Chapter Five. The Binomial Probability Distribution and Related Topics

Size: px
Start display at page:

Download "Chapter Five. The Binomial Probability Distribution and Related Topics"

Transcription

1 Chapter Five The Binomial Probability Distribution and Related Topics

2 Section 3 Additional Properties of the Binomial Distribution

3 Essential Questions How are the mean and standard deviation determined when using a binomial distribution? What must be true for this process to be applied to the distribution?

4 Student Objectives The student will determine the values of a binomial distribution. The student will construct a histogram for a binomial distribution. The student will compute the minimum number of trials needed to achieve a given probability of success. The student will determine the least number of trials necessary to have a required value of µ. The student will determine the minimum number of trials (quota) required to reach a given percentage of success. The student will determine a range of unusual values of the a binomial experiment.

5 Key Terms Histogram Mean Quota Standard Deviation Unusual values Variance

6 Mean and Standard Deviation of a Binomial Distribution Mean = µ µ = np Standard Deviation = σ σ = npq

7 Mean and standard deviation of the binomial distribution Find the mean and standard deviation of the probability distribution for tossing four coins and observing the number of heads appearing. n = 4 p = 0.5 q = 1 p q = q = 0.5

8 Mean and standard deviation of the binomial distribution Mean Standard Deviation µ = np σ = npq µ = 4(.5) σ = 4(.5)(.5) µ = 2 σ = 1 σ =1

9 Find the mean and standard deviation: A marksman takes eight shots at a target. He normally hits the target 70% of the time. Find the mean number of times he hits the target and standard deviation of hits. n = 8 p = 0.7 q = q = 0.3 µ = np σ = npq µ = 8(.7) σ = 8(.7)(.3) µ = 5.6 σ = 1.68 σ =

10 Sample Problems: 1. Eight trees are going to be planted in the northern corner of the new track area. Determine the mean number of trees that expected to survive if the probability of survival for each tree is 0.85? What is the standard deviation? µ = np µ = ( 8) ( 0.85) µ = 6.8 σ = npq σ = ( 8) ( 0.85) ( 0.15) σ = 1.02 σ =

11 Sample Problems: 2. The probability of having a male child is If a family is planning on having seven children. What is the mean number of boys the family can expect? What is the standard deviation? µ = np σ = npq µ = ( 7) ( 0.55) µ = 3.85 σ = ( 7) ( 0.55) ( 0.45) σ = σ =

12 ?Application Questions? How do you find the minimum number of trials to reach a given value for µ?

13 A marksman takes eight shots at a target. He normally hits the target 70% of the time. How many shots must he take if he wishes to hit the target an average of 9 times? µ = 9 and p = 0.7 µ = np 9 = n( 0.7) = n 13 = n So, the marksman would need to take 13 shots to have 9 as the mean number of times that he hits the target. Remember to ALWAYS round your answer upward unless it is an integer value.

14 Sample Problems: 3. What is the least number of children the parents should plan to have if they wish to be 95% certain that they have at least 4 boys? binomcdf (n, 0.55, 3) ( ) ( ) 1 P r 3 P r 4 n = 12 P( r 4) 1 P( r 3) 1 binomcdf (12, 0.55, 3) The parents should plan to have 12 children to be 95% certain that they have at least 4 boys.

15 ?Application Questions? How do you find the minimum number of trials to be P% sure that you reach a given value for µ?

16 A marksman takes eight shots at a target. He normally hits the target 70% of the time. How many shots must he take if he wishes to be 95% certain that he hits the target at least 6 times? If n = 7 and p = 0.70 P( r 6) 1 P( r 5) 1 binomcdf ( 7, 0.7, 5) Too low!

17 A marksman takes eight shots at a target. He normally hits the target 70% of the time. How many shots must he take if he wishes to be 95% certain that he hits the target at least 6 times? If n = 8 and p = 0.70 P( r 6) 1 P( r 5) 1 binomcdf ( 8, 0.7, 5) Too low!

18 A marksman takes eight shots at a target. He normally hits the target 70% of the time. How many shots must he take if he wishes to be 95% certain that he hits the target at least 6 times? If n = 9 and p = 0.70 P( r 6) 1 P( r 5) 1 binomcdf ( 9, 0.7, 5) Too low!

19 A marksman takes eight shots at a target. He normally hits the target 70% of the time. How many shots must he take if he wishes to be 95% certain that he hits the target at least 6 times? If n = 10 and p = 0.70 P( r 6) 1 P( r 5) 1 binomcdf ( 10, 0.7, 5) Too low!

20 A marksman takes eight shots at a target. He normally hits the target 70% of the time. How many shots must he take if he wishes to be 95% certain that he hits the target at least 6 times? If n = 11 and p = 0.70 P( r 6) 1 P( r 5) 1 binomcdf ( 11, 0.7, 5) Too low!

21 A marksman takes eight shots at a target. He normally hits the target 70% of the time. How many shots must he take if he wishes to be 95% certain that he hits the target at least 6 times? If n = 12 and p = 0.70 P( r 6) 1 P( r 5) 1 binomcdf ( 12, 0.7, 5) Finally!

22 Sample Problems: 4. What is the least number of children the parents should plan to have if they wish to be 99.99% certain that they have at least 4 boys? P r 4 ( ) 1 P( r 3) 1 binomcdf (22, 0.55, 3) The parents should plan to have 22 children to be 99.99% certain that they have at least 4 boys.

23 ?Application Questions? How do you find the range for unusual data values for a binomial distribution?

24 Unusual Values For a binomial distribution, it is unusual for the number of successes r to be lower or higher than the inequalities stated below. r < µ 2.5σ or r > µ + 2.5σ Remember that r is the number of success and r must be an integer value in the range given below. 0 r n

25 Find the values of r that would be considered unusual: A marksman takes eight shots at a target. He normally hits the target 70% of the time. Find the mean number of times he hits the target and standard deviation of hits. n = 8 p = 0.7 q = q = 0.3 µ = np σ = npq µ = 8(.7) σ = 8(.7)(.3) µ = 5.6 σ = 1.68 σ =

26 Find the values of r that would be considered unusual: A marksman takes eight shots at a target. He normally hits the target 70% of the time. Find the mean number of times he hits the target and standard deviation of hits. µ = 5.6 σ = r < ( ) OR r > ( ) r < r > r < r > The number of successes that would be unusual for the marksman would be to hit the target 0, 1, or 2 times.

27 Sample Problems: 5. The probability that it will snow any day during the Farm Show week (7 days) is What is the mean number of days it can be expected to snow? What is the standard deviation? Determine the number of days that would be considered unusual if it snowed that number of days? µ = ( 7) ( 0.37) µ = 2.59 σ = ( 7) ( 0.37) ( 0.63) σ = σ =

28 Sample Problems: 5. The probability that it will snow any day during the Farm Show week (7 days) is What is the mean number of days it can be expected to snow? What is the standard deviation? Determine the number of days that would be considered unusual if it snowed that number of days? µ = 2.59 σ = r < ( ) OR r > ( ) r < r > r < r > The number of successes that would be unusual for the number of days that it would snow during Farm Show week is 6 and 7.

29 ?Application Questions? How do you construct a histogram from a binomial probability distribution?

30 Constructing a Histogram for a Binomial Probability Distribution A marksman takes eight shots at a target. He normally hits the target 70% of the time. Find the mean number of times he hits the target and standard deviation of hits. µ = np Step 1. Complete a probability chart. r ( ) P r ( ) r P r Total

31 Constructing a Histogram for a Binomial Probability Distribution A marksman takes eight shots at a target. He normally hits the target 70% of the time. Find the mean number of times he hits the target and standard deviation of hits. Step 2. Place the r values on the horizontal axis. Step 3. Place the P(r) values on the vertical axis. Step 4. Construct a over each r value extending from r to r The height of the bar corresponds to P(r). Probability A Marksman s Success Number of Hits

32 Sample Problems: 6. A chart showing the number of times that a student will purchase the main meal from the cafeteria is given below. If the probability of purchasing the main meal is 70%, complete the chart and then complete the histogram on the given grid. Determine the mean number of meals purchased by a student. What is the standard deviation? How many people would you need to survey to be 97% certain that you have at least 5 people that purchase the main meal on any given day? µ = np σ = npq µ = 5(.7) σ = 5(.7)(.3) µ = 3.5 σ = 1.05 σ =

33 Sample Problem Constructing a Histogram for a Binomial Probability Distribution A chart showing the number of times that a student will purchase the main meal from the cafeteria is given below. If the probability of purchasing the main meal is 70%, complete the chart and then complete the histogram on the given grid. Determine the mean number of meals purchased by a student. What is the standard deviation? How many people would you need to survey to be 97% certain that you have at least 5 people that purchase the main meal on any given day? r P( r) r P( r) µ = np Step 1. Complete a probability chart Total

34 Sample Problem Constructing a Histogram for a Binomial Probability Distribution If the probability of purchasing the main meal is 70%, complete the chart and then complete the histogram on the given grid. Step 2. Place the r values on the horizontal axis. Step 3. Place the P(r) values on the vertical axis. Step 4. Construct a over each r value extending from r to r The height of the bar corresponds to P(r). Probability Buying the Main Meal Number of Purchases

35 Sample Problems: 6. How many people would you need to survey to be 97% certain that you have at least 5 people that purchase the main meal on any given day? If n = 6 and p = 0.70 P( r 5) 1 P( r 4) 1 binomcdf ( 11, 0.70, 4) You would need to survey 11 students to be 97% certain that they have at least 5 students that have purchased the main meal on any given day.

36 THE END Copyright (C) 2001 Houghton Mifflin Company. All rights reserved. 36

Chapter Five. The Binomial Distribution and Related Topics

Chapter Five. The Binomial Distribution and Related Topics Chapter Five The Binomial Distribution and Related Topics Section 2 Binomial Probabilities Essential Question What are the three methods for solving binomial probability questions? Explain each of the

More information

Focus Points 10/11/2011. The Binomial Probability Distribution and Related Topics. Additional Properties of the Binomial Distribution. Section 5.

Focus Points 10/11/2011. The Binomial Probability Distribution and Related Topics. Additional Properties of the Binomial Distribution. Section 5. The Binomial Probability Distribution and Related Topics 5 Copyright Cengage Learning. All rights reserved. Section 5.3 Additional Properties of the Binomial Distribution Copyright Cengage Learning. All

More information

30 Wyner Statistics Fall 2013

30 Wyner Statistics Fall 2013 30 Wyner Statistics Fall 2013 CHAPTER FIVE: DISCRETE PROBABILITY DISTRIBUTIONS Summary, Terms, and Objectives A probability distribution shows the likelihood of each possible outcome. This chapter deals

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Sampling & populations

Sampling & populations Sampling & populations Sample proportions Sampling distribution - small populations Sampling distribution - large populations Sampling distribution - normal distribution approximation Mean & variance of

More information

Math Week in Review #10. Experiments with two outcomes ( success and failure ) are called Bernoulli or binomial trials.

Math Week in Review #10. Experiments with two outcomes ( success and failure ) are called Bernoulli or binomial trials. Math 141 Spring 2006 c Heather Ramsey Page 1 Section 8.4 - Binomial Distribution Math 141 - Week in Review #10 Experiments with two outcomes ( success and failure ) are called Bernoulli or binomial trials.

More information

Problem A Grade x P(x) To get "C" 1 or 2 must be 1 0.05469 B A 2 0.16410 3 0.27340 4 0.27340 5 0.16410 6 0.05470 7 0.00780 0.2188 0.5468 0.2266 Problem B Grade x P(x) To get "C" 1 or 2 must 1 0.31150 be

More information

11.5: Normal Distributions

11.5: Normal Distributions 11.5: Normal Distributions 11.5.1 Up to now, we ve dealt with discrete random variables, variables that take on only a finite (or countably infinite we didn t do these) number of values. A continuous random

More information

8.4: The Binomial Distribution

8.4: The Binomial Distribution c Dr Oksana Shatalov, Spring 2012 1 8.4: The Binomial Distribution Binomial Experiments have the following properties: 1. The number of trials in the experiment is fixed. 2. There are 2 possible outcomes

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution.

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution. MA 5 Lecture - Mean and Standard Deviation for the Binomial Distribution Friday, September 9, 07 Objectives: Mean and standard deviation for the binomial distribution.. Mean and Standard Deviation of the

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Chapter 4 Probability Distributions

Chapter 4 Probability Distributions Slide 1 Chapter 4 Probability Distributions Slide 2 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5

More information

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 5-5 The Poisson Distribution

More information

PROBABILITY DISTRIBUTIONS

PROBABILITY DISTRIBUTIONS CHAPTER 3 PROBABILITY DISTRIBUTIONS Page Contents 3.1 Introduction to Probability Distributions 51 3.2 The Normal Distribution 56 3.3 The Binomial Distribution 60 3.4 The Poisson Distribution 64 Exercise

More information

4.2 Bernoulli Trials and Binomial Distributions

4.2 Bernoulli Trials and Binomial Distributions Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 4.2 Bernoulli Trials and Binomial Distributions A Bernoulli trial 1 is an experiment with exactly two outcomes: Success and

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions Chapter 4 Probability Distributions 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5 The Poisson Distribution

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Chapter. Section 4.2. Chapter 4. Larson/Farber 5 th ed 1. Chapter Outline. Discrete Probability Distributions. Section 4.

Chapter. Section 4.2. Chapter 4. Larson/Farber 5 th ed 1. Chapter Outline. Discrete Probability Distributions. Section 4. Chapter Discrete Probability s Chapter Outline 1 Probability s 2 Binomial s 3 More Discrete Probability s Copyright 2015, 2012, and 2009 Pearson Education, Inc 1 Copyright 2015, 2012, and 2009 Pearson

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

guessing Bluman, Chapter 5 2

guessing Bluman, Chapter 5 2 Bluman, Chapter 5 1 guessing Suppose there is multiple choice quiz on a subject you don t know anything about. 15 th Century Russian Literature; Nuclear physics etc. You have to guess on every question.

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

A.REPRESENTATION OF DATA

A.REPRESENTATION OF DATA A.REPRESENTATION OF DATA (a) GRAPHS : PART I Q: Why do we need a graph paper? Ans: You need graph paper to draw: (i) Histogram (ii) Cumulative Frequency Curve (iii) Frequency Polygon (iv) Box-and-Whisker

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Chapter 8: The Binomial and Geometric Distributions 8.1 Binomial Distributions 8.2 Geometric Distributions 1 Let me begin with an example My best friends from Kent School had three daughters. What is the

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Essential Question How can I determine whether the conditions for using binomial random variables are met? Binomial Settings When the

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

Binomial Distribution. Normal Approximation to the Binomial

Binomial Distribution. Normal Approximation to the Binomial Binomial Distribution Normal Approximation to the Binomial /29 Homework Read Sec 6-6. Discussion Question pg 337 Do Ex 6-6 -4 2 /29 Objectives Objective: Use the normal approximation to calculate 3 /29

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.3 Binomial Probability Copyright Cengage Learning. All rights reserved. Objectives Binomial Probability The Binomial Distribution

More information

What is the probability of success? Failure? How could we do this simulation using a random number table?

What is the probability of success? Failure? How could we do this simulation using a random number table? Probability Ch.4, sections 4.2 & 4.3 Binomial and Geometric Distributions Name: Date: Pd: 4.2. What is a binomial distribution? How do we find the probability of success? Suppose you have three daughters.

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

Statistics Chapter 8

Statistics Chapter 8 Statistics Chapter 8 Binomial & Geometric Distributions Time: 1.5 + weeks Activity: A Gaggle of Girls The Ferrells have 3 children: Jennifer, Jessica, and Jaclyn. If we assume that a couple is equally

More information

Homework Problems In each of the following situations, X is a count. Does X have a binomial distribution? Explain. 1. You observe the gender of the next 40 children born in a hospital. X is the number

More information

A random variable is a (typically represented by ) that has a. value, determined by, A probability distribution is a that gives the

A random variable is a (typically represented by ) that has a. value, determined by, A probability distribution is a that gives the 5.2 RANDOM VARIABLES A random variable is a (typically represented by ) that has a value, determined by, for each of a. A probability distribution is a that gives the for each value of the. It is often

More information

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS A random variable is the description of the outcome of an experiment in words. The verbal description of a random variable tells you how to find or calculate

More information

MA 1125 Lecture 18 - Normal Approximations to Binomial Distributions. Objectives: Compute probabilities for a binomial as a normal distribution.

MA 1125 Lecture 18 - Normal Approximations to Binomial Distributions. Objectives: Compute probabilities for a binomial as a normal distribution. MA 25 Lecture 8 - Normal Approximations to Binomial Distributions Friday, October 3, 207 Objectives: Compute probabilities for a binomial as a normal distribution.. Normal Approximations to the Binomial

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

6. THE BINOMIAL DISTRIBUTION

6. THE BINOMIAL DISTRIBUTION 6. THE BINOMIAL DISTRIBUTION Eg: For 1000 borrowers in the lowest risk category (FICO score between 800 and 850), what is the probability that at least 250 of them will default on their loan (thereby rendering

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Graphing a Binomial Probability Distribution Histogram

Graphing a Binomial Probability Distribution Histogram Chapter 6 8A: Using a Normal Distribution to Approximate a Binomial Probability Distribution Graphing a Binomial Probability Distribution Histogram Lower and Upper Class Boundaries are used to graph the

More information

Chapter 6: Discrete Probability Distributions

Chapter 6: Discrete Probability Distributions 120C-Choi-Spring-2019 1 Chapter 6: Discrete Probability Distributions Section 6.1: Discrete Random Variables... p. 2 Section 6.2: The Binomial Probability Distribution... p. 10 The notes are based on Statistics:

More information

Let X be the number that comes up on the next roll of the die.

Let X be the number that comes up on the next roll of the die. Chapter 6 - Discrete Probability Distributions 6.1 Random Variables Introduction If we roll a fair die, the possible outcomes are the numbers 1, 2, 3, 4, 5, and 6, and each of these numbers has probability

More information

CHAPTER 5 Sampling Distributions

CHAPTER 5 Sampling Distributions CHAPTER 5 Sampling Distributions 5.1 The possible values of p^ are 0, 1/3, 2/3, and 1. These correspond to getting 0 persons with lung cancer, 1 with lung cancer, 2 with lung cancer, and all 3 with lung

More information

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions Chapter 4: Probability s 4. Probability s 4. Binomial s Section 4. Objectives Distinguish between discrete random variables and continuous random variables Construct a discrete probability distribution

More information

Section 8.4 The Binomial Distribution

Section 8.4 The Binomial Distribution Section 8.4 The Binomial Distribution Binomial Experiment A binomial experiment has the following properties: 1. The number of trials in the experiment is fixed. 2. There are two outcomes of each trial:

More information

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Discrete Probability Distributions McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Overview Introduction 5-1 Probability Distributions 5-2 Mean, Variance, Standard Deviation, and Expectation

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.3 Binomial and Geometric Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Binomial and Geometric Random

More information

Chapter 8 Homework Solutions Compiled by Joe Kahlig

Chapter 8 Homework Solutions Compiled by Joe Kahlig homewk problems, B-copyright Joe Kahlig Chapter Solutions, Page Chapter omewk Solutions Compiled by Joe Kahlig 0. 0. 0. 0.. You are counting the number of games and there are a limited number of games

More information

8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions 8-1

8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions 8-1 8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions For Example: On August 8, 2011, the Dow dropped 634.8 points, sending shock waves through the financial community.

More information

Binomial Random Variable - The count X of successes in a binomial setting

Binomial Random Variable - The count X of successes in a binomial setting 6.3.1 Binomial Settings and Binomial Random Variables What do the following scenarios have in common? Toss a coin 5 times. Count the number of heads. Spin a roulette wheel 8 times. Record how many times

More information

The Central Limit Theorem

The Central Limit Theorem Section 6-5 The Central Limit Theorem I. Sampling Distribution of Sample Mean ( ) Eample 1: Population Distribution Table 2 4 6 8 P() 1/4 1/4 1/4 1/4 μ (a) Find the population mean and population standard

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

Math 14 Lecture Notes Ch. 4.3

Math 14 Lecture Notes Ch. 4.3 4.3 The Binomial Distribution Example 1: The former Sacramento King's DeMarcus Cousins makes 77% of his free throws. If he shoots 3 times, what is the probability that he will make exactly 0, 1, 2, or

More information

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables You are dealt a hand of 5 cards. Find the probability distribution table for the number of hearts. Graph

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6.2 Transforming and

More information

Binomial Distributions

Binomial Distributions Binomial Distributions Binomial Experiment The experiment is repeated for a fixed number of trials, where each trial is independent of the other trials There are only two possible outcomes of interest

More information

Probability Distributions

Probability Distributions Chapter 6 Discrete Probability Distributions Section 6-2 Probability Distributions Definitions Let S be the sample space of a probability experiment. A random variable X is a function from the set S into

More information

Stats SB Notes 4.2 Completed.notebook February 22, Feb 21 11:39 AM. Chapter Outline

Stats SB Notes 4.2 Completed.notebook February 22, Feb 21 11:39 AM. Chapter Outline Stats SB Notes 42 Completednotebook February 22, 2017 Chapter 4 Discrete Probability Distributions Chapter Outline 41 Probability Distributions 42 Binomial Distributions 43 More Discrete Probability Distributions

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Please have out... - notebook - calculator

Please have out... - notebook - calculator Please have out... - notebook - calculator May 6 8:36 PM 6.3 How can we find probabilities when each observation has two possible outcomes? 1 What are we learning today? John Doe claims to possess ESP.

More information

Chapter 3. Discrete Probability Distributions

Chapter 3. Discrete Probability Distributions Chapter 3 Discrete Probability Distributions 1 Chapter 3 Overview Introduction 3-1 The Binomial Distribution 3-2 Other Types of Distributions 2 Chapter 3 Objectives Find the exact probability for X successes

More information

The binomial distribution p314

The binomial distribution p314 The binomial distribution p314 Example: A biased coin (P(H) = p = 0.6) ) is tossed 5 times. Let X be the number of H s. Fine P(X = 2). This X is a binomial r. v. The binomial setting p314 1. There are

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

The topics in this section are related and necessary topics for both course objectives.

The topics in this section are related and necessary topics for both course objectives. 2.5 Probability Distributions The topics in this section are related and necessary topics for both course objectives. A probability distribution indicates how the probabilities are distributed for outcomes

More information

The Normal Model The famous bell curve

The Normal Model The famous bell curve Math 243 Sections 6.1-6.2 The Normal Model Here are some roughly symmetric, unimodal histograms The Normal Model The famous bell curve Example 1. Let s say the mean annual rainfall in Portland is 40 inches

More information

Discrete Probability Distribution

Discrete Probability Distribution 1 Discrete Probability Distribution Key Definitions Discrete Random Variable: Has a countable number of values. This means that each data point is distinct and separate. Continuous Random Variable: Has

More information

the number of correct answers on question i. (Note that the only possible values of X i

the number of correct answers on question i. (Note that the only possible values of X i 6851_ch08_137_153 16/9/02 19:48 Page 137 8 8.1 (a) No: There is no fixed n (i.e., there is no definite upper limit on the number of defects). (b) Yes: It is reasonable to believe that all responses are

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

5.6 What percentage of boys in this age range have carbohydrate intake above 140 g / 1000 cal?

5.6 What percentage of boys in this age range have carbohydrate intake above 140 g / 1000 cal? Probability - Chapter 5 5.6 What percentage of boys in this age range have carbohydrate intake above 140 g / 1000 cal? You are told that you can assume that carbohydrate intake us normally distributed

More information

8.1 Binomial Distributions

8.1 Binomial Distributions 8.1 Binomial Distributions The Binomial Setting The 4 Conditions of a Binomial Setting: 1.Each observation falls into 1 of 2 categories ( success or fail ) 2 2.There is a fixed # n of observations. 3.All

More information

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3 Estimation 7 Copyright Cengage Learning. All rights reserved. Section 7.3 Estimating p in the Binomial Distribution Copyright Cengage Learning. All rights reserved. Focus Points Compute the maximal length

More information

These Statistics NOTES Belong to:

These Statistics NOTES Belong to: These Statistics NOTES Belong to: Topic Notes Questions Date 1 2 3 4 5 6 REVIEW DO EVERY QUESTION IN YOUR PROVINCIAL EXAM BINDER Important Calculator Functions to know for this chapter Normal Distributions

More information

Midterm Test 1 (Sample) Student Name (PRINT):... Student Signature:... Use pencil, so that you can erase and rewrite if necessary.

Midterm Test 1 (Sample) Student Name (PRINT):... Student Signature:... Use pencil, so that you can erase and rewrite if necessary. MA 180/418 Midterm Test 1 (Sample) Student Name (PRINT):............................................. Student Signature:................................................... Use pencil, so that you can erase

More information

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X =

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X = 6.4 The Normal Approximation to the Binomial Distribution Recall from section 6.4 that g A binomial experiment is a experiment that satisfies the following four requirements: 1. Each trial can have only

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information

Please show work for all calculated answers. Show work in a neat and organized manner.

Please show work for all calculated answers. Show work in a neat and organized manner. Math 083 Review for Exam 1 Name Please show work for all calculated answers. Show work in a neat and organized manner. 1) Using the frequency table for a monthly budget, find all of the relative frequencies

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

Chapter 5 Normal Probability Distributions

Chapter 5 Normal Probability Distributions Chapter 5 Normal Probability Distributions Section 5-1 Introduction to Normal Distributions and the Standard Normal Distribution A The normal distribution is the most important of the continuous probability

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Chapter 6 Probability

Chapter 6 Probability Chapter 6 Probability Learning Objectives 1. Simulate simple experiments and compute empirical probabilities. 2. Compute both theoretical and empirical probabilities. 3. Apply the rules of probability

More information

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS I. INTRODUCTION TO RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS A. Random Variables 1. A random variable x represents a value

More information

Part 10: The Binomial Distribution

Part 10: The Binomial Distribution Part 10: The Binomial Distribution The binomial distribution is an important example of a probability distribution for a discrete random variable. It has wide ranging applications. One readily available

More information