show your work. X: y = 40 z = = P( Y < 40 ) = P(z < -1.80) This interprets (in the context of this problem)... The probability of randomly choosing one night in the cabin where the midnight temperature is less than 40 0 F is approximately 3.59% Dec 4-11:12 PM 29

30 Cereal A company s single-serving cereal boxes advertise 9.63 ounces of cereal. In fact, the amount of cereal X in a randomly selected box follows a Normal distribution with a mean of 9.70 ounces and a standard deviation of 0.03 ounces. (a) Let Y = the excess amount of cereal beyond what s advertised in a randomly selected box, measured in grams (1 ounce = grams). Find the mean and standard deviation of Y ounces = 9.63(28.35) = grams Y = 28.35X µ Y = 28.35(9.7) = grams σ Y = 28.35(0.03) = grams (b) Find the probability of getting at least 3 grams more cereal than advertised. Show your work. X: z = = y = 3 P( Y > 3 ) = P(z > 1.19) This interprets (in the context of this problem)... The probability of randomly choosing one single serving cereal box and getting at least 3 grams more than advertised is approximately 11.7% Dec 4-11:13 PM 30

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Daily Agenda 1. Review OTL C6#5 2. Quiz Section 6.1 A-Skip 35, 39, 40 Crickets The length in inches of a cricket chosen at random from a field is a random variable X with mean 1.2 inches

More information

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Aug 23-8:26 PM Daily Agenda 1. Review OTL C6#4 Chapter 6.2 rules for means and variances Aug 23-8:31 PM 1 Nov 21-8:16 PM Working out Choose a person aged 19 to 25 years at random and

More information

Chapter 6 Section 1 Day s.notebook. April 29, Honors Statistics. Aug 23-8:26 PM. 3. Review OTL C6#2. Aug 23-8:31 PM

Chapter 6 Section 1 Day s.notebook. April 29, Honors Statistics. Aug 23-8:26 PM. 3. Review OTL C6#2. Aug 23-8:31 PM Honors Statistics Aug 23-8:26 PM 3. Review OTL C6#2 Aug 23-8:31 PM 1 Apr 27-9:20 AM Jan 18-2:13 PM 2 Nov 27-10:28 PM 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Nov 27-9:53 PM 3 Ask about 1 and

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.2 Transforming and Combining Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers 6.2 Reading Quiz (T or F)

More information

Section 6.2 Transforming and Combining Random Variables. Linear Transformations

Section 6.2 Transforming and Combining Random Variables. Linear Transformations Section 6.2 Transforming and Combining Random Variables Linear Transformations In Section 6.1, we learned that the mean and standard deviation give us important information about a random variable. In

More information

EDCC charges $50 per credit. Let T = tuition charge for a randomly-selected fulltime student. T = 50X. Tuit. T $600 $650 $700 $750 $800 $850 $900

EDCC charges $50 per credit. Let T = tuition charge for a randomly-selected fulltime student. T = 50X. Tuit. T $600 $650 $700 $750 $800 $850 $900 Chapter 7 Random Variables n 7.1 Discrete and Continuous Random Variables n 6.2 n Example: El Dorado Community College El Dorado Community College considers a student to be full-time if he or she is taking

More information

6.2.1 Linear Transformations

6.2.1 Linear Transformations 6.2.1 Linear Transformations In Chapter 2, we studied the effects of transformations on the shape, center, and spread of a distribution of data. Recall what we discovered: 1. Adding (or subtracting) a

More information

AP Stats ~ Lesson 6B: Transforming and Combining Random variables

AP Stats ~ Lesson 6B: Transforming and Combining Random variables AP Stats ~ Lesson 6B: Transforming and Combining Random variables OBJECTIVES: DESCRIBE the effects of transforming a random variable by adding or subtracting a constant and multiplying or dividing by a

More information

SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017

SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017 SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017 TODAY S OBJECTIVES Describe the effects of transforming a random variable by: adding or subtracting a constant multiplying or dividing

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6. The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6. 6.3 Binomial and

More information

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Aug 23-8:26 PM Daily Agenda 1. Review OTL C6#7 emphasis Normal Distributions Aug 23-8:31 PM 1 1. Multiple choice: Select the best answer for Exercises 65 and 66, which refer to the following

More information

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives 6.1 Discrete & Continuous Random Variables examples vocab Objectives Today we will... - Compute probabilities using the probability distribution of a discrete random variable. - Calculate and interpret

More information

Honors Statistics. 3. Review OTL C6#6. emphasis Normal Distributions. Chapter 6 Section 2 Day s.notebook. May 05, 2016.

Honors Statistics. 3. Review OTL C6#6. emphasis Normal Distributions. Chapter 6 Section 2 Day s.notebook. May 05, 2016. Honors Statistics Aug 23-8:26 PM 3. Review OTL C6#6 emphasis Normal Distributions Aug 23-8:31 PM 1 Nov 21-8:16 PM Rainy days Imagine that we randomly select a day from the past 10 years. Let X be the recorded

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.2 Transforming and Combining Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Transforming and Combining

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.2 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6.2 6.3 Binomial and

More information

Section 7.4 Transforming and Combining Random Variables (DAY 1)

Section 7.4 Transforming and Combining Random Variables (DAY 1) Section 7.4 Learning Objectives (DAY 1) After this section, you should be able to DESCRIBE the effect of performing a linear transformation on a random variable (DAY 1) COMBINE random variables and CALCULATE

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.2 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6.2 6.3 Binomial and

More information

Sampling Distributions Chapter 18

Sampling Distributions Chapter 18 Sampling Distributions Chapter 18 Parameter vs Statistic Example: Identify the population, the parameter, the sample, and the statistic in the given settings. a) The Gallup Poll asked a random sample of

More information

HHH HHT HTH THH HTT THT TTH TTT

HHH HHT HTH THH HTT THT TTH TTT AP Statistics Name Unit 04 Probability Period Day 05 Notes Discrete & Continuous Random Variables Random Variable: Probability Distribution: Example: A probability model describes the possible outcomes

More information

Honors Statistics. 3. Discuss homework C2# Discuss standard scores and percentiles. Chapter 2 Section Review day 2016s Notes.

Honors Statistics. 3. Discuss homework C2# Discuss standard scores and percentiles. Chapter 2 Section Review day 2016s Notes. Honors Statistics Aug 23-8:26 PM 3. Discuss homework C2#11 4. Discuss standard scores and percentiles Aug 23-8:31 PM 1 Feb 8-7:44 AM Sep 6-2:27 PM 2 Sep 18-12:51 PM Chapter 2 Modeling Distributions of

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Aug 23-8:26 PM Daily Agenda Aug 23-8:31 PM 1 Write a program to generate random numbers. I've decided to give them free will. A Skip 4, 12, 16 Apr 25-10:55 AM Toss 4 times Suppose you

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name The bar graph shows the number of tickets sold each week by the garden club for their annual flower show. ) During which week was the most number of tickets sold? ) A) Week B) Week C) Week 5

More information

Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test.

Chapter 6 Section Review day s.notebook. May 11, Honors Statistics. Aug 23-8:26 PM. 3. Review team test. Honors Statistics Aug 23-8:26 PM 3. Review team test Aug 23-8:31 PM 1 Nov 27-10:28 PM 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Nov 27-9:53 PM 2 May 8-7:44 PM May 1-9:09 PM 3 Dec 1-2:08 PM Sep

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) Section 6-2 I. Continuous Probability Distributions A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) to represent a probability density

More information

STAT 201 Chapter 6. Distribution

STAT 201 Chapter 6. Distribution STAT 201 Chapter 6 Distribution 1 Random Variable We know variable Random Variable: a numerical measurement of the outcome of a random phenomena Capital letter refer to the random variable Lower case letters

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

AP Statistics Unit 1 (Chapters 1-6) Extra Practice: Part 1

AP Statistics Unit 1 (Chapters 1-6) Extra Practice: Part 1 AP Statistics Unit 1 (Chapters 1-6) Extra Practice: Part 1 1. As part of survey of college students a researcher is interested in the variable class standing. She records a 1 if the student is a freshman,

More information

STT 315 Practice Problems Chapter 3.7 and 4

STT 315 Practice Problems Chapter 3.7 and 4 STT 315 Practice Problems Chapter 3.7 and 4 Answer the question True or False. 1) The number of children in a family can be modelled using a continuous random variable. 2) For any continuous probability

More information

MA131 Lecture 8.2. The normal distribution curve can be considered as a probability distribution curve for normally distributed variables.

MA131 Lecture 8.2. The normal distribution curve can be considered as a probability distribution curve for normally distributed variables. Normal distribution curve as probability distribution curve The normal distribution curve can be considered as a probability distribution curve for normally distributed variables. The area under the normal

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1 6.1 Discrete and Continuous Random Variables Random Variables A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types

More information

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. For exams (MD1, MD2, and Final): You may bring one 8.5 by 11 sheet of

More information

STATS DOESN T SUCK! ~ CHAPTER 4

STATS DOESN T SUCK! ~ CHAPTER 4 CHAPTER 4 QUESTION 1 The Geometric Mean Suppose you make a 2-year investment of $5,000 and it grows by 100% to $10,000 during the first year. During the second year, however, the investment suffers a 50%

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Chapter 6: The Normal Distribution

Chapter 6: The Normal Distribution Chapter 6: The Normal Distribution Diana Pell Section 6.1: Normal Distributions Note: Recall that a continuous variable can assume all values between any two given values of the variables. Many continuous

More information

Lecture 7 Random Variables

Lecture 7 Random Variables Lecture 7 Random Variables Definition: A random variable is a variable whose value is a numerical outcome of a random phenomenon, so its values are determined by chance. We shall use letters such as X

More information

Section 6.5. The Central Limit Theorem

Section 6.5. The Central Limit Theorem Section 6.5 The Central Limit Theorem Idea Will allow us to combine the theory from 6.4 (sampling distribution idea) with our central limit theorem and that will allow us the do hypothesis testing in the

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

Chapter 6: The Normal Distribution

Chapter 6: The Normal Distribution Chapter 6: The Normal Distribution Diana Pell Section 6.1: Normal Distributions Note: Recall that a continuous variable can assume all values between any two given values of the variables. Many continuous

More information

Chapter Seven. The Normal Distribution

Chapter Seven. The Normal Distribution Chapter Seven The Normal Distribution 7-1 Introduction Many continuous variables have distributions that are bellshaped and are called approximately normally distributed variables, such as the heights

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Unit2: Probabilityanddistributions. 3. Normal distribution

Unit2: Probabilityanddistributions. 3. Normal distribution Announcements Unit: Probabilityanddistributions 3 Normal distribution Sta 101 - Spring 015 Duke University, Department of Statistical Science February, 015 Peer evaluation 1 by Friday 11:59pm Office hours:

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr.

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr. Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Normal Probability Distribution QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Continuous Random Variables and Probability Distributions

Continuous Random Variables and Probability Distributions CHAPTER 5 CHAPTER OUTLINE Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables The Uniform Distribution 5.2 Expectations for Continuous Random Variables 5.3 The Normal

More information

Unit 04 Review. Probability Rules

Unit 04 Review. Probability Rules Unit 04 Review Probability Rules A sample space contains all the possible outcomes observed in a trial of an experiment, a survey, or some random phenomenon. The sum of the probabilities for all possible

More information

5.1 Mean, Median, & Mode

5.1 Mean, Median, & Mode 5.1 Mean, Median, & Mode definitions Mean: Median: Mode: Example 1 The Blue Jays score these amounts of runs in their last 9 games: 4, 7, 2, 4, 10, 5, 6, 7, 7 Find the mean, median, and mode: Example 2

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

Chapter Six Probability Distributions

Chapter Six Probability Distributions 6.1 Probability Distributions Discrete Random Variable Chapter Six Probability Distributions x P(x) 2 0.08 4 0.13 6 0.25 8 0.31 10 0.16 12 0.01 Practice. Construct a probability distribution for the number

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

The Central Limit Theorem for Sample Means (Averages)

The Central Limit Theorem for Sample Means (Averages) The Central Limit Theorem for Sample Means (Averages) By: OpenStaxCollege Suppose X is a random variable with a distribution that may be known or unknown (it can be any distribution). Using a subscript

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Edexcel Statistics 1 Normal Distribution Edited by: K V Kumaran

Edexcel Statistics 1 Normal Distribution Edited by: K V Kumaran Edexcel Statistics 1 Normal Distribution Edited by: K V Kumaran kumarmaths.weebly.com 1 kumarmaths.weebly.com 2 kumarmaths.weebly.com 3 kumarmaths.weebly.com 4 kumarmaths.weebly.com 5 kumarmaths.weebly.com

More information

Stats CH 6 Intro Activity 1

Stats CH 6 Intro Activity 1 Stats CH 6 Intro Activit 1 1. Purpose can ou tell the difference between bottled water and tap water? You will drink water from 3 samples. 1 of these is bottled water.. You must test them in the following

More information

The Central Limit Theorem: Homework

The Central Limit Theorem: Homework The Central Limit Theorem: Homework EXERCISE 1 X N(60, 9). Suppose that you form random samples of 25 from this distribution. Let X be the random variable of averages. Let X be the random variable of sums.

More information

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!!

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!! Student s Printed Name: Instructor: XID: Section #: Read each question very carefully. You are permitted to use a calculator on all portions of this exam. You are NOT allowed to use any textbook, notes,

More information

Chapter 2. Section 2.1

Chapter 2. Section 2.1 Chapter 2 Section 2.1 Check Your Understanding, page 89: 1. c 2. Her daughter weighs more than 87% of girls her age and she is taller than 67% of girls her age. 3. About 65% of calls lasted less than 30

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP Note 1: The exercises below that are referenced by chapter number are taken or modified from the following open-source online textbook that was adapted by

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

22.2 Shape, Center, and Spread

22.2 Shape, Center, and Spread Name Class Date 22.2 Shape, Center, and Spread Essential Question: Which measures of center and spread are appropriate for a normal distribution, and which are appropriate for a skewed distribution? Eplore

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

Making Sense of Cents

Making Sense of Cents Name: Date: Making Sense of Cents Exploring the Central Limit Theorem Many of the variables that you have studied so far in this class have had a normal distribution. You have used a table of the normal

More information

Math 227 Practice Test 2 Sec Name

Math 227 Practice Test 2 Sec Name Math 227 Practice Test 2 Sec 4.4-6.2 Name Find the indicated probability. ) A bin contains 64 light bulbs of which 0 are defective. If 5 light bulbs are randomly selected from the bin with replacement,

More information

Exercise Set 1 The normal distribution and sampling distributions

Exercise Set 1 The normal distribution and sampling distributions Eercise Set 1 The normal distribution and sampling distributions 1). An orange juice producer buys all his oranges from a large orange grove. The amount of juice squeezed from each of these oranges is

More information

Chapter 7 Study Guide: The Central Limit Theorem

Chapter 7 Study Guide: The Central Limit Theorem Chapter 7 Study Guide: The Central Limit Theorem Introduction Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy to calculate. In this

More information

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X =

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X = 6.4 The Normal Approximation to the Binomial Distribution Recall from section 6.4 that g A binomial experiment is a experiment that satisfies the following four requirements: 1. Each trial can have only

More information

Introduction to Business Statistics QM 120 Chapter 6

Introduction to Business Statistics QM 120 Chapter 6 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Chapter 6: Continuous Probability Distribution 2 When a RV x is discrete, we can

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Problem Set 08 Sampling Distribution of Sample Mean

Problem Set 08 Sampling Distribution of Sample Mean Problem Set 08 Sampling Distribution of Sample Mean MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the requested probability. 1) The table reports

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Let X be the number that comes up on the next roll of the die.

Let X be the number that comes up on the next roll of the die. Chapter 6 - Discrete Probability Distributions 6.1 Random Variables Introduction If we roll a fair die, the possible outcomes are the numbers 1, 2, 3, 4, 5, and 6, and each of these numbers has probability

More information

The Central Limit Theorem: Homework

The Central Limit Theorem: Homework The Central Limit Theorem: Homework EXERCISE 1 X N(60, 9). Suppose that you form random samples of 25 from this distribution. Let X be the random variable of averages. Let X be the random variable of sums.

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

Chapter 7. Random Variables: 7.1: Discrete and Continuous. Random Variables. 7.2: Means and Variances of. Random Variables

Chapter 7. Random Variables: 7.1: Discrete and Continuous. Random Variables. 7.2: Means and Variances of. Random Variables Chapter 7 Random Variables In Chapter 6, we learned that a!random phenomenon" was one that was unpredictable in the short term, but displayed a predictable pattern in the long run. In Statistics, we are

More information

Review of commonly missed questions on the online quiz. Lecture 7: Random variables] Expected value and standard deviation. Let s bet...

Review of commonly missed questions on the online quiz. Lecture 7: Random variables] Expected value and standard deviation. Let s bet... Recap Review of commonly missed questions on the online quiz Lecture 7: ] Statistics 101 Mine Çetinkaya-Rundel OpenIntro quiz 2: questions 4 and 5 September 20, 2011 Statistics 101 (Mine Çetinkaya-Rundel)

More information

The Central Limit Theorem: Homework

The Central Limit Theorem: Homework EERCISE 1 The Central Limit Theorem: Homework N(60, 9). Suppose that you form random samples of 25 from this distribution. Let be the random variable of averages. Let be the random variable of sums. For

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

Central Limit Theorem: Homework

Central Limit Theorem: Homework Connexions module: m16952 1 Central Limit Theorem: Homework Susan Dean Barbara Illowsky, Ph.D. This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

The Uniform Distribution

The Uniform Distribution Connexions module: m46972 The Uniform Distribution OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License 3.0 The uniform distribution

More information

What type of distribution is this? tml

What type of distribution is this?  tml Warm Up Calculate the average Broncos score for the 2013 Season! 24, 27, 10, 10, 34, 37, 20, 51, 35, 31, 27, 28, 45, 33, 35, 52, 52, 37, 41, 49, 24, 26 What type of distribution is this? http://www.mathsisfun.com/data/quincunx.h

More information

Math 160 Professor Busken Chapter 5 Worksheets

Math 160 Professor Busken Chapter 5 Worksheets Math 160 Professor Busken Chapter 5 Worksheets Name: 1. Find the expected value. Suppose you play a Pick 4 Lotto where you pay 50 to select a sequence of four digits, such as 2118. If you select the same

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Solutions for practice questions: Chapter 15, Probability Distributions If you find any errors, please let me know at

Solutions for practice questions: Chapter 15, Probability Distributions If you find any errors, please let me know at Solutions for practice questions: Chapter 15, Probability Distributions If you find any errors, please let me know at mailto:msfrisbie@pfrisbie.com. 1. Let X represent the savings of a resident; X ~ N(3000,

More information

AP Statistics Chapter 6 - Random Variables

AP Statistics Chapter 6 - Random Variables AP Statistics Chapter 6 - Random 6.1 Discrete and Continuous Random Objective: Recognize and define discrete random variables, and construct a probability distribution table and a probability histogram

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information