Generalized Multilevel Regression Example for a Binary Outcome

Size: px
Start display at page:

Download "Generalized Multilevel Regression Example for a Binary Outcome"

Transcription

1 Psy 510/610 Multilevel Regression, Spring HLM Generalized Multilevel Regression Example for a Binary Outcome Specifications for this Bernoulli HLM2 run Problem Title: no title The data source for this run = C:\jason\HLM\SQMS\school binary.mdm The command file for this run = C:\jason\HLM\SQMS\school binary 3.hlm Output file name = C:\jason\HLM\SQMS\hlm2.html The maximum number of level-1 units = 2184 The maximum number of level-2 units = 28 The maximum number of micro iterations = 14 Method of estimation: full maximum likelihood via EM-Laplace 2 via adaptive Gaussian quadrature Maximum number of macro iterations = 100 Number of adaptive Gaussian quadrature points = 10 Distribution at Level-1: Bernoulli The outcome variable is GUN Summary of the model specified Level-1 Model Prob(GUNij=1 βj) = ϕij log[ϕij/(1 - ϕij)] = ηij ηij = β0j + β1j*(raceij) + β2j*(erosionij) Level-2 Model β0j = γ00 + γ01*(dropoutj) + u0j β1j = γ10 β2j = γ20 RACE EROSION have been centered around the grand mean. DROPOUT has been centered around the grand mean. Level-1 variance = 1/[ϕij(1-ϕij)] Mixed Model ηij = γ00 + γ01*dropoutj + γ10*raceij + γ20*erosionij + u0j Results for Non-linear Model with the Logit Link Function Unit-Specific Model, PQL Estimation - (macro iteration 12) τ INTRCPT1,β of τ INTRCPT1,β Random level-1 coefficient Reliability estimate INTRCPT1,β The value of the log-likelihood function at iteration 2 = E+003 Final estimation of fixed effects: (Unit-specific model) INTRCPT2, γ <0.001 DROPOUT, γ INTRCPT2, γ INTRCPT2, γ <0.001 Odds Ratio Confidence Interval

2 Psy 510/610 Multilevel Regression, Spring INTRCPT2, γ (0.032,0.063) DROPOUT, γ (0.911,1.140) INTRCPT2, γ (0.842,2.264) INTRCPT2, γ (1.681,2.972) Final estimation of fixed effects (Unit-specific model with robust standard s) INTRCPT2, γ <0.001 DROPOUT, γ INTRCPT2, γ INTRCPT2, γ <0.001 Odds Confidence Ratio Interval INTRCPT2, γ (0.033,0.061) DROPOUT, γ (0.885,1.175) INTRCPT2, γ (0.930,2.052) INTRCPT2, γ (1.689,2.957) Final estimation of variance components Variance Random Effect χ Deviation Component 2 INTRCPT1, u <0.001 Results for Unit-Specific Model, EM Laplace-2 Estimation Iteration 29 τ INTRCPT1,β of τ INTRCPT1,β Random level-1 coefficient Reliability estimate INTRCPT1,β The log-likelihood at EM Laplace-2 iteration 29 is E+003 Final estimation of fixed effects (Unit-specific model) INTRCPT2, γ <0.001 DROPOUT, γ INTRCPT2, γ INTRCPT2, γ <0.001 Odds Confidence Ratio Interval INTRCPT2, γ (0.028,0.062) DROPOUT, γ (0.918,1.137) INTRCPT2, γ (0.626,3.080) INTRCPT2, γ (1.488,3.396)

3 Psy 510/610 Multilevel Regression, Spring Statistics for the current model Deviance = Number of estimated parameters = 5 Results For Unit-Specific Model, Adaptive Gaussian Quadrature iteration 2 τ INTRCPT1,β of τ INTRCPT1,β Final estimation of fixed effects (Unit-specific model) INTRCPT2, γ <0.001 DROPOUT, γ INTRCPT2, γ INTRCPT2, γ <0.001 Statistics for the current model Deviance = Number of estimated parameters = 5 Results for Population-Average Model The value of the log-likelihood function at iteration 3 = E+003 Final estimation of fixed effects: (Population-average model) INTRCPT2, γ <0.001 DROPOUT, γ INTRCPT2, γ INTRCPT2, γ <0.001 Odds Ratio Confidence Interval INTRCPT2, γ (0.034,0.066) DROPOUT, γ (0.911,1.146) INTRCPT2, γ (0.859,2.185) INTRCPT2, γ (1.689,2.907) Final estimation of fixed effects (Population-average model with robust standard s) INTRCPT2, γ <0.001 DROPOUT, γ INTRCPT2, γ INTRCPT2, γ <0.001 Odds Confidence Ratio Interval INTRCPT2, γ (0.035,0.064) DROPOUT, γ (0.875,1.193) INTRCPT2, γ (0.960,1.956)

4 Psy 510/610 Multilevel Regression, Spring INTRCPT2, γ (1.715,2.863) The predicted probability can be computed from the results. I use the population average results to more accurately estimate the proportion of students who have carried a gun in the population. The following formula can be used assuming mean centering of the predictors (or if testing the intercept only model) and the proportion is desired for the case when all predictors equal their means: 1 ϕ = 1 e η ij + ( ) Where ηij is the predicted log odds given the regression, η = β + β ( DROPOUT ) + β ( RACE) + β ( EROSION ). ηij is easy ij to calculate if all predictors are 0 (i.e., equal to their means when centered), because ηij is simply equal to β0: 1 ϕ = =.045 ( 3.045) ( 1 + e ) Thus, approximately 4.5% of students in the population are expected to report carrying a gun in the previous year. R > library(lme4) > mydata$gun <- as.numeric(mydata$gun) > mydata$gun = mydata$gun - 1. > mydata$race <- as.numeric(mydata$race) NOTE: Use listwise deletion to make sure centering is based on same number of cases as used in the model > mydata <-Subset(gun!='NA' & race!='na'& erosion!='na'& dropout!='na') > > mydata$race <- mydata$race - mean(mydata$race) > mydata$erosion <- mydata$erosion - mean(mydata$erosion) > mydata$dropout <- mydata$dropout - mean(mydata$dropout) > View(mydata) > > > rm(model1) > #Laplace approximation > model1 <- glmer(gun ~ race + erosion + dropout + (1 schnum), family = binomial,data=mydata) > summary(model1) Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmermod'] Family: binomial ( logit ) Formula: gun ~ race + erosion + dropout + (1 schnum) Data: mydata AIC BIC loglik deviance df.resid Scaled residuals: Min 1Q Median 3Q Max Random effects: Groups Name Variance Std.Dev. schnum (Intercept) Number of obs: 2274, groups: schnum, 28

5 Psy 510/610 Multilevel Regression, Spring Fixed effects: Estimate Std. Error z value Pr(> z ) (Intercept) < race erosion dropout Correlation of s: (Intr) race erosin race erosion dropout > #adaptive quadrature, 15 integration points > model2 <- glmer(gun ~ race + erosion + dropout + (1 schnum), family = binomial, nagq=15,data=mydata) > summary(model2) Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss- Hermite Quadrature, nagq = 15) ['glmermod'] Family: binomial ( logit ) Formula: gun ~ race + erosion + dropout + (1 schnum) Data: mydata AIC BIC loglik deviance df.resid Scaled residuals: Min 1Q Median 3Q Max Random effects: Groups Name Variance Std.Dev. schnum (Intercept) Number of obs: 2274, groups: schnum, 28 Fixed effects: Estimate Std. Error z value Pr(> z ) (Intercept) < race erosion dropout Correlation of s: (Intr) race erosin race erosion dropout Note: Special code is needed (0+slopevar) to suppress multiple intercepts that are generated by default, which seems atypical to me. Also, adaptive quadrature does not appear to be available for models with random slopes. > #to have more than one random slope and a single intercept, use something like > model1 <- glmer(gun ~ race + erosion + dropout + (race schnum) + (0+erosion schnum), family = binomial,data=mydata)

6 Psy 510/610 Multilevel Regression, Spring > summary(model1) Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmermod'] Family: binomial ( logit ) Formula: gun ~ race + erosion + dropout + (race schnum) + (0 + erosion schnum) Data: mydata AIC BIC loglik deviance df.resid Scaled residuals: Min 1Q Median 3Q Max Random effects: Groups Name Variance Std.Dev. Corr schnum (Intercept) race schnum.1 erosion Number of obs: 2274, groups: schnum, 28 Fixed effects: Estimate Std. Error z value Pr(> z ) (Intercept) < race erosion dropout Correlation of s: (Intr) race erosin race erosion dropout SPSS Because SPSS only provides PQL estimates, which I do not recommend using when other methods are available, I do not present a full example here. Below is syntax, however, for estimating a binary model. GENLINMIXED /DATA_STRUCTURE SUBJECTS=schnum /FIELDS TARGET=gun /TARGET_OPTIONS DISTRIBUTION=BINOMIAL LINK=LOGIT /FIXED EFFECTS=race cerosion cdropout USE_INTERCEPT=TRUE /RANDOM USE_INTERCEPT=TRUE SUBJECTS=schnum COVARIANCE_TYPE=VARIANCE_COMPONENTS /BUILD_OPTIONS TARGET_CATEGORY_ORDER=DESCENDING INPUTS_CATEGORY_ORDER=DESCENDING MAX_ITERATIONS=1500 CONFIDENCE_LEVEL=95 DF_METHOD=SATTERTHWAITE. The "TARGET" is the outcome and the "INPUTS" are the predictors. The SUBJECTS variable is the group designation. ORDER=DESCENDING is used to specify that the 0 group is used as the comparison (typically what is desired) for the dependent or the independent variable. If omitted, the 1 group is used as the default.

Step 1: Load the appropriate R package. Step 2: Fit a separate mixed model for each independence claim in the basis set.

Step 1: Load the appropriate R package. Step 2: Fit a separate mixed model for each independence claim in the basis set. Step 1: Load the appropriate R package. You will need two libraries: nlme and lme4. Step 2: Fit a separate mixed model for each independence claim in the basis set. For instance, in Table 2 the first basis

More information

Hierarchical Generalized Linear Models. Measurement Incorporated Hierarchical Linear Models Workshop

Hierarchical Generalized Linear Models. Measurement Incorporated Hierarchical Linear Models Workshop Hierarchical Generalized Linear Models Measurement Incorporated Hierarchical Linear Models Workshop Hierarchical Generalized Linear Models So now we are moving on to the more advanced type topics. To begin

More information

Let us assume that we are measuring the yield of a crop plant on 5 different plots at 4 different observation times.

Let us assume that we are measuring the yield of a crop plant on 5 different plots at 4 different observation times. Mixed-effects models An introduction by Christoph Scherber Up to now, we have been dealing with linear models of the form where ß0 and ß1 are parameters of fixed value. Example: Let us assume that we are

More information

Multiple Regression and Logistic Regression II. Dajiang 525 Apr

Multiple Regression and Logistic Regression II. Dajiang 525 Apr Multiple Regression and Logistic Regression II Dajiang Liu @PHS 525 Apr-19-2016 Materials from Last Time Multiple regression model: Include multiple predictors in the model = + + + + How to interpret the

More information

book 2014/5/6 15:21 page 261 #285

book 2014/5/6 15:21 page 261 #285 book 2014/5/6 15:21 page 261 #285 Chapter 10 Simulation Simulations provide a powerful way to answer questions and explore properties of statistical estimators and procedures. In this chapter, we will

More information

Projects for Bayesian Computation with R

Projects for Bayesian Computation with R Projects for Bayesian Computation with R Laura Vana & Kurt Hornik Winter Semeter 2018/2019 1 S&P Rating Data On the homepage of this course you can find a time series for Standard & Poors default data

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - IIIb Henrik Madsen March 18, 2012 Henrik Madsen () Chapman & Hall March 18, 2012 1 / 32 Examples Overdispersion and Offset!

More information

Intro to GLM Day 2: GLM and Maximum Likelihood

Intro to GLM Day 2: GLM and Maximum Likelihood Intro to GLM Day 2: GLM and Maximum Likelihood Federico Vegetti Central European University ECPR Summer School in Methods and Techniques 1 / 32 Generalized Linear Modeling 3 steps of GLM 1. Specify the

More information

Categorical Outcomes. Statistical Modelling in Stata: Categorical Outcomes. R by C Table: Example. Nominal Outcomes. Mark Lunt.

Categorical Outcomes. Statistical Modelling in Stata: Categorical Outcomes. R by C Table: Example. Nominal Outcomes. Mark Lunt. Categorical Outcomes Statistical Modelling in Stata: Categorical Outcomes Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester Nominal Ordinal 28/11/2017 R by C Table: Example Categorical,

More information

Logistic Regression. Logistic Regression Theory

Logistic Regression. Logistic Regression Theory Logistic Regression Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Logistic Regression The linear probability model.

More information

############################ ### toxo.r ### ############################

############################ ### toxo.r ### ############################ ############################ ### toxo.r ### ############################ toxo < read.table(file="n:\\courses\\stat8620\\fall 08\\toxo.dat",header=T) #toxo < read.table(file="c:\\documents and Settings\\dhall\\My

More information

boxcox() returns the values of α and their loglikelihoods,

boxcox() returns the values of α and their loglikelihoods, Solutions to Selected Computer Lab Problems and Exercises in Chapter 11 of Statistics and Data Analysis for Financial Engineering, 2nd ed. by David Ruppert and David S. Matteson c 2016 David Ruppert and

More information

Stat 328, Summer 2005

Stat 328, Summer 2005 Stat 328, Summer 2005 Exam #2, 6/18/05 Name (print) UnivID I have neither given nor received any unauthorized aid in completing this exam. Signed Answer each question completely showing your work where

More information

Regression and Simulation

Regression and Simulation Regression and Simulation This is an introductory R session, so it may go slowly if you have never used R before. Do not be discouraged. A great way to learn a new language like this is to plunge right

More information

Module 9: Single-level and Multilevel Models for Ordinal Responses. Stata Practical 1

Module 9: Single-level and Multilevel Models for Ordinal Responses. Stata Practical 1 Module 9: Single-level and Multilevel Models for Ordinal Responses Pre-requisites Modules 5, 6 and 7 Stata Practical 1 George Leckie, Tim Morris & Fiona Steele Centre for Multilevel Modelling If you find

More information

2 H PLH L PLH visit trt group rel N 1 H PHL L PHL P PLH P PHL 5 16

2 H PLH L PLH visit trt group rel N 1 H PHL L PHL P PLH P PHL 5 16 Biostatistics 140.655 ongitudinal Data Analysis Tom Travison ongitudinal GM with GEE - Example ain Crossover Trial Data (Text page 13) Binomial Outcome: % atients Experiencing Relief on Different Drug

More information

Case Study: Applying Generalized Linear Models

Case Study: Applying Generalized Linear Models Case Study: Applying Generalized Linear Models Dr. Kempthorne May 12, 2016 Contents 1 Generalized Linear Models of Semi-Quantal Biological Assay Data 2 1.1 Coal miners Pneumoconiosis Data.................

More information

1 Stat 8053, Fall 2011: GLMMs

1 Stat 8053, Fall 2011: GLMMs Stat 805, Fall 0: GLMMs The data come from a 988 fertility survey in Bangladesh. Data were collected on 94 women grouped into 60 districts. The response of interest is whether or not the woman is using

More information

MixedModR2 Erika Mudrak Thursday, August 30, 2018

MixedModR2 Erika Mudrak Thursday, August 30, 2018 MixedModR Erika Mudrak Thursday, August 3, 18 Generate the Data Generate data points from a population with one random effect: levels of Factor A, each sampled 5 times set.seed(39) siga

More information

Stat 401XV Exam 3 Spring 2017

Stat 401XV Exam 3 Spring 2017 Stat 40XV Exam Spring 07 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 13, 2018

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 13, 2018 Maximum Likelihood Estimation Richard Williams, University of otre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 3, 208 [This handout draws very heavily from Regression Models for Categorical

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #6 EPSY 905: Maximum Likelihood In This Lecture The basics of maximum likelihood estimation Ø The engine that

More information

sociology SO5032 Quantitative Research Methods Brendan Halpin, Sociology, University of Limerick Spring 2018 SO5032 Quantitative Research Methods

sociology SO5032 Quantitative Research Methods Brendan Halpin, Sociology, University of Limerick Spring 2018 SO5032 Quantitative Research Methods 1 SO5032 Quantitative Research Methods Brendan Halpin, Sociology, University of Limerick Spring 2018 Lecture 10: Multinomial regression baseline category extension of binary What if we have multiple possible

More information

Chapter 10 Exercises 1. The final two sentences of Exercise 1 are challenging! Exercises 1 & 2 should be asterisked.

Chapter 10 Exercises 1. The final two sentences of Exercise 1 are challenging! Exercises 1 & 2 should be asterisked. Chapter 10 Exercises 1 Data Analysis & Graphics Using R, 3 rd edn Solutions to Exercises (May 1, 2010) Preliminaries > library(lme4) > library(daag) The final two sentences of Exercise 1 are challenging!

More information

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018 ` Subject CS1 Actuarial Statistics 1 Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who are the sole distributors.

More information

Logit Models for Binary Data

Logit Models for Binary Data Chapter 3 Logit Models for Binary Data We now turn our attention to regression models for dichotomous data, including logistic regression and probit analysis These models are appropriate when the response

More information

Contents Part I Descriptive Statistics 1 Introduction and Framework Population, Sample, and Observations Variables Quali

Contents Part I Descriptive Statistics 1 Introduction and Framework Population, Sample, and Observations Variables Quali Part I Descriptive Statistics 1 Introduction and Framework... 3 1.1 Population, Sample, and Observations... 3 1.2 Variables.... 4 1.2.1 Qualitative and Quantitative Variables.... 5 1.2.2 Discrete and Continuous

More information

Unit 5: Study Guide Multilevel models for macro and micro data MIMAS The University of Manchester

Unit 5: Study Guide Multilevel models for macro and micro data MIMAS The University of Manchester Unit 5: Study Guide Multilevel models for macro and micro data MIMAS The University of Manchester 5.1 Introduction 5.2 Learning objectives 5.3 Single level models 5.4 Multilevel models 5.5 Theoretical

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison April 12, 2007 Statistics 572 (Spring 2007) Parameter Estimation April 12, 2007 1 / 14 Continue

More information

Random Effects ANOVA

Random Effects ANOVA Random Effects ANOVA Grant B. Morgan Baylor University This post contains code for conducting a random effects ANOVA. Make sure the following packages are installed: foreign, lme4, lsr, lattice. library(foreign)

More information

Study 2: data analysis. Example analysis using R

Study 2: data analysis. Example analysis using R Study 2: data analysis Example analysis using R Steps for data analysis Install software on your computer or locate computer with software (e.g., R, systat, SPSS) Prepare data for analysis Subjects (rows)

More information

CREDIT RISK MODELING IN R. Logistic regression: introduction

CREDIT RISK MODELING IN R. Logistic regression: introduction CREDIT RISK MODELING IN R Logistic regression: introduction Final data structure > str(training_set) 'data.frame': 19394 obs. of 8 variables: $ loan_status : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Scott Creel Wednesday, September 10, 2014 This exercise extends the prior material on using the lm() function to fit an OLS regression and test hypotheses about effects on a parameter.

More information

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 10, 2017

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 10, 2017 Maximum Likelihood Estimation Richard Williams, University of otre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 0, 207 [This handout draws very heavily from Regression Models for Categorical

More information

Negative Binomial Model for Count Data Log-linear Models for Contingency Tables - Introduction

Negative Binomial Model for Count Data Log-linear Models for Contingency Tables - Introduction Negative Binomial Model for Count Data Log-linear Models for Contingency Tables - Introduction Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Negative Binomial Family Example: Absenteeism from

More information

Consistent estimators for multilevel generalised linear models using an iterated bootstrap

Consistent estimators for multilevel generalised linear models using an iterated bootstrap Multilevel Models Project Working Paper December, 98 Consistent estimators for multilevel generalised linear models using an iterated bootstrap by Harvey Goldstein hgoldstn@ioe.ac.uk Introduction Several

More information

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Modeling Counts & ZIP: Extended Example Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Modeling Counts Slide 1 of 36 Outline Outline

More information

Ordinal Multinomial Logistic Regression. Thom M. Suhy Southern Methodist University May14th, 2013

Ordinal Multinomial Logistic Regression. Thom M. Suhy Southern Methodist University May14th, 2013 Ordinal Multinomial Logistic Thom M. Suhy Southern Methodist University May14th, 2013 GLM Generalized Linear Model (GLM) Framework for statistical analysis (Gelman and Hill, 2007, p. 135) Linear Continuous

More information

Description Remarks and examples References Also see

Description Remarks and examples References Also see Title stata.com example 41g Two-level multinomial logistic regression (multilevel) Description Remarks and examples References Also see Description We demonstrate two-level multinomial logistic regression

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN EXAMINATION Subject CS1A Actuarial Statistics Time allowed: Three hours and fifteen minutes INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

6 Multiple Regression

6 Multiple Regression More than one X variable. 6 Multiple Regression Why? Might be interested in more than one marginal effect Omitted Variable Bias (OVB) 6.1 and 6.2 House prices and OVB Should I build a fireplace? The following

More information

Credit Risk Modelling

Credit Risk Modelling Credit Risk Modelling Tiziano Bellini Università di Bologna December 13, 2013 Tiziano Bellini (Università di Bologna) Credit Risk Modelling December 13, 2013 1 / 55 Outline Framework Credit Risk Modelling

More information

Logistic Regression with R: Example One

Logistic Regression with R: Example One Logistic Regression with R: Example One math = read.table("http://www.utstat.toronto.edu/~brunner/appliedf12/data/mathcat.data") math[1:5,] hsgpa hsengl hscalc course passed outcome 1 78.0 80 Yes Mainstrm

More information

proc genmod; model malform/total = alcohol / dist=bin link=identity obstats; title 'Table 2.7'; title2 'Identity Link';

proc genmod; model malform/total = alcohol / dist=bin link=identity obstats; title 'Table 2.7'; title2 'Identity Link'; BIOS 6244 Analysis of Categorical Data Assignment 5 s 1. Consider Exercise 4.4, p. 98. (i) Write the SAS code, including the DATA step, to fit the linear probability model and the logit model to the data

More information

Logistic Regression Analysis

Logistic Regression Analysis Revised July 2018 Logistic Regression Analysis This set of notes shows how to use Stata to estimate a logistic regression equation. It assumes that you have set Stata up on your computer (see the Getting

More information

Sociology Exam 3 Answer Key - DRAFT May 8, 2007

Sociology Exam 3 Answer Key - DRAFT May 8, 2007 Sociology 63993 Exam 3 Answer Key - DRAFT May 8, 2007 I. True-False. (20 points) Indicate whether the following statements are true or false. If false, briefly explain why. 1. The odds of an event occurring

More information

STA 4504/5503 Sample questions for exam True-False questions.

STA 4504/5503 Sample questions for exam True-False questions. STA 4504/5503 Sample questions for exam 2 1. True-False questions. (a) For General Social Survey data on Y = political ideology (categories liberal, moderate, conservative), X 1 = gender (1 = female, 0

More information

Predicting Charitable Contributions

Predicting Charitable Contributions Predicting Charitable Contributions By Lauren Meyer Executive Summary Charitable contributions depend on many factors from financial security to personal characteristics. This report will focus on demographic

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Midterm

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Midterm Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Midterm GSB Honor Code: I pledge my honor that I have not violated the Honor Code during this examination.

More information

Model fit assessment via marginal model plots

Model fit assessment via marginal model plots The Stata Journal (2010) 10, Number 2, pp. 215 225 Model fit assessment via marginal model plots Charles Lindsey Texas A & M University Department of Statistics College Station, TX lindseyc@stat.tamu.edu

More information

Final Exam - section 1. Thursday, December hours, 30 minutes

Final Exam - section 1. Thursday, December hours, 30 minutes Econometrics, ECON312 San Francisco State University Michael Bar Fall 2013 Final Exam - section 1 Thursday, December 19 1 hours, 30 minutes Name: Instructions 1. This is closed book, closed notes exam.

More information

11. Logistic modeling of proportions

11. Logistic modeling of proportions 11. Logistic modeling of proportions Retrieve the data File on main menu Open worksheet C:\talks\strirling\employ.ws = Note Postcode is neighbourhood in Glasgow Cell is element of the table for each postcode

More information

SPSS Reliability Example

SPSS Reliability Example Psy 495 Psychological Measurement, Spring 2017 1 SPSS Reliability Example Menus To obtain descriptive statistics, such as mean, variance, skew, and kurtosis. Analyze Descriptive Statistics Descriptives

More information

Dummy Variables. 1. Example: Factors Affecting Monthly Earnings

Dummy Variables. 1. Example: Factors Affecting Monthly Earnings Dummy Variables A dummy variable or binary variable is a variable that takes on a value of 0 or 1 as an indicator that the observation has some kind of characteristic. Common examples: Sex (female): FEMALE=1

More information

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay Solutions to Midterm Problem A: (34 pts) Answer briefly the following questions. Each question has

More information

COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 18, 2006, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTIONS

COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 18, 2006, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTIONS COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 18, 2006, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTIONS Answer all parts. Closed book, calculators allowed. It is important to show all working,

More information

Quantitative Techniques Term 2

Quantitative Techniques Term 2 Quantitative Techniques Term 2 Laboratory 7 2 March 2006 Overview The objective of this lab is to: Estimate a cost function for a panel of firms; Calculate returns to scale; Introduce the command cluster

More information

Empirical Asset Pricing for Tactical Asset Allocation

Empirical Asset Pricing for Tactical Asset Allocation Introduction Process Model Conclusion Department of Finance The University of Connecticut School of Business stephen.r.rush@gmail.com May 10, 2012 Background Portfolio Managers Want to justify fees with

More information

Regression Review and Robust Regression. Slides prepared by Elizabeth Newton (MIT)

Regression Review and Robust Regression. Slides prepared by Elizabeth Newton (MIT) Regression Review and Robust Regression Slides prepared by Elizabeth Newton (MIT) S-Plus Oil City Data Frame Monthly Excess Returns of Oil City Petroleum, Inc. Stocks and the Market SUMMARY: The oilcity

More information

Allison notes there are two conditions for using fixed effects methods.

Allison notes there are two conditions for using fixed effects methods. Panel Data 3: Conditional Logit/ Fixed Effects Logit Models Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised April 2, 2017 These notes borrow very heavily, sometimes

More information

Risk Classification In Non-Life Insurance

Risk Classification In Non-Life Insurance Risk Classification In Non-Life Insurance Katrien Antonio Jan Beirlant November 28, 2006 Abstract Within the actuarial profession a major challenge can be found in the construction of a fair tariff structure.

More information

> budworm$samplogit < log((budworm$y+0.5)/(budworm$m budworm$y+0.5))

> budworm$samplogit < log((budworm$y+0.5)/(budworm$m budworm$y+0.5)) budworm < read.table(file="n:\\courses\\stat8620\\fall 08\\budworm.dat",header=T) #budworm < read.table(file="c:\\documents and Settings\\dhall\\My Documents\\Dan's Work Stuff\\courses\\STAT8620\\Fall

More information

Stat3011: Solution of Midterm Exam One

Stat3011: Solution of Midterm Exam One 1 Stat3011: Solution of Midterm Exam One Fall/2003, Tiefeng Jiang Name: Problem 1 (30 points). Choose one appropriate answer in each of the following questions. 1. (B ) The mean age of five people in a

More information

SELECTION OF VARIABLES INFLUENCING IRAQI BANKS DEPOSITS BY USING NEW BAYESIAN LASSO QUANTILE REGRESSION

SELECTION OF VARIABLES INFLUENCING IRAQI BANKS DEPOSITS BY USING NEW BAYESIAN LASSO QUANTILE REGRESSION Vol. 6, No. 1, Summer 2017 2012 Published by JSES. SELECTION OF VARIABLES INFLUENCING IRAQI BANKS DEPOSITS BY USING NEW BAYESIAN Fadel Hamid Hadi ALHUSSEINI a Abstract The main focus of the paper is modelling

More information

Milestone2. Zillow House Price Prediciton. Group: Lingzi Hong and Pranali Shetty

Milestone2. Zillow House Price Prediciton. Group: Lingzi Hong and Pranali Shetty Milestone2 Zillow House Price Prediciton Group Lingzi Hong and Pranali Shetty MILESTONE 2 REPORT Data Collection The following additional features were added 1. Population, Number of College Graduates

More information

MODEL SELECTION CRITERIA IN R:

MODEL SELECTION CRITERIA IN R: 1. R 2 statistics We may use MODEL SELECTION CRITERIA IN R R 2 = SS R SS T = 1 SS Res SS T or R 2 Adj = 1 SS Res/(n p) SS T /(n 1) = 1 ( ) n 1 (1 R 2 ). n p where p is the total number of parameters. R

More information

Lecture Note: Analysis of Financial Time Series Spring 2008, Ruey S. Tsay. Seasonal Time Series: TS with periodic patterns and useful in

Lecture Note: Analysis of Financial Time Series Spring 2008, Ruey S. Tsay. Seasonal Time Series: TS with periodic patterns and useful in Lecture Note: Analysis of Financial Time Series Spring 2008, Ruey S. Tsay Seasonal Time Series: TS with periodic patterns and useful in predicting quarterly earnings pricing weather-related derivatives

More information

Variance clustering. Two motivations, volatility clustering, and implied volatility

Variance clustering. Two motivations, volatility clustering, and implied volatility Variance modelling The simplest assumption for time series is that variance is constant. Unfortunately that assumption is often violated in actual data. In this lecture we look at the implications of time

More information

SAS Simple Linear Regression Example

SAS Simple Linear Regression Example SAS Simple Linear Regression Example This handout gives examples of how to use SAS to generate a simple linear regression plot, check the correlation between two variables, fit a simple linear regression

More information

CHAPTER 8 EXAMPLES: MIXTURE MODELING WITH LONGITUDINAL DATA

CHAPTER 8 EXAMPLES: MIXTURE MODELING WITH LONGITUDINAL DATA Examples: Mixture Modeling With Longitudinal Data CHAPTER 8 EXAMPLES: MIXTURE MODELING WITH LONGITUDINAL DATA Mixture modeling refers to modeling with categorical latent variables that represent subpopulations

More information

Longitudinal Logistic Regression: Breastfeeding of Nepalese Children

Longitudinal Logistic Regression: Breastfeeding of Nepalese Children Longitudinal Logistic Regression: Breastfeeding of Nepalese Children Scientific Question Determine whether the breastfeeding of Nepalese children varies with child age and/or sex of child. Data: Nepal

More information

STA2601. Tutorial letter 105/2/2018. Applied Statistics II. Semester 2. Department of Statistics STA2601/105/2/2018 TRIAL EXAMINATION PAPER

STA2601. Tutorial letter 105/2/2018. Applied Statistics II. Semester 2. Department of Statistics STA2601/105/2/2018 TRIAL EXAMINATION PAPER STA2601/105/2/2018 Tutorial letter 105/2/2018 Applied Statistics II STA2601 Semester 2 Department of Statistics TRIAL EXAMINATION PAPER Define tomorrow. university of south africa Dear Student Congratulations

More information

COMPLEMENTARITY ANALYSIS IN MULTINOMIAL

COMPLEMENTARITY ANALYSIS IN MULTINOMIAL 1 / 25 COMPLEMENTARITY ANALYSIS IN MULTINOMIAL MODELS: THE GENTZKOW COMMAND Yunrong Li & Ricardo Mora SWUFE & UC3M Madrid, Oct 2017 2 / 25 Outline 1 Getzkow (2007) 2 Case Study: social vs. internet interactions

More information

MCMC Package Example

MCMC Package Example MCMC Package Example Charles J. Geyer April 4, 2005 This is an example of using the mcmc package in R. The problem comes from a take-home question on a (take-home) PhD qualifying exam (School of Statistics,

More information

ARIMA ANALYSIS WITH INTERVENTIONS / OUTLIERS

ARIMA ANALYSIS WITH INTERVENTIONS / OUTLIERS TASK Run intervention analysis on the price of stock M: model a function of the price as ARIMA with outliers and interventions. SOLUTION The document below is an abridged version of the solution provided

More information

Morten Frydenberg Wednesday, 12 May 2004

Morten Frydenberg Wednesday, 12 May 2004 " $% " * +, " --. / ",, 2 ", $, % $ 4 %78 % / "92:8/- 788;?5"= "8= < < @ "A57 57 "χ 2 = -value=. 5 OR =, OR = = = + OR B " B Linear ang Logistic Regression: Note. = + OR 2 women - % β β = + woman

More information

Multiple Regression. Review of Regression with One Predictor

Multiple Regression. Review of Regression with One Predictor Fall Semester, 2001 Statistics 621 Lecture 4 Robert Stine 1 Preliminaries Multiple Regression Grading on this and other assignments Assignment will get placed in folder of first member of Learning Team.

More information

Random Walks vs Random Variables. The Random Walk Model. Simple rate of return to an asset is: Simple rate of return

Random Walks vs Random Variables. The Random Walk Model. Simple rate of return to an asset is: Simple rate of return The Random Walk Model Assume the logarithm of 'with dividend' price, ln P(t), changes by random amounts through time: ln P(t) = ln P(t-1) + µ + ε(it) (1) where: P(t) is the sum of the price plus dividend

More information

Comparing Odds Ratios and Marginal Effects from Logistic Regression and Linear Probability Models

Comparing Odds Ratios and Marginal Effects from Logistic Regression and Linear Probability Models Western Kentucky University From the SelectedWorks of Matt Bogard Spring March 11, 2016 Comparing Odds Ratios and Marginal Effects from Logistic Regression and Linear Probability Models Matt Bogard Available

More information

Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay

Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay The EGARCH model Asymmetry in responses to + & returns: g(ɛ t ) = θɛ t + γ[ ɛ t E( ɛ t )], with E[g(ɛ t )] = 0. To see asymmetry

More information

Estimating treatment effects for ordered outcomes using maximum simulated likelihood

Estimating treatment effects for ordered outcomes using maximum simulated likelihood The Stata Journal (2015) 15, Number 3, pp. 756 774 Estimating treatment effects for ordered outcomes using maximum simulated likelihood Christian A. Gregory Economic Research Service, USDA Washington,

More information

σ e, which will be large when prediction errors are Linear regression model

σ e, which will be large when prediction errors are Linear regression model Linear regression model we assume that two quantitative variables, x and y, are linearly related; that is, the population of (x, y) pairs are related by an ideal population regression line y = α + βx +

More information

One period models Method II For working persons Labor Supply Optimal Wage-Hours Fixed Cost Models. Labor Supply. James Heckman University of Chicago

One period models Method II For working persons Labor Supply Optimal Wage-Hours Fixed Cost Models. Labor Supply. James Heckman University of Chicago Labor Supply James Heckman University of Chicago April 23, 2007 1 / 77 One period models: (L < 1) U (C, L) = C α 1 α b = taste for leisure increases ( ) L ϕ 1 + b ϕ α, ϕ < 1 2 / 77 MRS at zero hours of

More information

Effects of missing data in credit risk scoring. A comparative analysis of methods to gain robustness in presence of sparce data

Effects of missing data in credit risk scoring. A comparative analysis of methods to gain robustness in presence of sparce data Credit Research Centre Credit Scoring and Credit Control X 29-31 August 2007 The University of Edinburgh - Management School Effects of missing data in credit risk scoring. A comparative analysis of methods

More information

Five Things You Should Know About Quantile Regression

Five Things You Should Know About Quantile Regression Five Things You Should Know About Quantile Regression Robert N. Rodriguez and Yonggang Yao SAS Institute #analyticsx Copyright 2016, SAS Institute Inc. All rights reserved. Quantile regression brings the

More information

Small Sample Performance of Instrumental Variables Probit Estimators: A Monte Carlo Investigation

Small Sample Performance of Instrumental Variables Probit Estimators: A Monte Carlo Investigation Small Sample Performance of Instrumental Variables Probit : A Monte Carlo Investigation July 31, 2008 LIML Newey Small Sample Performance? Goals Equations Regressors and Errors Parameters Reduced Form

More information

Logit Analysis. Using vttown.dta. Albert Satorra, UPF

Logit Analysis. Using vttown.dta. Albert Satorra, UPF Logit Analysis Using vttown.dta Logit Regression Odds ratio The most common way of interpreting a logit is to convert it to an odds ratio using the exp() function. One can convert back using the ln()

More information

Rand Final Pop 2. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Rand Final Pop 2. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Rand Final Pop 2 Multiple Choice Identify the choice that best completes the statement or answers the question. Scenario 12-1 A high school guidance counselor wonders if it is possible

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay. Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay. Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Final Exam Booth Honor Code: I pledge my honor that I have not violated the Honor Code during this

More information

4. GLIM for data with constant coefficient of variation

4. GLIM for data with constant coefficient of variation 4. GLIM for data with constant coefficient of variation 4.1. Data with constant coefficient of variation and some simple models Coefficient of variation The coefficient of variation of a random variable

More information

Appendix. A.1 Independent Random Effects (Baseline)

Appendix. A.1 Independent Random Effects (Baseline) A Appendix A.1 Independent Random Effects (Baseline) 36 Table 2: Detailed Monte Carlo Results Logit Fixed Effects Clustered Random Effects Random Coefficients c Coeff. SE SD Coeff. SE SD Coeff. SE SD Coeff.

More information

*9-BES2_Logistic Regression - Social Economics & Public Policies Marcelo Neri

*9-BES2_Logistic Regression - Social Economics & Public Policies Marcelo Neri Econometric Techniques and Estimated Models *9 (continues in the website) This text details the different statistical techniques used in the analysis, such as logistic regression, applied to discrete variables

More information

Rescaling results of nonlinear probability models to compare regression coefficients or variance components across hierarchically nested models

Rescaling results of nonlinear probability models to compare regression coefficients or variance components across hierarchically nested models Rescaling results of nonlinear probability models to compare regression coefficients or variance components across hierarchically nested models Dirk Enzmann & Ulrich Kohler University of Hamburg, dirk.enzmann@uni-hamburg.de

More information

CHAPTER 4 DATA ANALYSIS Data Hypothesis

CHAPTER 4 DATA ANALYSIS Data Hypothesis CHAPTER 4 DATA ANALYSIS 4.1. Data Hypothesis The hypothesis for each independent variable to express our expectations about the characteristic of each independent variable and the pay back performance

More information

List of figures. I General information 1

List of figures. I General information 1 List of figures Preface xix xxi I General information 1 1 Introduction 7 1.1 What is this book about?........................ 7 1.2 Which models are considered?...................... 8 1.3 Whom is this

More information

Longitudinal Modeling of Insurance Company Expenses

Longitudinal Modeling of Insurance Company Expenses Longitudinal of Insurance Company Expenses Peng Shi University of Wisconsin-Madison joint work with Edward W. (Jed) Frees - University of Wisconsin-Madison July 31, 1 / 20 I. : Motivation and Objective

More information

Subject index. predictor. C clogit option, or

Subject index. predictor. C clogit option, or Subject index A adaptive quadrature...........124 128 agreement...14 applications adolescent-alcohol-use data..... 99 antibiotics data...243 attitudes-to-abortion data.....178 children s growth data......

More information

Module 4 Bivariate Regressions

Module 4 Bivariate Regressions AGRODEP Stata Training April 2013 Module 4 Bivariate Regressions Manuel Barron 1 and Pia Basurto 2 1 University of California, Berkeley, Department of Agricultural and Resource Economics 2 University of

More information