6.231 DYNAMIC PROGRAMMING LECTURE 5 LECTURE OUTLINE

Size: px
Start display at page:

Download "6.231 DYNAMIC PROGRAMMING LECTURE 5 LECTURE OUTLINE"

Transcription

1 6.231 DYNAMIC PROGRAMMING LECTURE 5 LECTURE OUTLINE Stopping problems Scheduling problems Minimax Control 1

2 PURE STOPPING PROBLEMS Two possible controls: Stop (incur a one-time stopping cost, and move to cost-free and absorbing stop state) Continue [using x k+1 = f k (x k,w k ) and incurring the cost-per-stage] Each policy consists of a partition of the set of states x k into two regions: Stop region, where we stop Continue region, where we continue CONTINUE REGION STOP REGION Stop State 2

3 EXAMPLE: ASSET SELLING A person has an asset, and at k = 0,1,...,N 1 receives a random offer w k May accept w k and invest the money at fixed rate of interest r, or reject w k and wait for w k+1. Must accept the last offer w N 1 DP algorithm (x k : current offer, T: stop state): xn if xn T, J N (x N ) = 0 if x N = T, [ }] max (1+r) N k x k, E J k+1 (w k ) if x k = T, J k (x k ) = 0 if xk = T. Optimal policy; accept the offer x k if x k > α k, reject the offer x k if x k < α k, where α = k } Jk 1 (w k ) (1+r). N k E + 3

4 FURTHER ANALYSIS a 1 a 2 ACCEPT REJECT a N N - 1 N k Can show that α k α k+1 for all k Proof: Let V T. Then the DP algorithm is k(x k ) = J k (x k )/(1+r) N k for x k V N (x N ) = x N, V k (x k ) = max [x k, (1+r) 1 Ew Vk+1 (w) }] } Wehave α k = Ew Vk+1 (w) /(1+r),soitisenough to show that V k (x) V k+1 (x) for all x and k. Start with V N 1 (x) V N (x) and use the monotonicity property of DP. Q.E.D. We can also show that if w is bounded, α k a as k. Suggests that for an infinite horizon the optimal policy is stationary. 4

5 GENERAL STOPPING PROBLEMS At time k, we may stop at cost t(x k ) or choose a control u k U(x k ) and continue J N (x N ) = t(x N ), J k (x k ) = min [ t(x k ), min E g(x k,u k,w k ) uk U(x k) +J k+1 f(x k,u k,wk) Optimal to stop at time k for x in T k = x ( )}] the set } ( )} t(x) min E g(x,u,w)+j k+1 f(x,u,w) u U(x) Since J N 1 (x) JN(x), we have J k (x) J k+1 (x) for all k, so T 0 T k T k+1 T N 1. Interesting case is when all the T k are equal (to T N 1, the set where it is better to stop than to go one step and stop). Can be shown to be true if f(x,u,w) T N 1, for all x T N 1, u U(x), w. 5

6 SCHEDULING PROBLEMS We have a set of tasks to perform, the ordering is subject to optimal choice. Costs depend on the order There may be stochastic uncertainty, and precedence and resource availability constraints Some of the hardest combinatorial problems are of this type (e.g., traveling salesman, vehicle routing, etc.) Some special problems admit a simple quasianalytical solution method Optimal policy has an index form, i.e., each task has an easily calculable cost index, and it is optimal to select the task that has the minimum value of index (multiarmed bandit problems- to be discussed later) Some problems can be solved by an interchange argument (start with some schedule, interchange two adjacent tasks, and see what happens). They require existence of an optimal policy which is open-loop. 6

7 EXAMPLE: THE QUIZ PROBLEM Given a list of N questions. If question i is answered correctly (given probability p i ), we receive reward R i ; if not the quiz terminates. Choose order of questions to maximize expected reward. Let i and j be the kth and (k + 1)st questions in an optimally ordered list L = (i 0,...,i k 1,i,j,i k+2,...,i N 1 ) } E reward of L} = E reward of i 0,...,i k 1 } +p i 0 p i (p i R k 1 i i j j +p p R ) +p i0 p ik p i p j E reward of i k+2,...,i N 1 } 1 Consider the list with i and j interchanged L = (i 0,...,i k 1,j,i,i k+2,...,i N 1 ) Since Lisoptimal, Ereward of L} Ereward of L }, so it follows that p i R i +p i p j R j p j R j +p j p i R i or p i R i /(1 p i ) p j R j /(1 p j ). } 7

8 MINIMAX CONTROL Consider basic problem with the difference that the disturbance w k instead of being random, it is just known to belong to a given set W k (x k,u k ). Find policy π that minimizes the cost J π (x 0 ) = max g N (x N ) wk W k(x k,µ k(x k)) k=0,1,...,n 1 [ + N 1 k=0 The DP algorithm takes the form J N (x N ) = g N (x N ), g k ( xk,µ k (x k ),w k J k (x k ) = min max g k (x k,u k,w k ) uk U(x k) wk W k(x k,u k) ( )] fk (x k,u k,w k ) +J k+1 (Section 1.6 in the text). [ ) ] 8

9 DERIVATION OF MINIMAX DP ALGORITHM Similar to the DP algorithm for stochastic problems. The optimal cost J (x 0 ) is J (x 0 ) = min min max max µ 0 µ N 1 w 0 W[x 0,µ 0 (x 0 )] w N 1 W[x N 1,µ N 1 (x N 1 )] [ N 1 k=0 = min min g k ( xk,µ k (x k ),w k ) +gn (x N ) [ min max max µ 0 µ N 2 µ N 1 w 0 W[x 0,µ 0 (x 0 )] w N 2 W[x N 2,µ N 2 (x N 2 )] [ N 2 k=0 ( ) g k x k,µ k (x k ),w k + [ ] max w N 1 W[x N 1,µ N 1 (x N 1 )] g N 1 ( xn 1,µ N 1 (x N 1 ),w N 1 +J N (x N ) Interchange the min over µ N 1 andthemax over w 0,...,w N 2, and similarly continue backwards, with N 1 in place of N, etc. After N steps we obtain J (x 0 ) = J 0 (x 0 ). Construct optimal policy by minimizing in the RHS of the DP algorithm. ) ]] ] 9

10 UNKNOWN-BUT-BOUNDED CONTROL For each k, keep the x k of the controlled system inside a given set X k, ( x k+1 = f k x k,µ k (x k ),w k the target set at time k. This is a minimax control problem, where the cost at stage k is 0 i g k ( k ) = f x k X x k, 1 if x k / X k. We must reach at time k the set X k = x k J k (x k ) = 0 in order to be able to maintain the state within the subsequent target sets. Start with X N = X N, and for k = 0,1,...,N 1, X k = x k X k there exists u k U k (x k ) such that f k (x k,u k,w k ) X k+1, for all w k W k (x k,u k ) } } ) 10

11 MIT OpenCourseWare Dynamic Programming and Stochastic Control Fall 2015 For information about citing these materials or our Terms of Use, visit:

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE Rollout algorithms Cost improvement property Discrete deterministic problems Approximations of rollout algorithms Discretization of continuous time

More information

6.231 DYNAMIC PROGRAMMING LECTURE 8 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 8 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 8 LECTURE OUTLINE Suboptimal control Cost approximation methods: Classification Certainty equivalent control: An example Limited lookahead policies Performance bounds

More information

Optimization Methods. Lecture 16: Dynamic Programming

Optimization Methods. Lecture 16: Dynamic Programming 15.093 Optimization Methods Lecture 16: Dynamic Programming 1 Outline 1. The knapsack problem Slide 1. The traveling salesman problem 3. The general DP framework 4. Bellman equation 5. Optimal inventory

More information

Stochastic Optimal Control

Stochastic Optimal Control Stochastic Optimal Control Lecturer: Eilyan Bitar, Cornell ECE Scribe: Kevin Kircher, Cornell MAE These notes summarize some of the material from ECE 5555 (Stochastic Systems) at Cornell in the fall of

More information

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T.

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T. Practice July 3rd, 2012 Laboratory for Information and Decision Systems, M.I.T. 1 2 Infinite-Horizon DP Minimize over policies the objective cost function J π (x 0 ) = lim N E w k,k=0,1,... DP π = {µ 0,µ

More information

Dynamic Programming and Reinforcement Learning

Dynamic Programming and Reinforcement Learning Dynamic Programming and Reinforcement Learning Daniel Russo Columbia Business School Decision Risk and Operations Division Fall, 2017 Daniel Russo (Columbia) Fall 2017 1 / 34 Supervised Machine Learning

More information

EE365: Markov Decision Processes

EE365: Markov Decision Processes EE365: Markov Decision Processes Markov decision processes Markov decision problem Examples 1 Markov decision processes 2 Markov decision processes add input (or action or control) to Markov chain with

More information

Lecture 5 January 30

Lecture 5 January 30 EE 223: Stochastic Estimation and Control Spring 2007 Lecture 5 January 30 Lecturer: Venkat Anantharam Scribe: aryam Kamgarpour 5.1 Secretary Problem The problem set-up is explained in Lecture 4. We review

More information

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 15 : DP Examples

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 15 : DP Examples CE 191: Civil and Environmental Engineering Systems Analysis LEC 15 : DP Examples Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 2014 Prof. Moura UC Berkeley

More information

IEOR E4004: Introduction to OR: Deterministic Models

IEOR E4004: Introduction to OR: Deterministic Models IEOR E4004: Introduction to OR: Deterministic Models 1 Dynamic Programming Following is a summary of the problems we discussed in class. (We do not include the discussion on the container problem or the

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Multi-armed bandit problems

Multi-armed bandit problems Multi-armed bandit problems Stochastic Decision Theory (2WB12) Arnoud den Boer 13 March 2013 Set-up 13 and 14 March: Lectures. 20 and 21 March: Paper presentations (Four groups, 45 min per group). Before

More information

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming Dynamic Programming: An overview These notes summarize some key properties of the Dynamic Programming principle to optimize a function or cost that depends on an interval or stages. This plays a key role

More information

Lecture Notes 1

Lecture Notes 1 4.45 Lecture Notes Guido Lorenzoni Fall 2009 A portfolio problem To set the stage, consider a simple nite horizon problem. A risk averse agent can invest in two assets: riskless asset (bond) pays gross

More information

CHAPTER 5: DYNAMIC PROGRAMMING

CHAPTER 5: DYNAMIC PROGRAMMING CHAPTER 5: DYNAMIC PROGRAMMING Overview This chapter discusses dynamic programming, a method to solve optimization problems that involve a dynamical process. This is in contrast to our previous discussions

More information

Dynamic Programming (DP) Massimo Paolucci University of Genova

Dynamic Programming (DP) Massimo Paolucci University of Genova Dynamic Programming (DP) Massimo Paolucci University of Genova DP cannot be applied to each kind of problem In particular, it is a solution method for problems defined over stages For each stage a subproblem

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Dynamic programming Christos Dimitrakakis Intelligent Autonomous Systems, IvI, University of Amsterdam, The Netherlands March 18, 2008 Introduction Some examples Dynamic programming

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Dynamic Pricing with Varying Cost

Dynamic Pricing with Varying Cost Dynamic Pricing with Varying Cost L. Jeff Hong College of Business City University of Hong Kong Joint work with Ying Zhong and Guangwu Liu Outline 1 Introduction 2 Problem Formulation 3 Pricing Policy

More information

Robust Dual Dynamic Programming

Robust Dual Dynamic Programming 1 / 18 Robust Dual Dynamic Programming Angelos Georghiou, Angelos Tsoukalas, Wolfram Wiesemann American University of Beirut Olayan School of Business 31 May 217 2 / 18 Inspired by SDDP Stochastic optimization

More information

6.262: Discrete Stochastic Processes 3/2/11. Lecture 9: Markov rewards and dynamic prog.

6.262: Discrete Stochastic Processes 3/2/11. Lecture 9: Markov rewards and dynamic prog. 6.262: Discrete Stochastic Processes 3/2/11 Lecture 9: Marov rewards and dynamic prog. Outline: Review plus of eigenvalues and eigenvectors Rewards for Marov chains Expected first-passage-times Aggregate

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information

Dynamic Portfolio Execution Detailed Proofs

Dynamic Portfolio Execution Detailed Proofs Dynamic Portfolio Execution Detailed Proofs Gerry Tsoukalas, Jiang Wang, Kay Giesecke March 16, 2014 1 Proofs Lemma 1 (Temporary Price Impact) A buy order of size x being executed against i s ask-side

More information

STP Problem Set 3 Solutions

STP Problem Set 3 Solutions STP 425 - Problem Set 3 Solutions 4.4) Consider the separable sequential allocation problem introduced in Sections 3.3.3 and 4.6.3, where the goal is to maximize the sum subject to the constraints f(x

More information

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018 Lecture 2: Making Good Sequences of Decisions Given a Model of World CS234: RL Emma Brunskill Winter 218 Human in the loop exoskeleton work from Steve Collins lab Class Structure Last Time: Introduction

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Spring 2009 Main question: How much are patents worth? Answering this question is important, because it helps

More information

Forecast Horizons for Production Planning with Stochastic Demand

Forecast Horizons for Production Planning with Stochastic Demand Forecast Horizons for Production Planning with Stochastic Demand Alfredo Garcia and Robert L. Smith Department of Industrial and Operations Engineering Universityof Michigan, Ann Arbor MI 48109 December

More information

Reinforcement Learning and Optimal Control. Chapter 1 Exact Dynamic Programming DRAFT

Reinforcement Learning and Optimal Control. Chapter 1 Exact Dynamic Programming DRAFT Reinforcement Learning and Optimal Control by Dimitri P. Bertsekas Massachusetts Institute of Technology Chapter 1 Exact Dynamic Programming DRAFT This is Chapter 1 of the draft textbook Reinforcement

More information

3. The Dynamic Programming Algorithm (cont d)

3. The Dynamic Programming Algorithm (cont d) 3. The Dynamic Programming Algorithm (cont d) Last lecture e introduced the DPA. In this lecture, e first apply the DPA to the chess match example, and then sho ho to deal ith problems that do not match

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Dynamic Programming and Stochastic Control

Dynamic Programming and Stochastic Control Dynamic Programming and Stochastic Control Dr. Alex Leong Department of Electrical Engineering (EIM-E) Paderborn University, Germany alex.leong@upb.de Dr. Alex Leong (alex.leong@upb.de) DP and Stochastic

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May, 204 Review of Game heory: Let M be a matrix with all elements in [0, ]. Mindy (called the row player) chooses

More information

CS188 Spring 2012 Section 4: Games

CS188 Spring 2012 Section 4: Games CS188 Spring 2012 Section 4: Games 1 Minimax Search In this problem, we will explore adversarial search. Consider the zero-sum game tree shown below. Trapezoids that point up, such as at the root, represent

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

TDT4171 Artificial Intelligence Methods

TDT4171 Artificial Intelligence Methods TDT47 Artificial Intelligence Methods Lecture 7 Making Complex Decisions Norwegian University of Science and Technology Helge Langseth IT-VEST 0 helgel@idi.ntnu.no TDT47 Artificial Intelligence Methods

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Lecture 12: MDP1. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 12: MDP1. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 12: MDP1 Victor R. Lesser CMPSCI 683 Fall 2010 Biased Random GSAT - WalkSat Notice no random restart 2 Today s lecture Search where there is Uncertainty in Operator Outcome --Sequential Decision

More information

Lec 1: Single Agent Dynamic Models: Nested Fixed Point Approach. K. Sudhir MGT 756: Empirical Methods in Marketing

Lec 1: Single Agent Dynamic Models: Nested Fixed Point Approach. K. Sudhir MGT 756: Empirical Methods in Marketing Lec 1: Single Agent Dynamic Models: Nested Fixed Point Approach K. Sudhir MGT 756: Empirical Methods in Marketing RUST (1987) MODEL AND ESTIMATION APPROACH A Model of Harold Zurcher Rust (1987) Empirical

More information

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Midterm #1, February 3, 2017 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By

More information

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008 (presentation follows Thomas Ferguson s and Applications) November 6, 2008 1 / 35 Contents: Introduction Problems Markov Models Monotone Stopping Problems Summary 2 / 35 The Secretary problem You have

More information

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1 Making Decisions CS 3793 Artificial Intelligence Making Decisions 1 Planning under uncertainty should address: The world is nondeterministic. Actions are not certain to succeed. Many events are outside

More information

VOL. I, FOURTH EDITION. Dimitri P. Bertsekas. Massachusetts Institute of Technology. Last Updated 2/11/2017. Athena Scientific, Belmont, Mass.

VOL. I, FOURTH EDITION. Dimitri P. Bertsekas. Massachusetts Institute of Technology. Last Updated 2/11/2017. Athena Scientific, Belmont, Mass. Dynamic Programming and Optimal Control VOL. I, FOURTH EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology Selected Theoretical Problem Solutions Last Updated 2/11/2017 Athena Scientific,

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

Making Complex Decisions

Making Complex Decisions Ch. 17 p.1/29 Making Complex Decisions Chapter 17 Ch. 17 p.2/29 Outline Sequential decision problems Value iteration algorithm Policy iteration algorithm Ch. 17 p.3/29 A simple environment 3 +1 p=0.8 2

More information

Pareto Efficient Allocations with Collateral in Double Auctions (Working Paper)

Pareto Efficient Allocations with Collateral in Double Auctions (Working Paper) Pareto Efficient Allocations with Collateral in Double Auctions (Working Paper) Hans-Joachim Vollbrecht November 12, 2015 The general conditions are studied on which Continuous Double Auctions (CDA) for

More information

Information Acquisition under Persuasive Precedent versus Binding Precedent (Preliminary and Incomplete)

Information Acquisition under Persuasive Precedent versus Binding Precedent (Preliminary and Incomplete) Information Acquisition under Persuasive Precedent versus Binding Precedent (Preliminary and Incomplete) Ying Chen Hülya Eraslan January 9, 216 Abstract We analyze a dynamic model of judicial decision

More information

SOLVING ROBUST SUPPLY CHAIN PROBLEMS

SOLVING ROBUST SUPPLY CHAIN PROBLEMS SOLVING ROBUST SUPPLY CHAIN PROBLEMS Daniel Bienstock Nuri Sercan Özbay Columbia University, New York November 13, 2005 Project with Lucent Technologies Optimize the inventory buffer levels in a complicated

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

Complex Decisions. Sequential Decision Making

Complex Decisions. Sequential Decision Making Sequential Decision Making Outline Sequential decision problems Value iteration Policy iteration POMDPs (basic concepts) Slides partially based on the Book "Reinforcement Learning: an introduction" by

More information

MAT 4250: Lecture 1 Eric Chung

MAT 4250: Lecture 1 Eric Chung 1 MAT 4250: Lecture 1 Eric Chung 2Chapter 1: Impartial Combinatorial Games 3 Combinatorial games Combinatorial games are two-person games with perfect information and no chance moves, and with a win-or-lose

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Control Improvement for Jump-Diffusion Processes with Applications to Finance

Control Improvement for Jump-Diffusion Processes with Applications to Finance Control Improvement for Jump-Diffusion Processes with Applications to Finance Nicole Bäuerle joint work with Ulrich Rieder Toronto, June 2010 Outline Motivation: MDPs Controlled Jump-Diffusion Processes

More information

Part 4: Markov Decision Processes

Part 4: Markov Decision Processes Markov decision processes c Vikram Krishnamurthy 2013 1 Part 4: Markov Decision Processes Aim: This part covers discrete time Markov Decision processes whose state is completely observed. The key ideas

More information

Scenario Generation and Sampling Methods

Scenario Generation and Sampling Methods Scenario Generation and Sampling Methods Güzin Bayraksan Tito Homem-de-Mello SVAN 2016 IMPA May 9th, 2016 Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 9 1 / 30

More information

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints David Laibson 9/11/2014 Outline: 1. Precautionary savings motives 2. Liquidity constraints 3. Application: Numerical solution

More information

CMSC 858F: Algorithmic Game Theory Fall 2010 Introduction to Algorithmic Game Theory

CMSC 858F: Algorithmic Game Theory Fall 2010 Introduction to Algorithmic Game Theory CMSC 858F: Algorithmic Game Theory Fall 2010 Introduction to Algorithmic Game Theory Instructor: Mohammad T. Hajiaghayi Scribe: Hyoungtae Cho October 13, 2010 1 Overview In this lecture, we introduce the

More information

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b 316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b Chris Edmond hcpedmond@unimelb.edu.aui Aiyagari s model Arguably the most popular example of a simple incomplete markets model is due to Rao Aiyagari (1994,

More information

Part 1: q Theory and Irreversible Investment

Part 1: q Theory and Irreversible Investment Part 1: q Theory and Irreversible Investment Goal: Endogenize firm characteristics and risk. Value/growth Size Leverage New issues,... This lecture: q theory of investment Irreversible investment and real

More information

Optimal energy management and stochastic decomposition

Optimal energy management and stochastic decomposition Optimal energy management and stochastic decomposition F. Pacaud P. Carpentier J.P. Chancelier M. De Lara JuMP-dev workshop, 2018 ENPC ParisTech ENSTA ParisTech Efficacity 1/23 Motivation We consider a

More information

Introduction to Dynamic Programming

Introduction to Dynamic Programming Introduction to Dynamic Programming http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Mengdi Wang s and Prof. Dimitri Bertsekas lecture notes Outline 2/65 1

More information

An Approximation Algorithm for Capacity Allocation over a Single Flight Leg with Fare-Locking

An Approximation Algorithm for Capacity Allocation over a Single Flight Leg with Fare-Locking An Approximation Algorithm for Capacity Allocation over a Single Flight Leg with Fare-Locking Mika Sumida School of Operations Research and Information Engineering, Cornell University, Ithaca, New York

More information

Solutions of Bimatrix Coalitional Games

Solutions of Bimatrix Coalitional Games Applied Mathematical Sciences, Vol. 8, 2014, no. 169, 8435-8441 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410880 Solutions of Bimatrix Coalitional Games Xeniya Grigorieva St.Petersburg

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 247 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action A will have possible outcome states Result

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE GÜNTER ROTE Abstract. A salesperson wants to visit each of n objects that move on a line at given constant speeds in the shortest possible time,

More information

Algorithmic Game Theory and Applications. Lecture 11: Games of Perfect Information

Algorithmic Game Theory and Applications. Lecture 11: Games of Perfect Information Algorithmic Game Theory and Applications Lecture 11: Games of Perfect Information Kousha Etessami finite games of perfect information Recall, a perfect information (PI) game has only 1 node per information

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

MACROECONOMICS. Prelim Exam

MACROECONOMICS. Prelim Exam MACROECONOMICS Prelim Exam Austin, June 1, 2012 Instructions This is a closed book exam. If you get stuck in one section move to the next one. Do not waste time on sections that you find hard to solve.

More information

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data Group Prof. Daniel Cremers 7. Sequential Data Bayes Filter (Rep.) We can describe the overall process using a Dynamic Bayes Network: This incorporates the following Markov assumptions: (measurement) (state)!2

More information

Lecture 4: Model-Free Prediction

Lecture 4: Model-Free Prediction Lecture 4: Model-Free Prediction David Silver Outline 1 Introduction 2 Monte-Carlo Learning 3 Temporal-Difference Learning 4 TD(λ) Introduction Model-Free Reinforcement Learning Last lecture: Planning

More information

Final exam solutions

Final exam solutions EE365 Stochastic Control / MS&E251 Stochastic Decision Models Profs. S. Lall, S. Boyd June 5 6 or June 6 7, 2013 Final exam solutions This is a 24 hour take-home final. Please turn it in to one of the

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Lecture 18: Markov Decision Processes Yiling Chen and David Parkes Lesson Plan Markov decision processes Policies and Value functions Solving: average reward,

More information

Bernoulli Bandits An Empirical Comparison

Bernoulli Bandits An Empirical Comparison Bernoulli Bandits An Empirical Comparison Ronoh K.N1,2, Oyamo R.1,2, Milgo E.1,2, Drugan M.1 and Manderick B.1 1- Vrije Universiteit Brussel - Computer Sciences Department - AI Lab Pleinlaan 2 - B-1050

More information

Dynamic Appointment Scheduling in Healthcare

Dynamic Appointment Scheduling in Healthcare Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-12-05 Dynamic Appointment Scheduling in Healthcare McKay N. Heasley Brigham Young University - Provo Follow this and additional

More information

A Branch-and-Price method for the Multiple-depot Vehicle and Crew Scheduling Problem

A Branch-and-Price method for the Multiple-depot Vehicle and Crew Scheduling Problem A Branch-and-Price method for the Multiple-depot Vehicle and Crew Scheduling Problem SCIP Workshop 2018, Aachen Markó Horváth Tamás Kis Institute for Computer Science and Control Hungarian Academy of Sciences

More information

Optimal Dynamic Asset Allocation: A Stochastic Invariance Approach

Optimal Dynamic Asset Allocation: A Stochastic Invariance Approach Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San Diego, CA, USA, December 13-15, 26 ThA7.4 Optimal Dynamic Asset Allocation: A Stochastic Invariance Approach

More information

The investment game in incomplete markets

The investment game in incomplete markets The investment game in incomplete markets M. R. Grasselli Mathematics and Statistics McMaster University Pisa, May 23, 2008 Strategic decision making We are interested in assigning monetary values to strategic

More information

Probabilistic Robotics: Probabilistic Planning and MDPs

Probabilistic Robotics: Probabilistic Planning and MDPs Probabilistic Robotics: Probabilistic Planning and MDPs Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike Montemerlo,

More information

Stochastic Optimization Methods in Scheduling. Rolf H. Möhring Technische Universität Berlin Combinatorial Optimization and Graph Algorithms

Stochastic Optimization Methods in Scheduling. Rolf H. Möhring Technische Universität Berlin Combinatorial Optimization and Graph Algorithms Stochastic Optimization Methods in Scheduling Rolf H. Möhring Technische Universität Berlin Combinatorial Optimization and Graph Algorithms More expensive and longer... Eurotunnel Unexpected loss of 400,000,000

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

Economic optimization in Model Predictive Control

Economic optimization in Model Predictive Control Economic optimization in Model Predictive Control Rishi Amrit Department of Chemical and Biological Engineering University of Wisconsin-Madison 29 th February, 2008 Rishi Amrit (UW-Madison) Economic Optimization

More information

More Advanced Single Machine Models. University at Buffalo IE661 Scheduling Theory 1

More Advanced Single Machine Models. University at Buffalo IE661 Scheduling Theory 1 More Advanced Single Machine Models University at Buffalo IE661 Scheduling Theory 1 Total Earliness And Tardiness Non-regular performance measures Ej + Tj Early jobs (Set j 1 ) and Late jobs (Set j 2 )

More information

4 Option Futures and Other Derivatives. A contingent claim is a random variable that represents the time T payo from seller to buyer.

4 Option Futures and Other Derivatives. A contingent claim is a random variable that represents the time T payo from seller to buyer. 4 Option Futures and Other Derivatives 4.1 Contingent Claims A contingent claim is a random variable that represents the time T payo from seller to buyer. The payo for a European call option with exercise

More information

Learning for Revenue Optimization. Andrés Muñoz Medina Renato Paes Leme

Learning for Revenue Optimization. Andrés Muñoz Medina Renato Paes Leme Learning for Revenue Optimization Andrés Muñoz Medina Renato Paes Leme How to succeed in business with basic ML? ML $1 $5 $10 $9 Google $35 $1 $8 $7 $7 Revenue $8 $30 $24 $18 $10 $1 $5 Price $7 $8$9$10

More information

Discounted Stochastic Games with Voluntary Transfers

Discounted Stochastic Games with Voluntary Transfers Discounted Stochastic Games with Voluntary Transfers Sebastian Kranz University of Cologne Slides Discounted Stochastic Games Natural generalization of infinitely repeated games n players infinitely many

More information

The investment game in incomplete markets.

The investment game in incomplete markets. The investment game in incomplete markets. M. R. Grasselli Mathematics and Statistics McMaster University RIO 27 Buzios, October 24, 27 Successes and imitations of Real Options Real options accurately

More information

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems NLA p.1/13 Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems... 0 0 0 etc. a n 1,n 1 x n 1 = b n 1 a n 1,n x n solve a n,n x n = b n then back substitution: takes n

More information

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class Homework #4 CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class o Grades depend on neatness and clarity. o Write your answers with enough detail about your approach and concepts

More information

EE365: Risk Averse Control

EE365: Risk Averse Control EE365: Risk Averse Control Risk averse optimization Exponential risk aversion Risk averse control 1 Outline Risk averse optimization Exponential risk aversion Risk averse control Risk averse optimization

More information

Competitive Market Model

Competitive Market Model 57 Chapter 5 Competitive Market Model The competitive market model serves as the basis for the two different multi-user allocation methods presented in this thesis. This market model prices resources based

More information

Admissioncontrolwithbatcharrivals

Admissioncontrolwithbatcharrivals Admissioncontrolwithbatcharrivals E. Lerzan Örmeci Department of Industrial Engineering Koç University Sarıyer 34450 İstanbul-Turkey Apostolos Burnetas Department of Operations Weatherhead School of Management

More information

Lecture 10: The knapsack problem

Lecture 10: The knapsack problem Optimization Methods in Finance (EPFL, Fall 2010) Lecture 10: The knapsack problem 24.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Anu Harjula The knapsack problem The Knapsack problem is a problem

More information

ORF 307: Lecture 12. Linear Programming: Chapter 11: Game Theory

ORF 307: Lecture 12. Linear Programming: Chapter 11: Game Theory ORF 307: Lecture 12 Linear Programming: Chapter 11: Game Theory Robert J. Vanderbei April 3, 2018 Slides last edited on April 3, 2018 http://www.princeton.edu/ rvdb Game Theory John Nash = A Beautiful

More information