MATH 425 EXERCISES G. BERKOLAIKO

Size: px
Start display at page:

Download "MATH 425 EXERCISES G. BERKOLAIKO"

Transcription

1 MATH 425 EXERCISES G. BERKOLAIKO 1. Definitions and basic properties of options and other derivatives 1.1. Summary. Definition of European call and put options, American call and put option, forward (futures) contract, prepaid forward contract. Their payoffs. Payoff and profit diagrams of option spreads Portfolio lemma, its application to questions such as put-call parity, futures price, estimates max(s Ee rt, 0) C S and max(ee rt S, 0) P Ee rt Exercises. Exercise 1.1. (*) Plot ask prices of SPX or SPY call options as functions of strikes. Use 20 strike points around the money. Make this plot for 3 different expirations one month apart from each other. Exercise 1.2. In class we compared PNL diagrams for 3 long calls (95C@5.50, 100C@2.70, 105C@1.15). Draw PNL diagrams for: short 95C@5.50, 100C@2.70, 105C@1.15; three plots together on Fig.1 long 95P@1.05, 100P@2.50, 105P@5.50; three plots together on Fig.2 short 95P@1.05, 100P@2.50, 105P@5.50; three plots together on Fig.3 Exercise 1.3. Consider two put options with the same expiration but different strikes, E 1 and E 2 (with E 1 < E 2 ). Formulate the conditions on their prices P 1 and P 2 so that the PNL graphs of the two puts (both long) intersect. Justify your answer by drawing all possible types of the graphs arrangement. Hint: there are three arrangements (not counting the borderline cases). Exercise 1.4. One day, Alice and Bob observe the following option prices (assume no bid-ask spread and r = 0): 95C@6.30, 105C@3.10, 110C@1.00. Alice says that one can make some guaranteed profit by buying one 95C, selling three 105C and buying two 110C. But Bob says he read that writing (selling) call options exposes one to the risk of unlimited loss. Draw the PNL diagram for the spread suggested by Alice to see who is correct. Exercise 1.5. Which of the following is a way to profit from a falling price of a stock: buying the stock, short-selling the stock, buying a call on the stock, selling a call on the stock, buying a put on the stock, selling a put on the stock? Point out what is potential risk (limited / large) and reward in each case. Exercise 1.6. Plot the payoff of the butterfly spread: 1 long call with strike E 1 = 90, 1 long call with strike E 3 = 110 and 2 short calls with strike E 2 = 100. Exercise 1.7. Which combination of two calls could have the profit diagram shown in Fig. 1(a)? Which combination of two puts could have the same profit diagram? (You do not have to specify the prices for the options, just short/long and strikes). Exercise 1.8. Argue that it is never profitable to exercise an American call early (assuming the stock pays no dividends). Therefore, its value is identical to that of a European call. (Hint: show that value of an American call is larger than S t E at any time t before expiration). Exercise 1.9. Prove that the call price C t (E, T ) satisfies 1 C(E 2) C(E 1 ) E 2 E 1 0. (1) 1

2 2 G. BERKOLAIKO (a) (b) Figure 1. Profit diagram of two bull spreads. Note the vertical scale difference. (You may assume that r = 0.) Prove that, if C is differentiable with respect to E, then this is equivalent to 1 C 0. (2) E Hints: For the first part you may (a) see Exercise 1.3 and use P-C parity or (b) use the Portfolio Lemma. For the second part, let E 2 = E 1 + E 1 and take the limit E 1 0 to get from (1) to (2). To go from (2) to (1), use Mean Value Theorem. Exercise (*) Prove that the call price C t (E, T ) is a convex function of the strike price E, i.e. where E = α 1 E 1 + α 2 E 2 and α 1 + α 2 = 1. (Hint: consider first α 1 = 1 2 Exercise Prove the inequalities by using Portfolio Lemma. C(E) α 1 C(E 1 ) + α 2 C(E 2 ), (3) and price a butterfly). P t Ee r(t t) S t, (4) P t 0, (5) P t Ee r(t t) (6) Exercise Prove inequalities (4) (6) from the corresponding inequalities for the calls by using Put-Call Parity. Exercise Which combination of calls could have the profit diagram shown in Fig. 1(b)? Which combination of puts could have the same profit diagram? Compare the cost of two spreads using Put-Call Parity (assume r = 0). Exercise You buy a Call and sell a Put with the same strike E = S 0 e rt. (1) Plot the payoff diagram of your spread; calculate the formula for it and simplify it. (2) Derive the price for your spread from first principles (e.g. using the Portfolio Lemma). (3) Derive the price for your spread from the put-call parity. (4) Why is such a spread called synthetic forward? Exercise A bull call spread is composed of a long call at strike E 1 and a short call at strike E 2, with E 2 > E 1. (1) Graph the payoff diagram for the bull call spread. (2) Prove / argue that the setup cost (the price of the spread) must be greater than 0. (3) Hence show that the call price C(S, E, τ) is decreasing as a function of E (other parameters being kept constant).

3 MATH 425 EXERCISES 3 Exercise From Options Industry Council: A long call condor consists of four different call options of the same expiration. The strategy is constructed of 1 long in-the-money call, 1 short higher middle strike in-the-money call, 1 short middle out-of-money call, 1 long highest strike out-of-money call. Assume the spot price is S 0 = 60. Consider the following spread: 1 long , 1 short , 1 short , 1 long (1) Sketch the payoff and the profit diagrams. (2) Does buying the above spread represent a bet that the stock price will grow, fall or stay flat? (3) Create a spread with the identical payoff but using only puts. Exercise (Based on a real story) You observe that almost every time a certain Twitter account issues a tweet, the market moves strongly. Sometimes it moves up and sometimes it moves down. To make money from either move, you write a program that tracks the updates to this Twitter account and buys a straddle spread on SPY. A straddle consists of one (long) call and one (long) put with the same strike prices. SPY is a fund that tracks the stock-market index. For your strike you use the current (spot) price of SPY. At 4pm on , the twitter account becomes active and your program makes a purchase. The spot price is S 0 = 237, so your program buys 100 calls with strike E = 237 and expiration in 3 days at the premium $0.73 per call and also 100 puts with the same strike and expiration at the premium $0.72 per put. (1) Draw the payoff diagram of your spread. (2) Draw the profit diagram of your spread. Label your axes and choose the appropriate scale for them. For simplicity, take r = 0. (3) By how much does the SPY price have to swing so that your purchase generates profit. Does the direction of the swing matter? (4) Is it a coincidence that the option prices quoted above are so close? Support your answer with equations. Exercise You purchase a long call ladder spread by buying one 90 Call for $12.35, selling one 100 Call for $3.15 and selling a 110 Call for $1.20. (1) Plot the payoff diagram of your spread. Label your axes! (2) Plot the profit diagram of your spread (assume, for simplicity, that r = 0). (3) Would the spread be worth buying if the 90 Call was priced at $15.00 while the other prices remained the same? Exercise The so-called box spread consists of four options: long E 1 call, short E 1 put, short E 2 call and a long E 2 put. (1) Calculate the payoff from a box spread at expiration, in terms of E 1 and E 2. (2) Use put-call parity to calculate the price of the box spread at time τ = T t before expiration, if the risk-free rate is r > 0. You do not need to know the prices of the individual options to price the box spread! (3) Give an explanation for your answer from the no-arbitrage point of view. (4) Profits from option trading are often taxed at a reduced rate (because the investor undertakes risk), when compared to tax rate on wage or (risk-free) interest earnings. Why do you think the IRS takes a dim view of using box spreads? 2. Binomial Trees, Basic 2.1. Summary. 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price and the hedging procedure many-level binomial tree for a European option; hedging

4 4 G. BERKOLAIKO many-level binomial tree for an American option; hedging short-cut formula for the tree 2.2. Exercises. Exercise 2.1. Repeat the derivation (from the first principles) of the 1-level tree formula for the price P of a put. Assume, as usual, that S d < S 0 e rt < S u and S d < E < S u. If you wrote a put and want to hedge, do you buy or sell stock? Exercise 2.2. Obtain the formula for the value of a put by choosing the appropriate values of V u and V d in the formula for the value of a general derivative. Show that it agrees with the answer you got in Exercise 2.1. Exercise 2.3. You assumed the 1-level tree model, priced and sold a call with strike E, S d < E < S u, followed the hedging procedure but the market ended up at S 1, S d < S 1 < S u. Did you lose or make money? You may assume r = 0 for simplicity. Exercise 2.4. You assumed the 1-level tree model, priced and sold a call with strike E, S d < E < S u, followed the hedging procedure but the market ended up at S 1, S 1 < S d. Did you lose or make money? What if the market ended up at S 1 > S u? How do your answers fit with the rule of thumb selling options is selling volatility? Look up Volatility (Finance) on Wikipedia, if necessary. You may assume r = 0 for simplicity. Exercise 2.5. (*) Assume the 1-level tree model with r = 0 and S d < S 0 < S u and plot the call price C = (S 0 S d ) S u E S u S d for a range of strike prices E that starts below S d and ends above S u. Observe that our call price violates the bound we derived earlier C max(s 0 E, 0). This suggests the above formula is not valid for E < S d or E > S u. Derive the appropriate formulas for the call prices in these ranges of E. Exercise 2.6. For the European Put with the parameters S 0 = 100, E = 110, r = 0, expiration in 3 months, use the 3-level tree model ( t = 1/12) with u = 1.1, d = 0.9. Calculate the option price and deltas. Generate two random paths through the tree and describe hedging procedure and results. Exercise 2.7. For the American Call with the parameters S 0 = 100, E = 120, r = 0.05, expiration in 3 years, use the tree model with t = 1, u = 1.2, d = 0.8. Calculate the option price. At every node also calculate the payoff from the early exercise and confirm that it is less than the recursively calculated option value. Exercise 2.8. For the American Put with the parameters S 0 = 100, E = 120, r = 0.05, expiration in 3 months, use the tree model with t = 1/12, u = 1.1, d = 0.9. Calculate the option price and deltas. Consider the price path: Up, Down, Up and describe hedging procedure and results. Exercise 2.9. Price the following American put option using the tree model: stock price now is S 0 = 100, strike is E = 115, interest rate is 5%, time to expiration 3 months. (1) Construct the 3-level tree (1 level per month) if the stock price is expected to either go up by 10% or go down by 5%. Price the above option using this tree. (2) Describe the hedging procedure undertaken by a writer of the option who seeks to eliminate risk. You must assume that the holder of the option will do what is best for them (i.e. exercise early if optimal). Consider the price paths: (a) Up, Down, Up

5 (b) Down, Up, Up MATH 425 EXERCISES 5 Exercise You go to lunch with a financial guru. In strictest confidence, they tell you that in 1 year s time the E&R 500 stock index will be either at 2000 or at 2300 points. The index is currently at Acting upon this information and using the 1-level binomial tree model, you price and sell 100 calls for the index at the strike E = In the call price, you include a $10 mark-up. Assume, for simplicity, that you have access to interest-free borrowing, i.e. r = 0. (1) What is the price at which you sell the calls (including the mark-up)? (2) Describe the hedging procedure you undertake. What is you total profit/loss if the index ends up at 2000? What is you total profit/loss if the index ends up at 2300? (3) If the guru is wrong and the index ends up at 2320, what is your total profit/loss? Exercise Calculate the prices for the spread consisting of one call and one put using the following settings: 3 level tree (one level per day), daily move is u = 1.01 or d = 0.99, S 0 = 237, E = 237, r = 0. Assume the options are European. (Hint: you can compute prices of two options separately and add together, but since you know the payoff for the whole spread you can use those values and make it a single calculation). Suppose the stock moves up, then up again and then down. Describe the delta-hedging procedure the writer undertakes, calculate cash balances at every node. What is the final balance? (If you round to cents every number you use, numerical error is not more than a few cents). 3. Random Variables 4. Asset Price Model and choosing tree parameters 5. Ito Formula and Stochastic Calculus 6. Black-Scholes-Merton equation

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

MATH 425: BINOMIAL TREES

MATH 425: BINOMIAL TREES MATH 425: BINOMIAL TREES G. BERKOLAIKO Summary. These notes will discuss: 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

Department of Mathematics. Mathematics of Financial Derivatives

Department of Mathematics. Mathematics of Financial Derivatives Department of Mathematics MA408 Mathematics of Financial Derivatives Thursday 15th January, 2009 2pm 4pm Duration: 2 hours Attempt THREE questions MA408 Page 1 of 5 1. (a) Suppose 0 < E 1 < E 3 and E 2

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Definitions and Terminology Definition An option is the right, but not the obligation, to buy or sell a security such

More information

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester Our exam is Wednesday, December 19, at the normal class place and time. You may bring two sheets of notes (8.5

More information

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly). 1 EG, Ch. 22; Options I. Overview. A. Definitions. 1. Option - contract in entitling holder to buy/sell a certain asset at or before a certain time at a specified price. Gives holder the right, but not

More information

Lecture 16. Options and option pricing. Lecture 16 1 / 22

Lecture 16. Options and option pricing. Lecture 16 1 / 22 Lecture 16 Options and option pricing Lecture 16 1 / 22 Introduction One of the most, perhaps the most, important family of derivatives are the options. Lecture 16 2 / 22 Introduction One of the most,

More information

RMSC 2001 Introduction to Risk Management

RMSC 2001 Introduction to Risk Management RMSC 2001 Introduction to Risk Management Tutorial 6 (2011/12) 1 March 19, 2012 Outline: 1. Option Strategies 2. Option Pricing - Binomial Tree Approach 3. More about Option ====================================================

More information

Valuing Put Options with Put-Call Parity S + P C = [X/(1+r f ) t ] + [D P /(1+r f ) t ] CFA Examination DERIVATIVES OPTIONS Page 1 of 6

Valuing Put Options with Put-Call Parity S + P C = [X/(1+r f ) t ] + [D P /(1+r f ) t ] CFA Examination DERIVATIVES OPTIONS Page 1 of 6 DERIVATIVES OPTIONS A. INTRODUCTION There are 2 Types of Options Calls: give the holder the RIGHT, at his discretion, to BUY a Specified number of a Specified Asset at a Specified Price on, or until, a

More information

S 0 C (30, 0.5) + P (30, 0.5) e rt 30 = PV (dividends) PV (dividends) = = $0.944.

S 0 C (30, 0.5) + P (30, 0.5) e rt 30 = PV (dividends) PV (dividends) = = $0.944. Chapter 9 Parity and Other Option Relationships Question 9.1 This problem requires the application of put-call-parity. We have: Question 9.2 P (35, 0.5) = C (35, 0.5) e δt S 0 + e rt 35 P (35, 0.5) = $2.27

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Week of October 28, 213 Options Where we are Previously: Swaps (Chapter 7, OFOD) This Week: Option Markets and Stock Options (Chapter 9 1, OFOD) Next Week :

More information

ActuarialBrew.com. Exam MFE / 3F. Actuarial Models Financial Economics Segment. Solutions 2014, 1 st edition

ActuarialBrew.com. Exam MFE / 3F. Actuarial Models Financial Economics Segment. Solutions 2014, 1 st edition ActuarialBrew.com Exam MFE / 3F Actuarial Models Financial Economics Segment Solutions 04, st edition www.actuarialbrew.com Brewing Better Actuarial Exam Preparation Materials ActuarialBrew.com 04 Please

More information

LECTURE 12. Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The time series of implied volatility

LECTURE 12. Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The time series of implied volatility LECTURE 12 Review Options C = S e -δt N (d1) X e it N (d2) P = X e it (1- N (d2)) S e -δt (1 - N (d1)) Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The

More information

Chapter 24 Interest Rate Models

Chapter 24 Interest Rate Models Chapter 4 Interest Rate Models Question 4.1. a F = P (0, /P (0, 1 =.8495/.959 =.91749. b Using Black s Formula, BSCall (.8495,.9009.959,.1, 0, 1, 0 = $0.0418. (1 c Using put call parity for futures options,

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Robert Almgren University of Chicago Program on Financial Mathematics MAA Short Course San Antonio, Texas January 11-12, 1999 1 Robert Almgren 1/99 Mathematics in Finance 2 1. Pricing

More information

= e S u S(0) From the other component of the call s replicating portfolio, we get. = e 0.015

= e S u S(0) From the other component of the call s replicating portfolio, we get. = e 0.015 Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin In-Term Exam II Extra problems Instructor: Milica Čudina Notes: This is a closed book and closed notes exam.

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

Black Scholes Option Valuation. Option Valuation Part III. Put Call Parity. Example 18.3 Black Scholes Put Valuation

Black Scholes Option Valuation. Option Valuation Part III. Put Call Parity. Example 18.3 Black Scholes Put Valuation Black Scholes Option Valuation Option Valuation Part III Example 18.3 Black Scholes Put Valuation Put Call Parity 1 Put Call Parity Another way to look at Put Call parity is Hedge Ratio C P = D (S F X)

More information

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING TEACHING NOTE 98-04: EXCHANGE OPTION PRICING Version date: June 3, 017 C:\CLASSES\TEACHING NOTES\TN98-04.WPD The exchange option, first developed by Margrabe (1978), has proven to be an extremely powerful

More information

ActuarialBrew.com. Exam MFE / 3F. Actuarial Models Financial Economics Segment. Solutions 2014, 2nd edition

ActuarialBrew.com. Exam MFE / 3F. Actuarial Models Financial Economics Segment. Solutions 2014, 2nd edition ActuarialBrew.com Exam MFE / 3F Actuarial Models Financial Economics Segment Solutions 04, nd edition www.actuarialbrew.com Brewing Better Actuarial Exam Preparation Materials ActuarialBrew.com 04 Please

More information

due Saturday May 26, 2018, 12:00 noon

due Saturday May 26, 2018, 12:00 noon Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 Final Spring 2018 due Saturday May 26, 2018, 12:00

More information

Options Markets: Introduction

Options Markets: Introduction 17-2 Options Options Markets: Introduction Derivatives are securities that get their value from the price of other securities. Derivatives are contingent claims because their payoffs depend on the value

More information

Financial Markets & Risk

Financial Markets & Risk Financial Markets & Risk Dr Cesario MATEUS Senior Lecturer in Finance and Banking Room QA259 Department of Accounting and Finance c.mateus@greenwich.ac.uk www.cesariomateus.com Session 3 Derivatives Binomial

More information

Chapter 17. Options and Corporate Finance. Key Concepts and Skills

Chapter 17. Options and Corporate Finance. Key Concepts and Skills Chapter 17 Options and Corporate Finance Prof. Durham Key Concepts and Skills Understand option terminology Be able to determine option payoffs and profits Understand the major determinants of option prices

More information

UNIVERSITY OF AGDER EXAM. Faculty of Economicsand Social Sciences. Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure:

UNIVERSITY OF AGDER EXAM. Faculty of Economicsand Social Sciences. Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure: UNIVERSITY OF AGDER Faculty of Economicsand Social Sciences Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure: Exam aids: Comments: EXAM BE-411, ORDINARY EXAM Derivatives

More information

Pricing Options with Mathematical Models

Pricing Options with Mathematical Models Pricing Options with Mathematical Models 1. OVERVIEW Some of the content of these slides is based on material from the book Introduction to the Economics and Mathematics of Financial Markets by Jaksa Cvitanic

More information

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility Simple Arbitrage Relations Payoffs to Call and Put Options Black-Scholes Model Put-Call Parity Implied Volatility Option Pricing Options: Definitions A call option gives the buyer the right, but not the

More information

Notes for Lecture 5 (February 28)

Notes for Lecture 5 (February 28) Midterm 7:40 9:00 on March 14 Ground rules: Closed book. You should bring a calculator. You may bring one 8 1/2 x 11 sheet of paper with whatever you want written on the two sides. Suggested study questions

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Implied Volatility Surface

Implied Volatility Surface Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 Liuren Wu Implied Volatility Surface Option Pricing, Fall, 2007 1 / 22 Implied volatility Recall the BSM formula:

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

3 + 30e 0.10(3/12) > <

3 + 30e 0.10(3/12) > < Millersville University Department of Mathematics MATH 472, Financial Mathematics, Homework 06 November 8, 2011 Please answer the following questions. Partial credit will be given as appropriate, do not

More information

SOCIETY OF ACTUARIES EXAM IFM INVESTMENT AND FINANCIAL MARKETS EXAM IFM SAMPLE QUESTIONS AND SOLUTIONS DERIVATIVES

SOCIETY OF ACTUARIES EXAM IFM INVESTMENT AND FINANCIAL MARKETS EXAM IFM SAMPLE QUESTIONS AND SOLUTIONS DERIVATIVES SOCIETY OF ACTUARIES EXAM IFM INVESTMENT AND FINANCIAL MARKETS EXAM IFM SAMPLE QUESTIONS AND SOLUTIONS DERIVATIVES These questions and solutions are based on the readings from McDonald and are identical

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

Advanced Corporate Finance. 5. Options (a refresher)

Advanced Corporate Finance. 5. Options (a refresher) Advanced Corporate Finance 5. Options (a refresher) Objectives of the session 1. Define options (calls and puts) 2. Analyze terminal payoff 3. Define basic strategies 4. Binomial option pricing model 5.

More information

Errata and updates for ASM Exam MFE (Tenth Edition) sorted by page.

Errata and updates for ASM Exam MFE (Tenth Edition) sorted by page. Errata for ASM Exam MFE Study Manual (Tenth Edition) Sorted by Page 1 Errata and updates for ASM Exam MFE (Tenth Edition) sorted by page. Practice Exam 9:18 and 10:26 are defective. [4/3/2017] On page

More information

Lecture 7: Trading Strategies Involve Options ( ) 11.2 Strategies Involving A Single Option and A Stock

Lecture 7: Trading Strategies Involve Options ( ) 11.2 Strategies Involving A Single Option and A Stock 11.2 Strategies Involving A Single Option and A Stock In Figure 11.1a, the portfolio consists of a long position in a stock plus a short position in a European call option à writing a covered call o The

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

EXAMINATION II: Fixed Income Valuation and Analysis. Derivatives Valuation and Analysis. Portfolio Management

EXAMINATION II: Fixed Income Valuation and Analysis. Derivatives Valuation and Analysis. Portfolio Management EXAMINATION II: Fixed Income Valuation and Analysis Derivatives Valuation and Analysis Portfolio Management Questions Final Examination March 2016 Question 1: Fixed Income Valuation and Analysis / Fixed

More information

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x).

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x). 2 EXERCISES 27 2 Exercises Use integration by parts to compute lnx) dx 2 Compute x lnx) dx Hint: Use the substitution u = lnx) 3 Show that tan x) =/cos x) 2 and conclude that dx = arctanx) + C +x2 Note:

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

Any asset that derives its value from another underlying asset is called a derivative asset. The underlying asset could be any asset - for example, a

Any asset that derives its value from another underlying asset is called a derivative asset. The underlying asset could be any asset - for example, a Options Week 7 What is a derivative asset? Any asset that derives its value from another underlying asset is called a derivative asset. The underlying asset could be any asset - for example, a stock, bond,

More information

non linear Payoffs Markus K. Brunnermeier

non linear Payoffs Markus K. Brunnermeier Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Greeks Introduction We have studied how to price an option using the Black-Scholes formula. Now we wish to consider how the option price changes, either

More information

MATH4210 Financial Mathematics ( ) Tutorial 6

MATH4210 Financial Mathematics ( ) Tutorial 6 MATH4210 Financial Mathematics (2015-2016) Tutorial 6 Enter the market with different strategies Strategies Involving a Single Option and a Stock Covered call Protective put Π(t) S(t) c(t) S(t) + p(t)

More information

Implied Volatility Surface

Implied Volatility Surface Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 16) Liuren Wu Implied Volatility Surface Options Markets 1 / 1 Implied volatility Recall the

More information

Finance 527: Lecture 30, Options V2

Finance 527: Lecture 30, Options V2 Finance 527: Lecture 30, Options V2 [John Nofsinger]: This is the second video for options and so remember from last time a long position is-in the case of the call option-is the right to buy the underlying

More information

INSTITUTE OF ACTUARIES OF INDIA

INSTITUTE OF ACTUARIES OF INDIA INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 10 th November 2008 Subject CT8 Financial Economics Time allowed: Three Hours (14.30 17.30 Hrs) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES 1) Please read

More information

Derivatives Analysis & Valuation (Futures)

Derivatives Analysis & Valuation (Futures) 6.1 Derivatives Analysis & Valuation (Futures) LOS 1 : Introduction Study Session 6 Define Forward Contract, Future Contract. Forward Contract, In Forward Contract one party agrees to buy, and the counterparty

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 20 Lecture 20 Implied volatility November 30, 2017

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press CHAPTER 10 OPTION PRICING - II Options Pricing II Intrinsic Value and Time Value Boundary Conditions for Option Pricing Arbitrage Based Relationship for Option Pricing Put Call Parity 2 Binomial Option

More information

Econ Financial Markets Spring 2011 Professor Robert Shiller. Problem Set 6

Econ Financial Markets Spring 2011 Professor Robert Shiller. Problem Set 6 Econ 252 - Financial Markets Spring 2011 Professor Robert Shiller Problem Set 6 Question 1 (a) How are futures and options different in terms of the risks they allow investors to protect against? (b) Consider

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Economic Risk and Decision Analysis for Oil and Gas Industry CE School of Engineering and Technology Asian Institute of Technology

Economic Risk and Decision Analysis for Oil and Gas Industry CE School of Engineering and Technology Asian Institute of Technology Economic Risk and Decision Analysis for Oil and Gas Industry CE81.98 School of Engineering and Technology Asian Institute of Technology January Semester Presented by Dr. Thitisak Boonpramote Department

More information

Answers to Selected Problems

Answers to Selected Problems Answers to Selected Problems Problem 1.11. he farmer can short 3 contracts that have 3 months to maturity. If the price of cattle falls, the gain on the futures contract will offset the loss on the sale

More information

The Black-Scholes Model

The Black-Scholes Model IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use Itô s Lemma and a replicating argument to derive the famous Black-Scholes formula

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II Post-test Instructor: Milica Čudina Notes: This is a closed

More information

Chapter 2 Questions Sample Comparing Options

Chapter 2 Questions Sample Comparing Options Chapter 2 Questions Sample Comparing Options Questions 2.16 through 2.21 from Chapter 2 are provided below as a Sample of our Questions, followed by the corresponding full Solutions. At the beginning of

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

Portfolio Management

Portfolio Management Portfolio Management 010-011 1. Consider the following prices (calculated under the assumption of absence of arbitrage) corresponding to three sets of options on the Dow Jones index. Each point of the

More information

Chapter 2. An Introduction to Forwards and Options. Question 2.1

Chapter 2. An Introduction to Forwards and Options. Question 2.1 Chapter 2 An Introduction to Forwards and Options Question 2.1 The payoff diagram of the stock is just a graph of the stock price as a function of the stock price: In order to obtain the profit diagram

More information

University of Colorado at Boulder Leeds School of Business MBAX-6270 MBAX Introduction to Derivatives Part II Options Valuation

University of Colorado at Boulder Leeds School of Business MBAX-6270 MBAX Introduction to Derivatives Part II Options Valuation MBAX-6270 Introduction to Derivatives Part II Options Valuation Notation c p S 0 K T European call option price European put option price Stock price (today) Strike price Maturity of option Volatility

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Profit settlement End of contract Daily Option writer collects premium on T+1

Profit settlement End of contract Daily Option writer collects premium on T+1 DERIVATIVES A derivative contract is a financial instrument whose payoff structure is derived from the value of the underlying asset. A forward contract is an agreement entered today under which one party

More information

Forwards, Futures, Options and Swaps

Forwards, Futures, Options and Swaps Forwards, Futures, Options and Swaps A derivative asset is any asset whose payoff, price or value depends on the payoff, price or value of another asset. The underlying or primitive asset may be almost

More information

Answers to Selected Problems

Answers to Selected Problems Answers to Selected Problems Problem 1.11. he farmer can short 3 contracts that have 3 months to maturity. If the price of cattle falls, the gain on the futures contract will offset the loss on the sale

More information

FINA 1082 Financial Management

FINA 1082 Financial Management FINA 1082 Financial Management Dr Cesario MATEUS Senior Lecturer in Finance and Banking Room QA257 Department of Accounting and Finance c.mateus@greenwich.ac.uk www.cesariomateus.com 1 Lecture 13 Derivatives

More information

CHAPTER 17 OPTIONS AND CORPORATE FINANCE

CHAPTER 17 OPTIONS AND CORPORATE FINANCE CHAPTER 17 OPTIONS AND CORPORATE FINANCE Answers to Concept Questions 1. A call option confers the right, without the obligation, to buy an asset at a given price on or before a given date. A put option

More information

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012 Finance 65: PDEs and Stochastic Calculus Midterm Examination November 9, 0 Instructor: Bjørn Kjos-anssen Student name Disclaimer: It is essential to write legibly and show your work. If your work is absent

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives November 5, 212 Option Analysis and Modeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis and Modeling:

More information

Help Session 2. David Sovich. Washington University in St. Louis

Help Session 2. David Sovich. Washington University in St. Louis Help Session 2 David Sovich Washington University in St. Louis TODAY S AGENDA 1. Refresh the concept of no arbitrage and how to bound option prices using just the principle of no arbitrage 2. Work on applying

More information

University of California, Los Angeles Department of Statistics. Final exam 07 June 2013

University of California, Los Angeles Department of Statistics. Final exam 07 June 2013 University of California, Los Angeles Department of Statistics Statistics C183/C283 Instructor: Nicolas Christou Final exam 07 June 2013 Name: Problem 1 (20 points) a. Suppose the variable X follows the

More information

Introduction. Financial Economics Slides

Introduction. Financial Economics Slides Introduction. Financial Economics Slides Howard C. Mahler, FCAS, MAAA These are slides that I have presented at a seminar or weekly class. The whole syllabus of Exam MFE is covered. At the end is my section

More information

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005 Corporate Finance, Module 21: Option Valuation Practice Problems (The attached PDF file has better formatting.) Updated: July 7, 2005 {This posting has more information than is needed for the corporate

More information

How Much Should You Pay For a Financial Derivative?

How Much Should You Pay For a Financial Derivative? City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology Winter 2-26-2016 How Much Should You Pay For a Financial Derivative? Boyan Kostadinov

More information

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other

More information

The graph on which we plot payoffs

The graph on which we plot payoffs The net several lectures are about derivative securities. Derivative securities have almost nothing to do with calculus. Their payoffs depend on the value of other securities. Both options and futures

More information

Option pricing. School of Business C-thesis in Economics, 10p Course code: EN0270 Supervisor: Johan Lindén

Option pricing. School of Business C-thesis in Economics, 10p Course code: EN0270 Supervisor: Johan Lindén School of Business C-thesis in Economics, 1p Course code: EN27 Supervisor: Johan Lindén 25-5-3 Option pricing A Test of the Black & scholes theory using market data By Marlon Gerard Silos & Glyn Grimwade

More information

STRATEGIES WITH OPTIONS

STRATEGIES WITH OPTIONS MÄLARDALEN UNIVERSITY PROJECT DEPARTMENT OF MATHEMATICS AND PHYSICS ANALYTICAL FINANCE I, MT1410 TEACHER: JAN RÖMAN 2003-10-21 STRATEGIES WITH OPTIONS GROUP 3: MAGNUS SÖDERHOLTZ MAZYAR ROSTAMI SABAHUDIN

More information

CHAPTER 20 Spotting and Valuing Options

CHAPTER 20 Spotting and Valuing Options CHAPTER 20 Spotting and Valuing Options Answers to Practice Questions The six-month call option is more valuable than the six month put option since the upside potential over time is greater than the limited

More information

SAMPLE SOLUTIONS FOR DERIVATIVES MARKETS

SAMPLE SOLUTIONS FOR DERIVATIVES MARKETS SAMPLE SOLUTIONS FOR DERIVATIVES MARKETS Question #1 If the call is at-the-money, the put option with the same cost will have a higher strike price. A purchased collar requires that the put have a lower

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends.

last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends. 224 10 Arbitrage and SDEs last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends. 10.1 (Calculation of Delta First and Finest

More information

B.4 Solutions to Exam MFE/3F, Spring 2009

B.4 Solutions to Exam MFE/3F, Spring 2009 SOLUTIONS TO EXAM MFE/3F, SPRING 29, QUESTIONS 1 3 775 B.4 Solutions to Exam MFE/3F, Spring 29 The questions for this exam may be downloaded from http://www.soa.org/files/pdf/edu-29-5-mfe-exam.pdf 1. [Section

More information

2 The binomial pricing model

2 The binomial pricing model 2 The binomial pricing model 2. Options and other derivatives A derivative security is a financial contract whose value depends on some underlying asset like stock, commodity (gold, oil) or currency. The

More information

Name: 2.2. MULTIPLE CHOICE QUESTIONS. Please, circle the correct answer on the front page of this exam.

Name: 2.2. MULTIPLE CHOICE QUESTIONS. Please, circle the correct answer on the front page of this exam. Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin In-Term Exam II Extra problems Instructor: Milica Čudina Notes: This is a closed book and closed notes exam.

More information

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG. Homework 3 Solution

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG. Homework 3 Solution MAH 476/567 ACUARIAL RISK HEORY FALL 2016 PROFESSOR WANG Homework 3 Solution 1. Consider a call option on an a nondividend paying stock. Suppose that for = 0.4 the option is trading for $33 an option.

More information

SOA Exam MFE Solutions: May 2007

SOA Exam MFE Solutions: May 2007 Exam MFE May 007 SOA Exam MFE Solutions: May 007 Solution 1 B Chapter 1, Put-Call Parity Let each dividend amount be D. The first dividend occurs at the end of months, and the second dividend occurs at

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

The Black-Scholes Equation

The Black-Scholes Equation The Black-Scholes Equation MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will: derive the Black-Scholes partial differential equation using Itô s Lemma and no-arbitrage

More information

Lecture 16: Delta Hedging

Lecture 16: Delta Hedging Lecture 16: Delta Hedging We are now going to look at the construction of binomial trees as a first technique for pricing options in an approximative way. These techniques were first proposed in: J.C.

More information

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE.

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Sample In-Term Exam II Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The

More information