Option Valuation with Binomial Lattices corrected version Prepared by Lara Greden, Teaching Assistant ESD.71

Size: px
Start display at page:

Download "Option Valuation with Binomial Lattices corrected version Prepared by Lara Greden, Teaching Assistant ESD.71"

Transcription

1 Option Valuation with Binomial Lattices corrected version Prepared by Lara Greden, Teaching Assistant ESD.71 Note: corrections highlighted in bold in the text. To value options using the binomial lattice with risk-neutral pricing method, two things happen: 1. the risk-neutral probability (q) is used to calculate an expected value, AND 2. the risk-free rate (r f ) is used to discount a future expected value to the present. In the homework problem (which did not use risk-neutral pricing), the regular probability p was used to calculate the expected value of future cash flows for a node, and an assumed discount rate was used to discount that future expected value to the present value for that node. During recitation, I made the error of saying that q replaced both the probability and the discount rate. Rather, q replaces p (for expected value calculation), and r f replaces a risk-adjusted r (for discounted present value calculation). (Note that r f is also involved in the calculation of q.) Refer to the derivation of the risk-neutral pricing approach using a replicating portfolio to understand how one arrives at a pricing method that uses both q and r f. (see Lecture notes Nov. 16 th Arbitrage-Enforced Pricing of Options slide 28-end & Recitation notes Nov. 18 th ). The corrections, as compared to the exercise done in class, are in Step 4 option valuation. Corrected numbers for the entire exercise are provided within this document. The (corrected) spreadsheet is also available on the course website. Objectives: 1. Demonstrate the binomial lattice, risk-neutral approach to calculating option value. 2. Review the dynamic programming process that determines the 'strategy' for exercising the option and, thus, the value of the option. 1

2 Example: valuation of a copper mine inclusive of the option to close the mine in any time period. Methodology: Binomial lattice method with risk-neutral pricing Dynamic programming is used to solve the 'option value lattice.' o The essence of DP is that you do not have to consider all possible ways of arriving at a possible end-state. o Rather, we recognize that in each time period, we will be in some particular state, and there exists an optimal strategy if management finds themselves in that particular state. Review major assumptions: 1. Assume that the evolution of the price of copper can be modeled with a binomial lattice. o We are assuming that the evolution process is stationary (constant volatility), that each state leads to only 2 others over a period, and that a later state is a multiple of the earlier state. o Furthermore, we assume that price evolution is path independent and completely random (e.g. no mean reversion). 2. Assume that we can use arbitrage enforced pricing, or the risk-neutral approach, to value the option. o Here, we are assuming that a 'replicating portfolio' exists that provides the exact same returns as the project with option. o In this case, the replicating portfolio would consist of 'units of the revenues from the mine' and risk-free loans. o We assume that the 'units of revenues from the mine' can be freely traded in a market. 2

3 o Notice how the financial option assumptions are stretched when applied to a real option... Model Inputs: current price of copper, standard deviation of copper price, periodic rate of increase in copper price, period length, amount of copper produced, variable unit cost, fixed cost, and the risk-free rate of return. Input Data Price Data Start Price 1250 $/ton standard dev σ 0.15 /year periodic increase,ν 0.04 /year period length, T 1 year Revenue Model Amount Produced 5,000 tons/year Variable unit cost 0 $/ton Fixed Cost 6,000,000 $/year Risk-free rate of return, r 0.05 /year Calculated lattice parameters: u, d, q, and p. Calculations u 1.16 =exp(σ T) d 0.86 =1/u q =(1+r-d)/(u-d) p = (ν/σ T) 3

4 Step 1 (Price Outcome Lattice): Construct a lattice to model the movement of the prices over time. uuus o uus o S o us o ds o uds o uuds o o ddus o Solution dds o ddds o t t Step 2 (Probability Lattice - optional for now): Construct the probability lattice for the outcomes; however, note that you do not use this lattice to calculate the option value. (p u ) 3 (p u ) 2 1 p u (1-p u ) p u (1- p u ) (p u ) 2 (1- p u ) 2 p u (1- p u ) 2 Solution (1- p u ) 2 (1- p u ) 3 4

5 Step 3 (Revenue Lattice): Construct the 'outcome' or 'state of the system' lattice. Here, it is the revenue that would be received from operating in each state. o According to formula: Revenue = tons (price - variable cost) - (fixed cost) o We will find that the negative revenue in the down state of the first time period does NOT necessarily mean we should close the mine. Solution 0 1,261,464 2,436,618 3,801, , ,000 1,261,464-1,369, ,575-2,014,824 t t 5

6 Step 4 (Option Lattice): Calculate the value of the project with the option using the risk-neutral probability method and dynamic programming. o Here's how it works: We, the 'virtual managers' start at the possible states in the final time period, where we decide whether or not to keep the mine open (depending on the revenues that would be realized). C uuu = Max[value open, 0] C Solution for t=3 nodes 3,801,951 open 1,261,464 open 0 closed 0 closed t t 6

7 o Then, we move back in time one period. In each state of the second-to-last time period, the 'risk-neutral adjusted' expected value of the revenue from the mine in the future period (discounted by the risk-free rate) is added to the current revenue. Notice both q and r f are used. C uu = Max [(revenue i + (1/(1+r f ))(qc uuu + (1-q)C uud )), 0] Value alive (i.e. closed) Value dead (i.e. closed) q C uuu C 1-q C uud Solution 2,817,126 4,705,566 5,158,949 3,801, ,005,213 1,261, open open open open closed open open closed closed closed t t 7

8 o Do for all nodes in that time period, than move back to the nodes in the previous time period and repeat. o We continue to work backwards to 'today,' time zero. The results are twofold: a) the total value of the project with the option, and b) the optimal strategy for closing the mine if we find ourselves in any particular state. Step 5: Subtract the 'base case (no option) project value' from the 'value with option' to determine the value associated with the option to close. o Need to calculate the NPV of the project without the option (using an assumed discount rate) to complete this step. o In this example, we will use the expected value of revenue in each year. (We will not consider uncertainty.) NPV of project without uncertainty and without option Assumed discount rate 0.12 /year Time period Expected Revenues 0 500, ,000 1,030,400 NPV $1.6 M Base Case Project with option value of option alone $1.6 M $2.8 M =($ ) = $1.2 M 8

9 Summary To determine option value using a binomial lattice, use dynamic programming by working backwards, starting at the final time period. Determine whether to exercise option or not by looking at the (riskneutral) adjusted expected value of future cash flows discounted to the present using the risk-free rate. Do not need to separately consider all possible future cash flows radiating from each node because of the dynamic programming approach. Binomial lattice gives a record of the strategy to follow in any particular state as well as the value of the project with the option. What if a manager finds themselves in a state in between one of the modeled states? 9

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science

More information

B8.3 Week 2 summary 2018

B8.3 Week 2 summary 2018 S p VT u = f(su ) S T = S u V t =? S t S t e r(t t) 1 p VT d = f(sd ) S T = S d t T time Figure 1: Underlying asset price in a one-step binomial model B8.3 Week 2 summary 2018 The simplesodel for a random

More information

Lattice Model of System Evolution. Outline

Lattice Model of System Evolution. Outline Lattice Model of System Evolution Richard de Neufville Professor of Engineering Systems and of Civil and Environmental Engineering MIT Massachusetts Institute of Technology Lattice Model Slide 1 of 32

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

Lattice Model of System Evolution. Outline

Lattice Model of System Evolution. Outline Lattice Model of System Evolution Richard de Neufville Professor of Engineering Systems and of Civil and Environmental Engineering MIT Massachusetts Institute of Technology Lattice Model Slide 1 of 48

More information

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E Put-Call Parity l The prices of puts and calls are related l Consider the following portfolio l Hold one unit of the underlying asset l Hold one put option l Sell one call option l The value of the portfolio

More information

Option Valuation (Lattice)

Option Valuation (Lattice) Page 1 Option Valuation (Lattice) Richard de Neufville Professor of Systems Engineering and of Civil and Environmental Engineering MIT Massachusetts Institute of Technology Option Valuation (Lattice) Slide

More information

REAL OPTIONS ANALYSIS HANDOUTS

REAL OPTIONS ANALYSIS HANDOUTS REAL OPTIONS ANALYSIS HANDOUTS 1 2 REAL OPTIONS ANALYSIS MOTIVATING EXAMPLE Conventional NPV Analysis A manufacturer is considering a new product line. The cost of plant and equipment is estimated at $700M.

More information

Multi-Period Binomial Option Pricing - Outline

Multi-Period Binomial Option Pricing - Outline Multi-Period Binomial Option - Outline 1 Multi-Period Binomial Basics Multi-Period Binomial Option European Options American Options 1 / 12 Multi-Period Binomials To allow for more possible stock prices,

More information

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and CHAPTER 13 Solutions Exercise 1 1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and (13.82) (13.86). Also, remember that BDT model will yield a recombining binomial

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p 57) #4.1, 4., 4.3 Week (pp 58-6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15-19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9-31) #.,.6,.9 Week 4 (pp 36-37)

More information

Binomial Option Pricing

Binomial Option Pricing Binomial Option Pricing The wonderful Cox Ross Rubinstein model Nico van der Wijst 1 D. van der Wijst Finance for science and technology students 1 Introduction 2 3 4 2 D. van der Wijst Finance for science

More information

Fixed Income and Risk Management

Fixed Income and Risk Management Fixed Income and Risk Management Fall 2003, Term 2 Michael W. Brandt, 2003 All rights reserved without exception Agenda and key issues Pricing with binomial trees Replication Risk-neutral pricing Interest

More information

IAPM June 2012 Second Semester Solutions

IAPM June 2012 Second Semester Solutions IAPM June 202 Second Semester Solutions The calculations are given below. A good answer requires both the correct calculations and an explanation of the calculations. Marks are lost if explanation is absent.

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in MAT2700 Introduction to mathematical finance and investment theory. Day of examination: November, 2015. Examination hours:??.????.??

More information

non linear Payoffs Markus K. Brunnermeier

non linear Payoffs Markus K. Brunnermeier Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call

More information

Lattice Valuation of Options. Outline

Lattice Valuation of Options. Outline Lattice Valuation of Options Richard de Neufville Professor of Engineering Systems and of Civil and Environmental Engineering MIT Massachusetts Institute of Technology Lattice Valuation Slide 1 of 35 Outline

More information

Basics of Derivative Pricing

Basics of Derivative Pricing Basics o Derivative Pricing 1/ 25 Introduction Derivative securities have cash ows that derive rom another underlying variable, such as an asset price, interest rate, or exchange rate. The absence o arbitrage

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE.

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Sample In-Term Exam II Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The

More information

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

MS-E2114 Investment Science Exercise 10/2016, Solutions

MS-E2114 Investment Science Exercise 10/2016, Solutions A simple and versatile model of asset dynamics is the binomial lattice. In this model, the asset price is multiplied by either factor u (up) or d (down) in each period, according to probabilities p and

More information

Pricing Options with Binomial Trees

Pricing Options with Binomial Trees Pricing Options with Binomial Trees MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will learn: a simple discrete framework for pricing options, how to calculate risk-neutral

More information

Risk-neutral Binomial Option Valuation

Risk-neutral Binomial Option Valuation Risk-neutral Binomial Option Valuation Main idea is that the option price now equals the expected value of the option price in the future, discounted back to the present at the risk free rate. Assumes

More information

Review of whole course

Review of whole course Page 1 Review of whole course A thumbnail outline of major elements Intended as a study guide Emphasis on key points to be mastered Massachusetts Institute of Technology Review for Final Slide 1 of 24

More information

BUSM 411: Derivatives and Fixed Income

BUSM 411: Derivatives and Fixed Income BUSM 411: Derivatives and Fixed Income 12. Binomial Option Pricing Binomial option pricing enables us to determine the price of an option, given the characteristics of the stock other underlying asset

More information

Option pricing models

Option pricing models Option pricing models Objective Learn to estimate the market value of option contracts. Outline The Binomial Model The Black-Scholes pricing model The Binomial Model A very simple to use and understand

More information

Real Options and Game Theory in Incomplete Markets

Real Options and Game Theory in Incomplete Markets Real Options and Game Theory in Incomplete Markets M. Grasselli Mathematics and Statistics McMaster University IMPA - June 28, 2006 Strategic Decision Making Suppose we want to assign monetary values to

More information

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options Real Options for Engineering Systems Session 4: Valuation of financial options Stefan Scholtes Judge Institute of Management, CU Slide 1 Financial Options Option: Right (but not obligation) to buy ( call

More information

Advanced Corporate Finance. 5. Options (a refresher)

Advanced Corporate Finance. 5. Options (a refresher) Advanced Corporate Finance 5. Options (a refresher) Objectives of the session 1. Define options (calls and puts) 2. Analyze terminal payoff 3. Define basic strategies 4. Binomial option pricing model 5.

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives November 5, 212 Option Analysis and Modeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis and Modeling:

More information

Lecture 16. Options and option pricing. Lecture 16 1 / 22

Lecture 16. Options and option pricing. Lecture 16 1 / 22 Lecture 16 Options and option pricing Lecture 16 1 / 22 Introduction One of the most, perhaps the most, important family of derivatives are the options. Lecture 16 2 / 22 Introduction One of the most,

More information

OPTION VALUATION Fall 2000

OPTION VALUATION Fall 2000 OPTION VALUATION Fall 2000 2 Essentially there are two models for pricing options a. Black Scholes Model b. Binomial option Pricing Model For equities, usual model is Black Scholes. For most bond options

More information

Review of Derivatives I. Matti Suominen, Aalto

Review of Derivatives I. Matti Suominen, Aalto Review of Derivatives I Matti Suominen, Aalto 25 SOME STATISTICS: World Financial Markets (trillion USD) 2 15 1 5 Securitized loans Corporate bonds Financial institutions' bonds Public debt Equity market

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II - Solutions This problem set is aimed at making up the lost

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

Arbitrage Enforced Valuation of Financial Options. Outline

Arbitrage Enforced Valuation of Financial Options. Outline Arbitrage Enforced Valuation of Financial Options Richard de Neufville Professor of Engineering Systems and of Civil and Environmental Engineering MIT Arbitrage Enforced Valuation Slide 1 of 40 Outline

More information

MS-E2114 Investment Science Lecture 4: Applied interest rate analysis

MS-E2114 Investment Science Lecture 4: Applied interest rate analysis MS-E2114 Investment Science Lecture 4: Applied interest rate analysis A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

Hull, Options, Futures, and Other Derivatives, 9 th Edition

Hull, Options, Futures, and Other Derivatives, 9 th Edition P1.T4. Valuation & Risk Models Hull, Options, Futures, and Other Derivatives, 9 th Edition Bionic Turtle FRM Study Notes By David Harper, CFA FRM CIPM and Deepa Sounder www.bionicturtle.com Hull, Chapter

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model

More information

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold)

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) Part 1: Multiple Choice Question 1 Consider the following information on three mutual funds (all information is in annualized

More information

Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences.

Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. Derivative Securities Section 9 Fall 2004 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. Futures, and options on futures. Martingales and their role in option pricing. A brief introduction

More information

MATH 425: BINOMIAL TREES

MATH 425: BINOMIAL TREES MATH 425: BINOMIAL TREES G. BERKOLAIKO Summary. These notes will discuss: 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price

More information

Valuation of Options: Theory

Valuation of Options: Theory Valuation of Options: Theory Valuation of Options:Theory Slide 1 of 49 Outline Payoffs from options Influences on value of options Value and volatility of asset ; time available Basic issues in valuation:

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in MAT2700 Introduction to mathematical finance and investment theory. Day of examination: Monday, December 14, 2015. Examination

More information

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2.

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2. Derivative Securities Multiperiod Binomial Trees. We turn to the valuation of derivative securities in a time-dependent setting. We focus for now on multi-period binomial models, i.e. binomial trees. This

More information

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly). 1 EG, Ch. 22; Options I. Overview. A. Definitions. 1. Option - contract in entitling holder to buy/sell a certain asset at or before a certain time at a specified price. Gives holder the right, but not

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 and Lecture Quantitative Finance Spring Term 2015 Prof. Dr. Erich Walter Farkas Lecture 06: March 26, 2015 1 / 47 Remember and Previous chapters: introduction to the theory of options put-call parity fundamentals

More information

Exercise 14 Interest Rates in Binomial Grids

Exercise 14 Interest Rates in Binomial Grids Exercise 4 Interest Rates in Binomial Grids Financial Models in Excel, F65/F65D Peter Raahauge December 5, 2003 The objective with this exercise is to introduce the methodology needed to price callable

More information

ECONOMIC VALUATION OF MULTI- UNIT NUCLEAR PLANT PROGRAMS BASED ON REAL OPTIONS ANALYSIS. 32nd IAEE International Conference Arturo G.

ECONOMIC VALUATION OF MULTI- UNIT NUCLEAR PLANT PROGRAMS BASED ON REAL OPTIONS ANALYSIS. 32nd IAEE International Conference Arturo G. ECONOMIC VALUATION OF MULTI- UNIT NUCLEAR PLANT PROGRAMS BASED ON REAL OPTIONS ANALYSIS 32nd IAEE International Conference Arturo G. Reinking Real Options Analysis What results does ROA deliver when evaluating

More information

ESD 71 / / etc 2004 Final Exam de Neufville ENGINEERING SYSTEMS ANALYSIS FOR DESIGN. Final Examination, 2004

ESD 71 / / etc 2004 Final Exam de Neufville ENGINEERING SYSTEMS ANALYSIS FOR DESIGN. Final Examination, 2004 ENGINEERING SYSTEMS ANALYSIS FOR DESIGN Final Examination, 2004 Item Points Possible Achieved Your Name 2 1 Cost Function 18 2 Engrg Economy Valuation 26 3 Decision Analysis 18 4 Value of Information 15

More information

Model Calibration and Hedging

Model Calibration and Hedging Model Calibration and Hedging Concepts and Buzzwords Choosing the Model Parameters Choosing the Drift Terms to Match the Current Term Structure Hedging the Rate Risk in the Binomial Model Term structure

More information

Advanced Numerical Methods

Advanced Numerical Methods Advanced Numerical Methods Solution to Homework One Course instructor: Prof. Y.K. Kwok. When the asset pays continuous dividend yield at the rate q the expected rate of return of the asset is r q under

More information

Real Option Valuation. Entrepreneurial Finance (15.431) - Spring Antoinette Schoar

Real Option Valuation. Entrepreneurial Finance (15.431) - Spring Antoinette Schoar Real Option Valuation Spotting Real (Strategic) Options Strategic options are a central in valuing new ventures o Option to expand o Option to delay o Option to abandon o Option to get into related businesses

More information

MAFS525 Computational Methods for Pricing Structured Products. Topic 1 Lattice tree methods

MAFS525 Computational Methods for Pricing Structured Products. Topic 1 Lattice tree methods MAFS525 Computational Methods for Pricing Structured Products Topic 1 Lattice tree methods 1.1 Binomial option pricing models Risk neutral valuation principle Multiperiod extension Dynamic programming

More information

Aalto. Derivatives LECTURE 5. Professor: Matti SUOMINEN. 17 Pages

Aalto. Derivatives LECTURE 5. Professor: Matti SUOMINEN. 17 Pages Aalto Derivatives LECTURE 5 Professor: Matti SUOMINEN 17 Pages REAL OPTIONS / OPTIONS IN CAPITAL BUDGETING Traditional NPV calculations do not take into account the value of flexibility in investments.

More information

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester Our exam is Wednesday, December 19, at the normal class place and time. You may bring two sheets of notes (8.5

More information

M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina

M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. Time: 50 minutes

More information

Risk Neutral Valuation, the Black-

Risk Neutral Valuation, the Black- Risk Neutral Valuation, the Black- Scholes Model and Monte Carlo Stephen M Schaefer London Business School Credit Risk Elective Summer 01 C = SN( d )-PV( X ) N( ) N he Black-Scholes formula 1 d (.) : cumulative

More information

Chapter 24 Interest Rate Models

Chapter 24 Interest Rate Models Chapter 4 Interest Rate Models Question 4.1. a F = P (0, /P (0, 1 =.8495/.959 =.91749. b Using Black s Formula, BSCall (.8495,.9009.959,.1, 0, 1, 0 = $0.0418. (1 c Using put call parity for futures options,

More information

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005 Corporate Finance, Module 21: Option Valuation Practice Problems (The attached PDF file has better formatting.) Updated: July 7, 2005 {This posting has more information than is needed for the corporate

More information

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE.

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. 1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. Previously we treated binomial models as a pure theoretical toy model for our complete economy. We turn to the issue of how

More information

Two Types of Options

Two Types of Options FIN 673 Binomial Option Pricing Professor Robert B.H. Hauswald Kogod School of Business, AU Two Types of Options An option gives the holder the right, but not the obligation, to buy or sell a given quantity

More information

Futures and Forward Markets

Futures and Forward Markets Futures and Forward Markets (Text reference: Chapters 19, 21.4) background hedging and speculation optimal hedge ratio forward and futures prices futures prices and expected spot prices stock index futures

More information

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 Option Pricing Models c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 If the world of sense does not fit mathematics, so much the worse for the world of sense. Bertrand Russell (1872 1970)

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

Help Session 4. David Sovich. Washington University in St. Louis

Help Session 4. David Sovich. Washington University in St. Louis Help Session 4 David Sovich Washington University in St. Louis TODAY S AGENDA More on no-arbitrage bounds for calls and puts Some discussion of American options Replicating complex payoffs Pricing in the

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Term Structure Lattice Models

Term Structure Lattice Models IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh Term Structure Lattice Models These lecture notes introduce fixed income derivative securities and the modeling philosophy used to

More information

The Binomial Model. Chapter 3

The Binomial Model. Chapter 3 Chapter 3 The Binomial Model In Chapter 1 the linear derivatives were considered. They were priced with static replication and payo tables. For the non-linear derivatives in Chapter 2 this will not work

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

B6302 Sample Placement Exam Academic Year

B6302 Sample Placement Exam Academic Year Revised June 011 B630 Sample Placement Exam Academic Year 011-01 Part 1: Multiple Choice Question 1 Consider the following information on three mutual funds (all information is in annualized units). Fund

More information

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other

More information

Option Models for Bonds and Interest Rate Claims

Option Models for Bonds and Interest Rate Claims Option Models for Bonds and Interest Rate Claims Peter Ritchken 1 Learning Objectives We want to be able to price any fixed income derivative product using a binomial lattice. When we use the lattice to

More information

Options Markets: Introduction

Options Markets: Introduction 17-2 Options Options Markets: Introduction Derivatives are securities that get their value from the price of other securities. Derivatives are contingent claims because their payoffs depend on the value

More information

2 The binomial pricing model

2 The binomial pricing model 2 The binomial pricing model 2. Options and other derivatives A derivative security is a financial contract whose value depends on some underlying asset like stock, commodity (gold, oil) or currency. The

More information

Fixed Income Financial Engineering

Fixed Income Financial Engineering Fixed Income Financial Engineering Concepts and Buzzwords From short rates to bond prices The simple Black, Derman, Toy model Calibration to current the term structure Nonnegativity Proportional volatility

More information

Chapter 14 Exotic Options: I

Chapter 14 Exotic Options: I Chapter 14 Exotic Options: I Question 14.1. The geometric averages for stocks will always be lower. Question 14.2. The arithmetic average is 5 (three 5 s, one 4, and one 6) and the geometric average is

More information

CHAPTER 12 APPENDIX Valuing Some More Real Options

CHAPTER 12 APPENDIX Valuing Some More Real Options CHAPTER 12 APPENDIX Valuing Some More Real Options This appendix demonstrates how to work out the value of different types of real options. By assuming the world is risk neutral, it is ignoring the fact

More information

Advanced Corporate Finance Exercises Session 4 «Options (financial and real)»

Advanced Corporate Finance Exercises Session 4 «Options (financial and real)» Advanced Corporate Finance Exercises Session 4 «Options (financial and real)» Professor Benjamin Lorent (blorent@ulb.ac.be) http://homepages.ulb.ac.be/~blorent/gests410.htm Teaching assistants: Nicolas

More information

S u =$55. S u =S (1+u) S=$50. S d =$48.5. S d =S (1+d) C u = $5 = Max{55-50,0} $1.06. C u = Max{Su-X,0} (1+r) (1+r) $1.06. C d = $0 = Max{48.

S u =$55. S u =S (1+u) S=$50. S d =$48.5. S d =S (1+d) C u = $5 = Max{55-50,0} $1.06. C u = Max{Su-X,0} (1+r) (1+r) $1.06. C d = $0 = Max{48. Fi8000 Valuation of Financial Assets Spring Semester 00 Dr. Isabel katch Assistant rofessor of Finance Valuation of Options Arbitrage Restrictions on the Values of Options Quantitative ricing Models Binomial

More information

Conoco s Value and IPO: Real Options Analysis 1

Conoco s Value and IPO: Real Options Analysis 1 FIN 673 Professor Robert B.H. Hauswald Mergers and Acquisitions Kogod School of Business, AU Conoco s Value and IPO: Real Options Analysis 1 As you might recall a standard DCF analysis of Conoco s free

More information

Fixed-Income Securities Lecture 5: Tools from Option Pricing

Fixed-Income Securities Lecture 5: Tools from Option Pricing Fixed-Income Securities Lecture 5: Tools from Option Pricing Philip H. Dybvig Washington University in Saint Louis Review of binomial option pricing Interest rates and option pricing Effective duration

More information

1 Geometric Brownian motion

1 Geometric Brownian motion Copyright c 05 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM is

More information

Introduction to Real Options

Introduction to Real Options IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh Introduction to Real Options We introduce real options and discuss some of the issues and solution methods that arise when tackling

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 Fundamentals of Futures and Options Markets, 8th Ed, Ch 12, Copyright John C. Hull 2013 1 A Simple Binomial Model A stock price is currently $20. In three months

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility Simple Arbitrage Relations Payoffs to Call and Put Options Black-Scholes Model Put-Call Parity Implied Volatility Option Pricing Options: Definitions A call option gives the buyer the right, but not the

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Using Flexible Business Development Plans to Raise the Value of High-Technology Startups

Using Flexible Business Development Plans to Raise the Value of High-Technology Startups Using Flexible Business Development Plans to Raise the Value of High-Technology Startups Samir Mikati, MIT Engineering Systems Division ESD 71: Engineering Systems Analysis for Design Professor Richard

More information

Motivating example: MCI

Motivating example: MCI Real Options - intro Real options concerns using option pricing like thinking in situations where one looks at investments in real assets. This is really a matter of creative thinking, playing the game

More information

Investment Guarantees Chapter 7. Investment Guarantees Chapter 7: Option Pricing Theory. Key Exam Topics in This Lesson.

Investment Guarantees Chapter 7. Investment Guarantees Chapter 7: Option Pricing Theory. Key Exam Topics in This Lesson. Investment Guarantees Chapter 7 Investment Guarantees Chapter 7: Option Pricing Theory Mary Hardy (2003) Video By: J. Eddie Smith, IV, FSA, MAAA Investment Guarantees Chapter 7 1 / 15 Key Exam Topics in

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information