CHAPTER 5 STOCHASTIC SCHEDULING

Size: px
Start display at page:

Download "CHAPTER 5 STOCHASTIC SCHEDULING"

Transcription

1 CHPTER STOCHSTIC SCHEDULING In some situations, estimating activity duration becomes a difficult task due to ambiguity inherited in and the risks associated with some work. In such cases, the duration of an activity is estimated as a range of time values rather than being a single value. This chapter deals with the scheduling of the project under uncertain activity duration. The program evaluation and review technique is presented as one of the methods that can be used to schedule projects with uncertain activities durations. lso, an introduction to Monte Carlo simulation technique is presented..1 Scheduling with Uncertain Durations Some scheduling procedures explicitly consider the uncertainty in activity duration estimates by using the probabilistic distribution of activity durations. That is, the duration of a particular activity is assumed to be a random variable that is distributed in a particular fashion. For example, an activity duration might be assumed to be distributed as a normal or a beta distributed random variable as illustrated in Figure.1. This figure shows the probability or chance of experiencing a particular activity duration based on a probabilistic distribution. The beta distribution is often used to characterize activity durations, since it can have an absolute minimum and an absolute maximum of possible duration times. The normal distribution is a good approximation to the beta distribution in the center of the distribution and is easy to work with, so it is often used as an approximation. Construction Management 0 Dr. Emad Elbeltagi

2 Figure.1: Beta and normally distributed activity durations If a standard random variable is used to characterize the distribution of activity durations, then only a few parameters are required to calculate the probability of any particular duration. Still, the estimation problem is increased considerably since more than one parameter is required to characterize most of the probabilistic distribution used to represent activity durations. For the beta distribution, three or four parameters are required depending on its generality, whereas the normal distribution requires two parameters. The most common formal approach to incorporate uncertainty in the scheduling process is to apply the critical path scheduling process and then analyze the results from a probabilistic perspective. This process is usually referred to as the Program Evaluation and Review Technique (PERT) method. s noted earlier, the duration of the critical path represents the minimum time required to complete the project. Using expected activity durations and critical path scheduling, a critical path of activities can be identified. This critical path is then used to analyze the duration of the project incorporating the uncertainty of the activity durations along the critical path. The expected project duration is equal to the sum of the expected durations of the activities along the critical path. Construction Management 1 Dr. Emad Elbeltagi

3 ssuming that activity durations are independent random variables, the variance or variation in the duration of this critical path is calculated as the sum of the variances along the critical path. With the mean and variance of the identified critical path known, the distribution of activity durations can also be computed..1.1 Program Evaluation and Review Technique Both CPM and PERT were introduced at approximately the same time and, despite their separate origins, they were very similar. The PERT method shares many similarities with CPM. Both require that a project be broken down into activities that could be presented in the form of a network diagram showing their sequential relationships to one another. Both require time estimates for each activity, which are used in routine calculations to determine project duration and scheduling data for each activity. CPM requires a reasonably accurate knowledge of time and cost for each activity. In many situations, however, the duration of an activity can not be accurately forecasted, and a degree of uncertainty exists. Contrary to CPM, PERT introduces uncertainty into the estimates for activity and project durations. It is well suited for those situations where there is either insufficient background information to specify accurately time and cost or where project activities require research and development. In the original development of PERT approach, O notations are used. However, ON diagramming can be easily used alternatively. The method is based on the well-known central limit theorem. The theorem states that: Where a series of sequential independent activities lie on the critical path of a network, the sum of the individual activity durations will be distributed in approximately normal fashion, regardless of the distribution of the individual activities themselves. The mean of the distribution of the sum of the activity durations will be the sum of the means of the individual activities and its variance will be the sum of the activities variances. The primary assumptions of PERT can be summarized as follows: Construction Management Dr. Emad Elbeltagi

4 1. ny PERT path must have enough activities to make central limit theorem valid.. ny PERT path must have enough activities to make central limit theorem valid. 3. The mean of the distribution of the path with the greatest duration, from the initial node to a given node, is given by the maximum mean of the duration distribution of the paths entering the node.. PERT critical path is longer enough than any other path in the network. PERT, unlike CPM, uses three time estimates for each activity. These estimates of the activity duration enable the expected mean time, as well as the standard deviation and variance, to be derived mathematically. These duration estimates are: - Optimistic duration (a); an estimate of the minimum time required for an activity if exceptionally good luck is experienced. - Most likely or modal time (m); the time required if the activity is repeated a number of times under essentially the same conditions. - Pessimistic duration (b); an estimate of the maximum time required if unusually bad luck is experienced. These three time estimates become the framework on which the probability distribution curve for the activity is erected. Many authors argue that beta distribution is mostly fit construction activities. The use of these optimistic, most likely, and pessimistic estimates stems from the fact that these are thought to be easier for managers to estimate subjectively. The formulas for calculating the mean and variance are derived by assuming that the activity durations follow a probabilistic beta distribution under a restrictive condition. The probability density function of beta distributions for a random variable x is given by: α β f(x) = k(x - a) (x - b), a x b, α, β > 1 (.1) Construction Management 3 Dr. Emad Elbeltagi

5 where k is a constant which can be expressed in terms of α and β. Several beta distributions for different sets of values of α and β are shown in Figure.. Figure.: Illustration of several Beta distributions Using beta distribution, simple approximations are made for the activities mean time and its standard deviation. Using the three times estimates, the expected mean time (t e ) is derived using Eq... Then, t e is used as the best available time approximation for the activity in question. The standard deviation is given by Eq..3, and hence the variance (ν) can be determined as ν = σ. a + m + b t e = (.) b a σ = (.3) By adopting activity expected mean time, the critical path calculations proceed as CPM. ssociated with each duration in PERT, however, is its standard deviation or its Construction Management Dr. Emad Elbeltagi

6 variance. The project duration is determined by summing up the activity expected mean time along the critical path and thus will be an expected mean duration. Since the activities on the critical path are independent of each other, central limit theory gives the variance of the project duration as the sum of the individual variances of these critical path activities. Once the expected mean time for project duration (T X ) and its standard deviation (σ X ) are determined, it is possible to calculate the chance of meeting specific project duration (T S ). Then normal probability tables are used to determine such chance using Equation.. Z T T S X = (.) σ X T = T + Z * σ is an equivalent form of Equation., which enables the scheduled S X X time for an event to be determined based on a given risk level. The procedure for hand probability computations using PERT can be summarized in the following steps: 1. Make the usual forward and backward pass computations based on a single estimate (mean) for each activity.. Obtain estimates for a, m, and b for only critical activities. If necessary, adjust the length of the critical path as dictated by the new t e values based on a, m, and b. 3. Compute the variance for event x (ν X ) by summing the variances for the critical activities leading to event x.. Compute Z using Equation. and find the corresponding normal probability. Consider the nine activity example project shown in Table.1. Suppose that the project have very uncertain activity time durations. s a result, project scheduling considering this uncertainty is desired. Construction Management Dr. Emad Elbeltagi

7 Table.1: Precedence relations and durations for a 9-activity project example ctivity Description Predecessors Duration B C D E F G H I Site clearing Removal of trees General excavation Grading general area Excavation for trenches Placing formwork and RFT for concrete Installing sewer lines Installing other utilities Pouring concrete B, C B, C D, E D, E F, G Table. shows the estimated optimistic, most likely and pessimistic durations for the nine activities. From these estimates, the mean, variance and standard deviation are calculated. In Figure.3, PERT calculations are performed very similar to that of CPM, considering the mean duration of each activity. Table.: ctivity duration estimates for the 9-activity project ctivity Duration Standard Mean a m b Deviation B C D E F G H I Construction Management Dr. Emad Elbeltagi

8 .0 D H C E G I B F Figure.3: PERT calculations for 9-activity example The critical path for this project ignoring uncertainty in activity durations consists of activities, C, F and I. pplying the PERT analysis procedure suggests that the duration of the project would be approximately normally distributed. The sum of the means for the critical activities is = 30.0 days, and the sum of the variances is (0.33) + (0.) + (0.) + (0.) = 1. leading to a standard deviation of 1. days. With normally distributed project duration, the probability of meeting a project deadline can be computed using Equation (.). For example, the probability of project completion within 3 days is: 3 30 Z = =.1 1. where z is the standard normal distribution tabulated value of the cumulative standard distribution, which can be determined form standard tables of normal distribution. From Table.3, the probability of completing the project in 3 days is 0%. Construction Management Dr. Emad Elbeltagi

9 -3σ -σ -σ 0 σ σ 3σ Figure.: Normal distribution curve Table.3: rea under the normal curve measured from the center SD rea % from the center SD rea % from the center 0.1σ Example.1 Suppose that a network has been developed for a particular project with nondeterministic durations for the activities and the completion time for that network is 30 days and the sum of the standard deviation for the activities on the critical path is 130. Find the probability that the project will be completed in 300 days. Construction Management Dr. Emad Elbeltagi

10 Solution First, convert the normal random variable to the standard normal random variable. T S T Z = X = (300 30) /. = σ X From Table 3, the corresponding probability = 1.% Then, the probability to complete the project in 300 days equals = 0 1. = 33.%. Example. Given the information from the previous example, what is the duration that you can give with 90 percent assurance? Solution From tables find the value of z corresponding to probability of 0%, thud yields z = 1. then, apply z into equation : 1. = (t 30) /. or t =. x = 30 days..1. Criticism to Program Evaluation and Review Technique While the PERT method has been made widely available, it suffers from three major problems. First, the procedure focuses upon a single critical path, when many paths might become critical due to random fluctuations. For example, suppose that the critical path with longest expected time happened to be completed early. Unfortunately, this does not necessarily mean that the project is completed early since another path or sequence of activities might take longer. Similarly, a longer than expected duration for an activity not on the critical path might result in that activity suddenly becoming Construction Management 9 Dr. Emad Elbeltagi

11 critical. s a result of the focus on only a single path, the PERT method typically underestimates the actual project duration. s a second problem with the PERT procedure, it is incorrect to assume that most construction activity durations are independent random variables. In practice, durations are correlated with one another. For example, if problems are encountered in the delivery of concrete for a project, this problem is likely to influence the expected duration of numerous activities involving concrete pours on a project. Positive correlations of this type between activity durations imply that the PERT method underestimates the variance of the critical path and thereby produces over-optimistic expectations of the probability of meeting a particular project completion deadline. Finally, the PERT method requires three duration estimates for each activity rather than the single estimate developed for critical path scheduling. Thus, the difficulty and labor of estimating activity characteristics is multiplied threefold.. Monte Carlo Simulation..1 Monte Carlo Simulation Characteristics - Replaces analytic solution with raw computing power. - voids need to simplify to get analytic solution - No need to assume functional form of activity/project distributions. - llows determining the criticality index of an activity (Proportion of runs in which the activity was in the critical path). - Hundreds to thousands of simulations needed... Monte Carlo Simulation Process - Set the duration distribution for each activity. No functional form of distribution assumed. Could be joint distribution for multiple activities. - Iterate: for each trial ( realization ) Sample random duration from each distributions Construction Management 1 Dr. Emad Elbeltagi

12 Find critical path & durations with standard CPM; Record these results - Report recorded results Report recorded results. Duration distribution Per--node criticality index (% runs where critical) Example.3 Table.: Data for Example.3 ctivity Optimistic time, a Most likely time, m Pessimistic time, b Expected value, d Standard deviation, s 1 B C D 1 E 0.33 F 0. G 0.33 Construction Management 111 Dr. Emad Elbeltagi

13 Table.: Summary of simulation runs for Example.3 Run ctivity Duration Number B C D E F G Critical Path -C-F-G -D-F-G -C-F-G -D-F-G -C-F-G -C-F-G -C-F-G -C-F-G -C-F-G -C-F-G Completion Time Figure.: Project duration distribution Construction Management 11 Dr. Emad Elbeltagi

14 Then the probability that a project ends in a specific time (t) equals number of times the project finished in less than or Equal to t divided by the total number of replications. For example, the probability that the project ends in 0 weeks or less is: P( 0 ) = 13 / 0 = %...3 Criticality Index Criticality index is defined as the proportion of runs in which the activity was in the critical path. PERT assumes binary (either 0% or 0%)..3 Exercises 1. Recently, you were assigned to manage a project for your company. You have constructed a network diagram depicting various activities in the project. In addition, you asked various managers and subordinates to estimate the amount of time they would expect each activity to take. Their responses (in days) were as follows: ctivity Optimistic (a) Duration (days) Most likely (m) Pessimistic (b) B 1 C 3 D E 9 C D 0 B E 3 Construction Management 113 Dr. Emad Elbeltagi

15 a. Compute the mean and variance in time for each activity. b. Determine the critical path and the expected length of the critical path. c. ssume that the time required to complete a path is normally distributed. What is the probability of completing the critical path in less than 1 days? d. If you wanted to be at least 9 percent sure of completing the project on time, what schedule durations would you quote?. Consider the project given in the next table. Find the probability that the project will be completed within 0 and 0 days. What is the project expected duration corresponding to 0% assurance. ctivity Optimistic (a) Duration (days) Most likely (m) Pessimistic (b) Dependencies 1 - B 3 - C 3 0 D B E 0 3 C, D F , B 3. You have just decided to open your own geotechnical consulting firm. To secure financing from the bank, you must present a plan for when you expect some income from your firm. You sit down with your banker and develop this plan of things that must be accomplished prior to starting your fist job. Estimated duration and precedence relationships for these activities are shown in the table below. Durations are given in days. a. Draw a PERT diagram and determine the expected duration and the critical path. Construction Management 11 Dr. Emad Elbeltagi

16 b. ssume that the time required to complete a path is normally distributed. Determine the probability of being able to start your fist job within days. c. To provide an allowance for unforeseen problems, you want to present your banker with a time before you start operations based upon a 9 percent confidence level. How many days from receipt of the loan will you tell banker to expect you to start your first job? ctivity Description Optimistic (a) B C D E F G H I Purchase land Hire staff Obtain permits Obtain business license Site preparation Construct office Paving & landscaping Stock soil testing equipment Test equipment Duration (days) Most likely (m) Pessimistic (b) Immediate predecessor - C, D E F B, G H Construction Management 11 Dr. Emad Elbeltagi

1 of 14 4/27/2009 7:45 AM

1 of 14 4/27/2009 7:45 AM 1 of 14 4/27/2009 7:45 AM Chapter 7 - Network Models in Project Management INTRODUCTION Most realistic projects that organizations like Microsoft, General Motors, or the U.S. Defense Department undertake

More information

PROJECT MANAGEMENT: PERT AMAT 167

PROJECT MANAGEMENT: PERT AMAT 167 PROJECT MANAGEMENT: PERT AMAT 167 PROBABILISTIC TIME ESTIMATES We need three time estimates for each activity: Optimistic time (t o ): length of time required under optimum conditions; Most likely time

More information

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 18 PERT

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 18 PERT Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 18 PERT (Refer Slide Time: 00:56) In the last class we completed the C P M critical path analysis

More information

Project Planning. Identifying the Work to Be Done. Gantt Chart. A Gantt Chart. Given: Activity Sequencing Network Diagrams

Project Planning. Identifying the Work to Be Done. Gantt Chart. A Gantt Chart. Given: Activity Sequencing Network Diagrams Project Planning Identifying the Work to Be Done Activity Sequencing Network Diagrams Given: Statement of work written description of goals work & time frame of project Work Breakdown Structure Be able

More information

CHAPTER 6 CRASHING STOCHASTIC PERT NETWORKS WITH RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM

CHAPTER 6 CRASHING STOCHASTIC PERT NETWORKS WITH RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM CHAPTER 6 CRASHING STOCHASTIC PERT NETWORKS WITH RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM 6.1 Introduction Project Management is the process of planning, controlling and monitoring the activities

More information

Project Management Techniques (PMT)

Project Management Techniques (PMT) Project Management Techniques (PMT) Critical Path Method (CPM) and Project Evaluation and Review Technique (PERT) are 2 main basic techniques used in project management. Example: Construction of a house.

More information

SCHEDULE CREATION AND ANALYSIS. 1 Powered by POeT Solvers Limited

SCHEDULE CREATION AND ANALYSIS. 1   Powered by POeT Solvers Limited SCHEDULE CREATION AND ANALYSIS 1 www.pmtutor.org Powered by POeT Solvers Limited While building the project schedule, we need to consider all risk factors, assumptions and constraints imposed on the project

More information

Project Management. Chapter 2. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall

Project Management. Chapter 2. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall Project Management Chapter 2 02-0 1 What is a Project? Project An interrelated set of activities with a definite starting and ending point, which results in a unique outcome for a specific allocation of

More information

A convenient analytical and visual technique of PERT and CPM prove extremely valuable in assisting the managers in managing the projects.

A convenient analytical and visual technique of PERT and CPM prove extremely valuable in assisting the managers in managing the projects. Introduction Any project involves planning, scheduling and controlling a number of interrelated activities with use of limited resources, namely, men, machines, materials, money and time. The projects

More information

Project Management Chapter 13

Project Management Chapter 13 Lecture 12 Project Management Chapter 13 Introduction n Managing large-scale, complicated projects effectively is a difficult problem and the stakes are high. n The first step in planning and scheduling

More information

CHAPTER 9: PROJECT MANAGEMENT

CHAPTER 9: PROJECT MANAGEMENT CHAPTER 9: PROJECT MANAGEMENT The aim is to coordinate and plan a single job consisting lots of tasks between which precedence relationships exist Project planning Most popular planning tools are utilized

More information

Introduction. Introduction. Six Steps of PERT/CPM. Six Steps of PERT/CPM LEARNING OBJECTIVES

Introduction. Introduction. Six Steps of PERT/CPM. Six Steps of PERT/CPM LEARNING OBJECTIVES Valua%on and pricing (November 5, 2013) LEARNING OBJECTIVES Lecture 12 Project Management Olivier J. de Jong, LL.M., MM., MBA, CFD, CFFA, AA www.olivierdejong.com 1. Understand how to plan, monitor, and

More information

Full Monte. Looking at your project through rose-colored glasses? Let s get real.

Full Monte. Looking at your project through rose-colored glasses? Let s get real. Realistic plans for project success. Looking at your project through rose-colored glasses? Let s get real. Full Monte Cost and schedule risk analysis add-in for Microsoft Project that graphically displays

More information

Network Analysis Basic Components. The Other View. Some Applications. Continued. Goal of Network Analysis. RK Jana

Network Analysis Basic Components. The Other View. Some Applications. Continued. Goal of Network Analysis. RK Jana Network nalysis RK Jana asic omponents ollections of interconnected linear forms: Lines Intersections Regions (created by the partitioning of space by the lines) Planar (streets, all on same level, vertices

More information

Textbook: pp Chapter 11: Project Management

Textbook: pp Chapter 11: Project Management 1 Textbook: pp. 405-444 Chapter 11: Project Management 2 Learning Objectives After completing this chapter, students will be able to: Understand how to plan, monitor, and control projects with the use

More information

A METHOD FOR STOCHASTIC ESTIMATION OF COST AND COMPLETION TIME OF A MINING PROJECT

A METHOD FOR STOCHASTIC ESTIMATION OF COST AND COMPLETION TIME OF A MINING PROJECT A METHOD FOR STOCHASTIC ESTIMATION OF COST AND COMPLETION TIME OF A MINING PROJECT E. Newby, F. D. Fomeni, M. M. Ali and C. Musingwini Abstract The standard methodology used for estimating the cost and

More information

Risk Video #1. Video 1 Recap

Risk Video #1. Video 1 Recap Risk Video #1 Video 1 Recap 1 Risk Video #2 Video 2 Recap 2 Risk Video #3 Risk Risk Management Process Uncertain or chance events that planning can not overcome or control. Risk Management A proactive

More information

UNIT-II Project Organization and Scheduling Project Element

UNIT-II Project Organization and Scheduling Project Element UNIT-II Project Organization and Scheduling Project Element Five Key Elements are Unique. Projects are unique, one-of-a-kind, never been done before. Start and Stop Date. Projects must have a definite

More information

Making sense of Schedule Risk Analysis

Making sense of Schedule Risk Analysis Making sense of Schedule Risk Analysis John Owen Barbecana Inc. Version 2 December 19, 2014 John Owen - jowen@barbecana.com 2 5 Years managing project controls software in the Oil and Gas industry 28 years

More information

Project Management Professional (PMP) Exam Prep Course 06 - Project Time Management

Project Management Professional (PMP) Exam Prep Course 06 - Project Time Management Project Management Professional (PMP) Exam Prep Course 06 - Project Time Management Slide 1 Looking Glass Development, LLC (303) 663-5402 / (888) 338-7447 4610 S. Ulster St. #150 Denver, CO 80237 information@lookingglassdev.com

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. MSc CIVIL ENGINEERING MSc CONSTRUCTION PROJECT MANAGEMENT SEMESTER ONE EXAMINATION 2017/2018

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. MSc CIVIL ENGINEERING MSc CONSTRUCTION PROJECT MANAGEMENT SEMESTER ONE EXAMINATION 2017/2018 ENG026 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSc CIVIL ENGINEERING MSc CONSTRUCTION PROJECT MANAGEMENT SEMESTER ONE EXAMINATION 2017/2018 PROJECT MANAGEMENT MODULE NO: CPM7002 Date: 15 January 2018

More information

u w 1.5 < 0 These two results imply that the utility function is concave.

u w 1.5 < 0 These two results imply that the utility function is concave. A person with initial wealth of Rs.1000 has a 20% possibility of getting in a mischance. On the off chance that he gets in a mishap, he will lose Rs.800, abandoning him with Rs.200; on the off chance that

More information

Program Evaluation and Review Technique (PERT) in Construction Risk Analysis Mei Liu

Program Evaluation and Review Technique (PERT) in Construction Risk Analysis Mei Liu Applied Mechanics and Materials Online: 2013-08-08 ISSN: 1662-7482, Vols. 357-360, pp 2334-2337 doi:10.4028/www.scientific.net/amm.357-360.2334 2013 Trans Tech Publications, Switzerland Program Evaluation

More information

International Project Management. prof.dr MILOŠ D. MILOVANČEVIĆ

International Project Management. prof.dr MILOŠ D. MILOVANČEVIĆ International Project Management prof.dr MILOŠ D. MILOVANČEVIĆ Project time management Project cost management Time in project management process Time is a valuable resource. It is also the scarcest. Time

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

Probabilistic Benefit Cost Ratio A Case Study

Probabilistic Benefit Cost Ratio A Case Study Australasian Transport Research Forum 2015 Proceedings 30 September - 2 October 2015, Sydney, Australia Publication website: http://www.atrf.info/papers/index.aspx Probabilistic Benefit Cost Ratio A Case

More information

6/7/2018. Overview PERT / CPM PERT/CPM. Project Scheduling PERT/CPM PERT/CPM

6/7/2018. Overview PERT / CPM PERT/CPM. Project Scheduling PERT/CPM PERT/CPM /7/018 PERT / CPM BSAD 0 Dave Novak Summer 018 Overview Introduce PERT/CPM Discuss what a critical path is Discuss critical path algorithm Example Source: Anderson et al., 01 Quantitative Methods for Business

More information

WHY ARE PROJECTS ALWAYS LATE?

WHY ARE PROJECTS ALWAYS LATE? WHY ARE PROJECTS ALWAYS LATE? (what can the Project Manager DO about that?) Craig Henderson, MBA, PMP ARVEST Bank Operations Introduction PM Basics FIO GID KISS (Figure it out) (Get it done) (Keep it simple,

More information

Using Monte Carlo Analysis in Ecological Risk Assessments

Using Monte Carlo Analysis in Ecological Risk Assessments 10/27/00 Page 1 of 15 Using Monte Carlo Analysis in Ecological Risk Assessments Argonne National Laboratory Abstract Monte Carlo analysis is a statistical technique for risk assessors to evaluate the uncertainty

More information

1. A is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes,

1. A is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, 1. A is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. A) Decision tree B) Graphs

More information

Sample Size for Assessing Agreement between Two Methods of Measurement by Bland Altman Method

Sample Size for Assessing Agreement between Two Methods of Measurement by Bland Altman Method Meng-Jie Lu 1 / Wei-Hua Zhong 1 / Yu-Xiu Liu 1 / Hua-Zhang Miao 1 / Yong-Chang Li 1 / Mu-Huo Ji 2 Sample Size for Assessing Agreement between Two Methods of Measurement by Bland Altman Method Abstract:

More information

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005 Corporate Finance, Module 21: Option Valuation Practice Problems (The attached PDF file has better formatting.) Updated: July 7, 2005 {This posting has more information than is needed for the corporate

More information

Logistics. Lecture notes. Maria Grazia Scutellà. Dipartimento di Informatica Università di Pisa. September 2015

Logistics. Lecture notes. Maria Grazia Scutellà. Dipartimento di Informatica Università di Pisa. September 2015 Logistics Lecture notes Maria Grazia Scutellà Dipartimento di Informatica Università di Pisa September 2015 These notes are related to the course of Logistics held by the author at the University of Pisa.

More information

Web Extension: Continuous Distributions and Estimating Beta with a Calculator

Web Extension: Continuous Distributions and Estimating Beta with a Calculator 19878_02W_p001-008.qxd 3/10/06 9:51 AM Page 1 C H A P T E R 2 Web Extension: Continuous Distributions and Estimating Beta with a Calculator This extension explains continuous probability distributions

More information

ADVANCED QUANTITATIVE SCHEDULE RISK ANALYSIS

ADVANCED QUANTITATIVE SCHEDULE RISK ANALYSIS ADVANCED QUANTITATIVE SCHEDULE RISK ANALYSIS DAVID T. HULETT, PH.D. 1 HULETT & ASSOCIATES, LLC 1. INTRODUCTION Quantitative schedule risk analysis is becoming acknowledged by many project-oriented organizations

More information

Poor Man s Approach to Monte Carlo

Poor Man s Approach to Monte Carlo Poor Man s Approach to Monte Carlo Based on the PMI PMBOK Guide Fourth Edition 20 IPDI has been reviewed and approved as a provider of project management training by the Project Management Institute (PMI).

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Real-World Project Management. Chapter 15

Real-World Project Management. Chapter 15 Real-World Project Chapter 15 Characteristics of Project Unique one-time focus Difficulties arise from originality Subject to uncertainties Unexplained or unplanned events often arise, affecting resources,

More information

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop -

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - Applying the Pareto Principle to Distribution Assignment in Cost Risk and Uncertainty Analysis James Glenn, Computer Sciences Corporation Christian Smart, Missile Defense Agency Hetal Patel, Missile Defense

More information

RISK BASED LIFE CYCLE COST ANALYSIS FOR PROJECT LEVEL PAVEMENT MANAGEMENT. Eric Perrone, Dick Clark, Quinn Ness, Xin Chen, Ph.D, Stuart Hudson, P.E.

RISK BASED LIFE CYCLE COST ANALYSIS FOR PROJECT LEVEL PAVEMENT MANAGEMENT. Eric Perrone, Dick Clark, Quinn Ness, Xin Chen, Ph.D, Stuart Hudson, P.E. RISK BASED LIFE CYCLE COST ANALYSIS FOR PROJECT LEVEL PAVEMENT MANAGEMENT Eric Perrone, Dick Clark, Quinn Ness, Xin Chen, Ph.D, Stuart Hudson, P.E. Texas Research and Development Inc. 2602 Dellana Lane,

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

CISC 322 Software Architecture

CISC 322 Software Architecture CISC 22 Software Architecture Project Scheduling (PERT/CPM) Ahmed E. Hassan (Edited For Course Presentation, 206) Project A project is a temporary endeavour undertaken to create a "unique" product or service

More information

INSE 6230: Assignment 1 - Winter (0% of final grade) 1. The table below provides information about a short IT project.

INSE 6230: Assignment 1 - Winter (0% of final grade) 1. The table below provides information about a short IT project. INSE 6230: Assignment - Winter 208 (0% of final grade). The table below provides information about a short IT project. Activity Predecessors Duration (Months) A - 2 B - 3 C A 4 D A, B 2 E D 2 F B, C, E

More information

After complete studying this chapter, You should be able to

After complete studying this chapter, You should be able to Chapter 10 Project Management Ch10: What Is Project Management? After complete studying this chapter, You should be able to Define key terms like Project, Project Management, Discuss the main characteristics

More information

Programme Evaluation and Review Techniques (PERT) And Critical Path Method (CPM) By K.K. Bandyopadhyay. August 2001

Programme Evaluation and Review Techniques (PERT) And Critical Path Method (CPM) By K.K. Bandyopadhyay. August 2001 Programme Evaluation and Review Techniques (PERT) And Critical Path Method (CPM) By K.K. Bandyopadhyay August 2001 Participatory Research In Asia Introduction Programme Evaluation and Review Technique

More information

GPE engineering project management. Project Management in an Engineering Context

GPE engineering project management. Project Management in an Engineering Context GPE engineering project management Project Management in an Engineering Context Network diagrams in context PM SOW CHARTER SCOPE DEFINITION WBS circulation, negotiation, translation WBS WP à activities

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Program Evaluation and Review Techniques (PERT) Critical Path Method (CPM):

Program Evaluation and Review Techniques (PERT) Critical Path Method (CPM): Program Evaluation and Review Techniques (PERT) Critical Path Method (CPM): A Rough Guide by Andrew Scouller PROJECT MANAGEMENT Project Managers can use project management software to keep track of the

More information

Performance risk evaluation of long term infrastructure projects (PPP-BOT projects) using probabilistic methods

Performance risk evaluation of long term infrastructure projects (PPP-BOT projects) using probabilistic methods EPPM, Singapore, 20-21 Sep 2011 Performance risk evaluation of long term infrastructure projects (PPP-BOT projects) using probabilistic Meghdad Attarzadeh 1 and David K H Chua 2 Abstract Estimation and

More information

SSC-JE STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL ESTIMATING, COSTING AND VALUATION

SSC-JE STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL ESTIMATING, COSTING AND VALUATION 1 ` SSC-JE STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL SSC-JE Civil Engineering 2 Estimating, Costing and Valuation : Estimate, Glossary of technical terms, Analysis of rates, Methods and

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

Teori Pengambilan Keputusan. Week 12 Project Management

Teori Pengambilan Keputusan. Week 12 Project Management Teori Pengambilan Keputusan Week 1 Project Management Project Management Program Evaluation and Review Technique (PERT) Critical Path Method (CPM) PERT and CPM Network techniques Developed in 195 s CPM

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model

More information

THE JOURNAL OF AACE INTERNATIONAL - THE AUTHORITY FOR TOTAL COST MANAGEMENT TM

THE JOURNAL OF AACE INTERNATIONAL - THE AUTHORITY FOR TOTAL COST MANAGEMENT TM COST THE JOURNAL OF AACE INTERNATIONAL - THE AUTHORITY FOR TOTAL COST MANAGEMENT TM November/December 2012 ENGINEERING www.aacei.org INTEGRATED COST-SCHEDULE RISK ANALYSIS ESTIMATE ACCURACY: DEALING WITH

More information

Comparison of Estimation For Conditional Value at Risk

Comparison of Estimation For Conditional Value at Risk -1- University of Piraeus Department of Banking and Financial Management Postgraduate Program in Banking and Financial Management Comparison of Estimation For Conditional Value at Risk Georgantza Georgia

More information

Project Management. Managing Risk. Clifford F. Gray Eric W. Larson Third Edition. Chapter 7

Project Management. Managing Risk. Clifford F. Gray Eric W. Larson Third Edition. Chapter 7 Project Management THE MANAGERIAL PROCESS Clifford F. Gray Eric W. Larson Third Edition Chapter 7 Managing Risk Copyright 2006 The McGraw-Hill Companies. All rights reserved. PowerPoint Presentation by

More information

Week 1 Quantitative Analysis of Financial Markets Distributions B

Week 1 Quantitative Analysis of Financial Markets Distributions B Week 1 Quantitative Analysis of Financial Markets Distributions B Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Annual risk measures and related statistics

Annual risk measures and related statistics Annual risk measures and related statistics Arno E. Weber, CIPM Applied paper No. 2017-01 August 2017 Annual risk measures and related statistics Arno E. Weber, CIPM 1,2 Applied paper No. 2017-01 August

More information

(RISK.03) Integrated Cost and Schedule Risk Analysis: A Draft AACE Recommended Practice. Dr. David T. Hulett

(RISK.03) Integrated Cost and Schedule Risk Analysis: A Draft AACE Recommended Practice. Dr. David T. Hulett (RISK.03) Integrated Cost and Schedule Risk Analysis: A Draft AACE Recommended Practice Dr. David T. Hulett Author Biography David T. Hulett, Hulett & Associates, LLC Degree: Ph.D. University: Stanford

More information

EXERCISE Draw the network diagram. a. Activity Name A B C D E F G H

EXERCISE Draw the network diagram. a. Activity Name A B C D E F G H XRIS. What do you mean by network analysis? xplain with counter examples.. What are the basic differences between PM and PRT analysis of project work?. State the rule of constructing the network diagram..

More information

Appendix A Decision Support Analysis

Appendix A Decision Support Analysis Field Manual 100-11 Appendix A Decision Support Analysis Section I: Introduction structure development, and facilities. Modern quantitative methods can greatly facilitate this Complex decisions associated

More information

Mathematics of Time Value

Mathematics of Time Value CHAPTER 8A Mathematics of Time Value The general expression for computing the present value of future cash flows is as follows: PV t C t (1 rt ) t (8.1A) This expression allows for variations in cash flows

More information

Monte Carlo Introduction

Monte Carlo Introduction Monte Carlo Introduction Probability Based Modeling Concepts moneytree.com Toll free 1.877.421.9815 1 What is Monte Carlo? Monte Carlo Simulation is the currently accepted term for a technique used by

More information

CHAPTER 5. Project Scheduling Models

CHAPTER 5. Project Scheduling Models CHAPTER 5 Project Scheduling Models 1 5.1 Introduction A project is a collection of tasks that must be completed in minimum time or at minimal cost. Objectives of Project Scheduling Completing the project

More information

Project Risk Management

Project Risk Management Project Risk Management Introduction Unit 1 Unit 2 Unit 3 PMP Exam Preparation Project Integration Management Project Scope Management Project Time Management Unit 4 Unit 5 Unit 6 Unit 7 Project Cost Management

More information

Probabilistic Completion Time in Project Scheduling Min Khee Chin 1, Sie Long Kek 2, Sy Yi Sim 3, Ta Wee Seow 4

Probabilistic Completion Time in Project Scheduling Min Khee Chin 1, Sie Long Kek 2, Sy Yi Sim 3, Ta Wee Seow 4 Probabilistic Completion Time in Project Scheduling Min Khee Chin 1, Sie Long Kek 2, Sy Yi Sim 3, Ta Wee Seow 4 1 Department of Mathematics and Statistics, Universiti Tun Hussein Onn Malaysia 2 Center

More information

Chapter 11 Cash Flow Estimation and Risk Analysis ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 11 Cash Flow Estimation and Risk Analysis ANSWERS TO END-OF-CHAPTER QUESTIONS Chapter 11 Cash Flow Estimation and Risk Analysis ANSWERS TO END-OF-CHAPTER QUESTIONS 11-1 a. Project cash flow, which is the relevant cash flow for project analysis, represents the actual flow of cash,

More information

CHAPTER 7 PROJECT CONTROL

CHAPTER 7 PROJECT CONTROL CHAPTER 7 PROJECT CONTROL The limited objective of project control deserves emphasis. Project control procedures are primarily intended to identify deviations from the project plan rather than to suggest

More information

Uncertainty in Economic Analysis

Uncertainty in Economic Analysis Risk and Uncertainty Uncertainty in Economic Analysis CE 215 28, Richard J. Nielsen We ve already mentioned that interest rates reflect the risk involved in an investment. Risk and uncertainty can affect

More information

Financial Economics. Runs Test

Financial Economics. Runs Test Test A simple statistical test of the random-walk theory is a runs test. For daily data, a run is defined as a sequence of days in which the stock price changes in the same direction. For example, consider

More information

PERMUTATION AND COMBINATIONS APPROACH TO PROGRAM EVALUATION AND REVIEW TECHNIQUE

PERMUTATION AND COMBINATIONS APPROACH TO PROGRAM EVALUATION AND REVIEW TECHNIQUE VOL. 2, NO. 6, DECEMBER 7 ISSN 1819-6608 6-7 Asian Research Publishing Network (ARPN). All rights reserved. PERMUTATION AND COMBINATIONS APPROACH TO PROGRAM EVALUATION AND REVIEW TECHNIQUE A. Prabhu Kumar

More information

Mobility for the Future:

Mobility for the Future: Mobility for the Future: Cambridge Municipal Vehicle Fleet Options FINAL APPLICATION PORTFOLIO REPORT Christopher Evans December 12, 2006 Executive Summary The Public Works Department of the City of Cambridge

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Real Options. Katharina Lewellen Finance Theory II April 28, 2003

Real Options. Katharina Lewellen Finance Theory II April 28, 2003 Real Options Katharina Lewellen Finance Theory II April 28, 2003 Real options Managers have many options to adapt and revise decisions in response to unexpected developments. Such flexibility is clearly

More information

Three Components of a Premium

Three Components of a Premium Three Components of a Premium The simple pricing approach outlined in this module is the Return-on-Risk methodology. The sections in the first part of the module describe the three components of a premium

More information

Numerical Methods in Option Pricing (Part III)

Numerical Methods in Option Pricing (Part III) Numerical Methods in Option Pricing (Part III) E. Explicit Finite Differences. Use of the Forward, Central, and Symmetric Central a. In order to obtain an explicit solution for the price of the derivative,

More information

MINI GUIDE. Project risk analysis and management

MINI GUIDE. Project risk analysis and management MINI GUIDE Project risk analysis and management Association for Project Management January 2018 Contents Page 3 Introduction What is PRAM? Page 4 Page 7 Page 9 What is involved? Why is it used? When should

More information

Statistics 431 Spring 2007 P. Shaman. Preliminaries

Statistics 431 Spring 2007 P. Shaman. Preliminaries Statistics 4 Spring 007 P. Shaman The Binomial Distribution Preliminaries A binomial experiment is defined by the following conditions: A sequence of n trials is conducted, with each trial having two possible

More information

The following content is provided under a Creative Commons license. Your support

The following content is provided under a Creative Commons license. Your support MITOCW Recitation 6 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make

More information

Haeryip Sihombing 1. Risk. Risk Management

Haeryip Sihombing 1. Risk. Risk Management Project Management Managing Risk 7 Haeryip Sihombing Universiti Teknikal Malaysia Melaka (UTeM) BMFP 4542 1 2 Risk Management Process The Risk Event Graph Risk Uncertain or chance events that planning

More information

Probabilistic Model Development for Project Performance Forecasting Milad Eghtedari Naeini, and Gholamreza Heravi

Probabilistic Model Development for Project Performance Forecasting Milad Eghtedari Naeini, and Gholamreza Heravi Probabilistic Model Development for Project Performance Forecasting Milad Eghtedari Naeini, and Gholamreza Heravi Abstract In this paper, based on the past project cost and time performance, a model for

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Monte Carlo Simulation (General Simulation Models)

Monte Carlo Simulation (General Simulation Models) Monte Carlo Simulation (General Simulation Models) Revised: 10/11/2017 Summary... 1 Example #1... 1 Example #2... 10 Summary Monte Carlo simulation is used to estimate the distribution of variables when

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Chapter 3 Random Variables and Probability Distributions Chapter Three Random Variables and Probability Distributions 3. Introduction An event is defined as the possible outcome of an experiment. In engineering

More information

Construction Management

Construction Management Construction Management 1. Which one of the following represents an activity A. excavation for foundation B. curing of concrete C. setting of question paper D. preparation of breakfast 2. Pick up the incorrect

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

PROJECT MANAGEMENT COURSE 5: PROJECT TIME MANAGEMENT. G.N. Sandhy Widyasthana

PROJECT MANAGEMENT COURSE 5: PROJECT TIME MANAGEMENT. G.N. Sandhy Widyasthana PROJECT MANAGEMENT COURSE 5: PROJECT TIME MANAGEMENT G.N. Sandhy Widyasthana widyasthana@gmail.com 022 70702020 081 225 702020 1 2 3 Process of identifying the specific actions to be performed to produce

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press CHAPTER 10 OPTION PRICING - II Options Pricing II Intrinsic Value and Time Value Boundary Conditions for Option Pricing Arbitrage Based Relationship for Option Pricing Put Call Parity 2 Binomial Option

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are Chapter 7 presents the beginning of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample data to estimate values of population

More information

A Motivating Case Study

A Motivating Case Study Testing Monte Carlo Risk Projections Geoff Considine, Ph.D. Quantext, Inc. Copyright Quantext, Inc. 2005 1 Introduction If you have used or read articles about Monte Carlo portfolio planning tools, you

More information

Valuing Early Stage Investments with Market Related Timing Risk

Valuing Early Stage Investments with Market Related Timing Risk Valuing Early Stage Investments with Market Related Timing Risk Matt Davison and Yuri Lawryshyn February 12, 216 Abstract In this work, we build on a previous real options approach that utilizes managerial

More information

Final Projects Introduction to Numerical Analysis Professor: Paul J. Atzberger

Final Projects Introduction to Numerical Analysis Professor: Paul J. Atzberger Final Projects Introduction to Numerical Analysis Professor: Paul J. Atzberger Due Date: Friday, December 12th Instructions: In the final project you are to apply the numerical methods developed in the

More information