Basic Principles of Probability and Statistics. Lecture notes for PET 472 Spring 2012 Prepared by: Thomas W. Engler, Ph.D., P.E

Size: px
Start display at page:

Download "Basic Principles of Probability and Statistics. Lecture notes for PET 472 Spring 2012 Prepared by: Thomas W. Engler, Ph.D., P.E"

Transcription

1 Basic Principles of Probability and Statistics Lecture notes for PET 472 Spring 2012 Prepared by: Thomas W. Engler, Ph.D., P.E

2 Definitions Risk Analysis Assessing probabilities of occurrence for each possible outcome Risk Analysis Probabilities and prob. distributions Representing judgments about chance events Modeling Geologic, reservoir, drilling Operations, Economics Decision criteria EV, profit, IRR Present to management for decision

3 Definitions Sample Space Complete set of outcomes (52 cards) Outcome Subset of the sample space (drawing a 5 of any suit) Probability Likelihood of drawing a 5 P(A) = 4/52

4 Definitions Equally likely outcomes Have same probability to occur Mutually eclusive outcomes The occurrence of any given outcome ecludes the occurrence of other outcomes Independent events The occurrence of one outcome does not influence the occurrence of another Conditional probability The probability of an outcome is dependent upon one or more events that have previously occurred.

5 Rules of Operation Symbol Definition Epression P(A) Probability of outcome A occurring P(A+B) Probability of outcome A and/or B occurring P(A+B)=P(A)+P(B)-P(AB) P(AB) Probability of A and B occurring P(AB) = P(A) P(B A) P(A B) Probability of A given B has occurred.

6 Rules of Operation Addition Theorem P(A+B)=P(A)+P(B)-P(AB) Eample outcome A drawing 4, 5, 6 of any suit outcome B J or Q of any suit P(A B) P(A) P(B) P(AB) A B Mutually Eclusive events Venn Diagram

7 Rules of Operation Addition Theorem P(A+B)=P(A)+P(B)-P(AB) Eample outcome A drawing 4, 5, 6 of any suit outcome B drawing a diamond P(A B) P(A) P(B) P(AB) A B Venn Diagram

8 Rules of Operation Multiplication Theorem P(AB)=P(A)P(A B) Eample outcome A drawing any jack outcome B drawing a four of hearts on the second draw P(A) P(B A) P(AB) conditional Sampling without replacement - observed outcome is not returned - series of dependent events

9 Rules of Operation Multiplication Theorem P(AB)=P(A)P(B) Eample outcome A drawing any jack, return P(A) 4 52 outcome B drawing a four of hearts on the second draw P(B) 1 52 P(AB) Sampling with replacement - observed outcome is returned to sample space - series of independent events

10 Eample Eample: Eploration eample involving conditional probabilities Decision: drill prospect or farmout and retain an override Tabulated gross per-well reserves for eisting wells NPV for alternatives Percent of wells EUR Number having these Bcf of wells reserves % P(B A) % These are conditional probabilities. That is, % given a well is productive there is a 35% % chance of producing 2 Bcf. 20 EUR Drill option Farmout option Bcf NPV, $ EMV, $ NPV, $ EMV, $

11 Eample Dry hole cost = Probability of finding gas, P(A) = 0.25 Apply multiplication theorem Probability of finding gas and that reserves are 2 Bcf? P(AB) EMV calculations Possible outcome P(A) P(B A) P(AB) dry hole Bcf P(AB) = P(A) P(B A) 3 Bcf Bcf Bcf Possible Drill well Farmout outcome P(AB) NPV, $ EMV, $ NPV, $ EMV, $ dry hole Bcf Bcf Bcf Bcf

12 EMV, $ Eample Find minimum probability required to justify drilling, (ps)min ps EMV EMV drill farmout (ps) min = p s

13 f(), frequency Probability Distributions A graphical representation of the range and likelihoods of possible values of a random variable Random variable a variable that can have more than one possible value, also known as stochastic or deterministic Probability density function, random variable Useful method to describe a range of possible values. Basis for Monte Carlo Simulation.

14 frequency Percent Probability Distributions Frequency distributions Data Well No Net pay, ft Divide into intervals Or bins Range frequency Percent % % % % % % Histogram representation Of statistical data 40% 35% 30% 25% 20% 15% 10% Net Pay, feet 5% 0%

15 Cumulative percent Probability Distributions Cumulative frequency distributions Range frequency Percent % % % % % % minimum maimum Cumulative Range Percent 50 0% 80 20% % % % % 100% Benefits 1. Can easily read probabilities 2. Necessary for Monte Carlo Simulation 80% 60% 40% 20% 0% Net Pay, feet

16 Parameters of distributions A parameter that describes central tendency or average of the distribution Mean, m weighted average value of the random variable Median value of the random variable with equal likelihood above or below Mode value most likely to occur A parameter that describes the variability of the distribution Variance, s 2 mean of the squared deviations about the mean Standard deviation, s square root of variance degree of dispersion of distribution about the mean s a <s b A B m a =m b

17 Parameters of distributions Computing mean and standard deviation 1. Arithmetic average of discrete sample data set N i m i1 N s N 2 ( i m) i1 N N number of equally-probable values m 17.6 s 2.87 Core porosity and permeability Depth k,md f, % m 17.6 s 2.87

18 Parameters of distributions Computing mean and standard deviation 2. Values listed as frequencies in groups m i i n i i n i i inde to denote number of intervals n frequency of data points in each interval midpoint value of each interval s i 2 i ( i m) n i i n Porosity n i p i i m s 2 i interval frequency prob. midpoint mean deviation variance 1 7 < < < < < < < < Applicable for large data sets Results are approimate m s 2 = 8.96 s 2.993

19 Parameters of distributions Computing mean and standard deviation 3. Discrete probability distributions m i s p i i p i ( i i 2 m) midpoint drilling costs probability of range EV i*pi ( i -m) 2 p( i )( i -m) $M $M $M $M ($M) 2 ($M) m s 15.8 s 18.9 p i is the probability of occurrence of the i th value of the random variable

20 Cumulative probability Parameters of distributions Computing mean and standard deviation 4. Cumulative frequency distribution Drilling Costs, $M midpoint drilling costs probability of range EV i*pi ( i -m) 2 p( i )( i -m) $M $M $M $M ($M) 2 ($M) m s 15.8 s 18.9

21 Types of distributions Normal Lognormal Uniform Triangle Binomial Multinomial hypergeometric

22 Cumulative frequency Types of distributions Normal Characteristics Define by m and s Mode=mean=median Curve is symmetric Cumulative frequency graph is s shaped Can normalize and obtain area (probability) under the curve. t m s f() s m s

23 Cumulative frequency Types of distributions Normal Given a set of data how do you know whether it is normally distributed? Shape of curves median = mean Eamples: porosity, fractional flow m f() s s

24 Cumulative frequency Types of distributions Lognormal Characteristics Define by m and s Mode mean median Curve is asymmetric Cumulative frequency graph ehibits rapid rise Can transform to normal variable by y=ln() f() mode median m

25 Types of distributions Lognormal Eamples: permeability thickness oil recovery (bbls/acre-foot) field sizes in a play mode f() median m

26 Cumulative frequency Types of distributions Uniform Characteristics: all values are equi-probable f() specify min and ma allows for uncertainty min ma used in Monte Carlo simulation 100% min ma

27 Cumulative frequency Types of distributions Triangle Characteristics: all values are equi-probable specify min and ma allows for uncertainty used in Monte Carlo simulation f() 100% M, most likely L, low H, high min ma

28 Types of distributions Triangle Convert to cumulative frequency plot: normalize to a 0 to 1 scale: Define m as: m M L H L ' L HL f() M, most likely For m, cumulative probability is given by: P( 2 () ) m L, low H, high For > m, P( ) 2 (1 ) 1 1 m

29 Cumulative probability Types of distributions Triangle Eample f() Estimated costs to drill a well vary from a minimum of $100,000 to a maimum of $200,000,with the most probable value at $130,000. Convert the probability distribution to a cumulative frequency distribution M, 130 L, 100 H, 200, random ' cumulative variable normalized probability (drilling costs) Drilling Costs, ($M)

30 Types of distributions Binomial Describes a stochastic process characterized by: 1. Only two outcomes can occur 2. Each trial is an independent event 3. The probability of each outcomes remains constant over repeated trials 4. Binomial probability equation is given by: where P() = number of successes (0 n) n = total number of trials n C p (1 n p) p = probability of success on any given trial and the combination of n things taken at a time n C n!!(n )!

31 P() Types of distributions Binomial Eample Your company proposes to drill 5 wells in a new basin where the chance of success is 0.15 per well What is the probability of only one discovery in the five wells drilled? What is the probability of at least one discovery in the 5-well drilling program? Number of P() Cumulative discoveries P() Number of discoveries Cumulative

32 Types of distributions Multinomial Describes a stochastic process characterized by: 1. Any number of discrete outcomes 2. Each trial is an independent event 3. The probability of each outcomes remains constant over repeated trials 4. Multinomial probability equation is given by: where P( 1, 2,..., r ) n! 1 2 r p 1 p 2...p!!...! r 1 2 r r = number of possible outcomes 1 = number of times outcome 1 occurs in n trials 2 = number of times outcome 2 occurs in n trials r = number of times outcome r occurs in n trials n = total number of trials p r = probability of outcome r on any given trial

33 Types of distributions Multinomial Eample Your company proposes to drill 10 wells in a new basin where the chance of success is 15% per well What is the probability of obtaining 7 dry holes, 2 fields in the 1-2 mmbbl range and 1 field in the 8-12 mmbbl range? outcome probability range of mmbbl outcome probability of dry hole number of trials (wells) in program n = 10 probability of dry holes 1 = 7 probability of 1-2 mmbbl 2 = 2 probability of 2-4 mmbbl 3 = 0 probability of 4-8 mmbbl 4 = 0 probability of 8-12 mmbbl 5 = 1 0.7%

34 Types of distributions Hypergeometric Describes a stochastic process characterized by: 1. Any number of discrete outcomes 2. Each trial is dependent on the previous event (sampling without replacement) 3. The probability of each outcomes remains constant over repeated trials 4. Hypergeometric probability equation for two possible outcomes: where d 1 Nd 1 C C P() n N C n n=number of trials d i = number of successes in the sample space before the n trials i = number of successes in n trials N = total number of elements in the sample space before the n trials C a b = the number of combinations of a things taken b at a time.

35 Types of distributions Hypergeometric Eample Our company has identified ten seismic anomalies of about equal size in a new offshore area. In an adjacent area, 30% of the drilled structures were oil productive. If we drill 5 wells (test 5 anomalies) what is the probability of two discoveries? number_sample n = 5 number_pop N = 10 population_s d1 = 3 sample_s 1 = 2 42%

Basic Principles of Probability and Statistics. Lecture notes for PET 472 Spring 2010 Prepared by: Thomas W. Engler, Ph.D., P.E

Basic Principles of Probability and Statistics. Lecture notes for PET 472 Spring 2010 Prepared by: Thomas W. Engler, Ph.D., P.E Basic Principles of Probability and Statistics Lecture notes for PET 472 Spring 2010 Prepared by: Thomas W. Engler, Ph.D., P.E Definitions Risk Analysis Assessing probabilities of occurrence for each possible

More information

Lean Six Sigma: Training/Certification Books and Resources

Lean Six Sigma: Training/Certification Books and Resources Lean Si Sigma Training/Certification Books and Resources Samples from MINITAB BOOK Quality and Si Sigma Tools using MINITAB Statistical Software A complete Guide to Si Sigma DMAIC Tools using MINITAB Prof.

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Chapter 7. Sampling Distributions

Chapter 7. Sampling Distributions Chapter 7 Sampling Distributions Section 7.1 Sampling Distributions and the Central Limit Theorem Sampling Distributions Sampling distribution The probability distribution of a sample statistic. Formed

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

Describing Uncertain Variables

Describing Uncertain Variables Describing Uncertain Variables L7 Uncertainty in Variables Uncertainty in concepts and models Uncertainty in variables Lack of precision Lack of knowledge Variability in space/time Describing Uncertainty

More information

Frequency Distribution Models 1- Probability Density Function (PDF)

Frequency Distribution Models 1- Probability Density Function (PDF) Models 1- Probability Density Function (PDF) What is a PDF model? A mathematical equation that describes the frequency curve or probability distribution of a data set. Why modeling? It represents and summarizes

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

Contents Part I Descriptive Statistics 1 Introduction and Framework Population, Sample, and Observations Variables Quali

Contents Part I Descriptive Statistics 1 Introduction and Framework Population, Sample, and Observations Variables Quali Part I Descriptive Statistics 1 Introduction and Framework... 3 1.1 Population, Sample, and Observations... 3 1.2 Variables.... 4 1.2.1 Qualitative and Quantitative Variables.... 5 1.2.2 Discrete and Continuous

More information

Statistics, Measures of Central Tendency I

Statistics, Measures of Central Tendency I Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom

More information

Probability Distribution Unit Review

Probability Distribution Unit Review Probability Distribution Unit Review Topics: Pascal's Triangle and Binomial Theorem Probability Distributions and Histograms Expected Values, Fair Games of chance Binomial Distributions Hypergeometric

More information

Useful Probability Distributions

Useful Probability Distributions Useful Probability Distributions Standard Normal Distribution Binomial Multinomial Hypergeometric Poisson Beta Binomial Student s t Beta Gamma Dirichlet Multivariate Normal and Correlation Standard Normal

More information

AP Statistics Chapter 6 - Random Variables

AP Statistics Chapter 6 - Random Variables AP Statistics Chapter 6 - Random 6.1 Discrete and Continuous Random Objective: Recognize and define discrete random variables, and construct a probability distribution table and a probability histogram

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

Continuous Probability Distributions

Continuous Probability Distributions 8.1 Continuous Probability Distributions Distributions like the binomial probability distribution and the hypergeometric distribution deal with discrete data. The possible values of the random variable

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

Chapter 3 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2013 John Wiley & Sons, Inc.

Chapter 3 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2013 John Wiley & Sons, Inc. 1 3.1 Describing Variation Stem-and-Leaf Display Easy to find percentiles of the data; see page 69 2 Plot of Data in Time Order Marginal plot produced by MINITAB Also called a run chart 3 Histograms Useful

More information

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x).

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Definition 4-2

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 6 The Normal Distribution And Other Continuous Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 6 The Normal Distribution And Other Continuous Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 6 The Normal Distribution And Other Continuous Distributions 1999 Prentice-Hall, Inc. Chap. 6-1 Chapter Topics The Normal Distribution The Standard

More information

Introduction to Statistical Data Analysis II

Introduction to Statistical Data Analysis II Introduction to Statistical Data Analysis II JULY 2011 Afsaneh Yazdani Preface Major branches of Statistics: - Descriptive Statistics - Inferential Statistics Preface What is Inferential Statistics? Preface

More information

Probability distributions

Probability distributions Probability distributions Introduction What is a probability? If I perform n eperiments and a particular event occurs on r occasions, the relative frequency of this event is simply r n. his is an eperimental

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

UNIT 4 MATHEMATICAL METHODS

UNIT 4 MATHEMATICAL METHODS UNIT 4 MATHEMATICAL METHODS PROBABILITY Section 1: Introductory Probability Basic Probability Facts Probabilities of Simple Events Overview of Set Language Venn Diagrams Probabilities of Compound Events

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Probability distributions relevant to radiowave propagation modelling

Probability distributions relevant to radiowave propagation modelling Rec. ITU-R P.57 RECOMMENDATION ITU-R P.57 PROBABILITY DISTRIBUTIONS RELEVANT TO RADIOWAVE PROPAGATION MODELLING (994) Rec. ITU-R P.57 The ITU Radiocommunication Assembly, considering a) that the propagation

More information

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE AP STATISTICS Name: FALL SEMESTSER FINAL EXAM STUDY GUIDE Period: *Go over Vocabulary Notecards! *This is not a comprehensive review you still should look over your past notes, homework/practice, Quizzes,

More information

KARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI

KARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI 88 P a g e B S ( B B A ) S y l l a b u s KARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI Course Title : STATISTICS Course Number : BA(BS) 532 Credit Hours : 03 Course 1. Statistical

More information

Web Science & Technologies University of Koblenz Landau, Germany. Lecture Data Science. Statistics and Probabilities JProf. Dr.

Web Science & Technologies University of Koblenz Landau, Germany. Lecture Data Science. Statistics and Probabilities JProf. Dr. Web Science & Technologies University of Koblenz Landau, Germany Lecture Data Science Statistics and Probabilities JProf. Dr. Claudia Wagner Data Science Open Position @GESIS Student Assistant Job in Data

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

2.1 Properties of PDFs

2.1 Properties of PDFs 2.1 Properties of PDFs mode median epectation values moments mean variance skewness kurtosis 2.1: 1/13 Mode The mode is the most probable outcome. It is often given the symbol, µ ma. For a continuous random

More information

Review of Expected Operations

Review of Expected Operations Economic Risk and Decision Analysis for Oil and Gas Industry CE81.98 School of Engineering and Technology Asian Institute of Technology January Semester Presented by Dr. Thitisak Boonpramote Department

More information

Statistics 431 Spring 2007 P. Shaman. Preliminaries

Statistics 431 Spring 2007 P. Shaman. Preliminaries Statistics 4 Spring 007 P. Shaman The Binomial Distribution Preliminaries A binomial experiment is defined by the following conditions: A sequence of n trials is conducted, with each trial having two possible

More information

STAT 157 HW1 Solutions

STAT 157 HW1 Solutions STAT 157 HW1 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/10/spring/stats157.dir/ Problem 1. 1.a: (6 points) Determine the Relative Frequency and the Cumulative Relative Frequency (fill

More information

ก ก ก ก ก ก ก. ก (Food Safety Risk Assessment Workshop) 1 : Fundamental ( ก ( NAC 2010)) 2 3 : Excel and Statistics Simulation Software\

ก ก ก ก ก ก ก. ก (Food Safety Risk Assessment Workshop) 1 : Fundamental ( ก ( NAC 2010)) 2 3 : Excel and Statistics Simulation Software\ ก ก ก ก (Food Safety Risk Assessment Workshop) ก ก ก ก ก ก ก ก 5 1 : Fundamental ( ก 29-30.. 53 ( NAC 2010)) 2 3 : Excel and Statistics Simulation Software\ 1 4 2553 4 5 : Quantitative Risk Modeling Microbial

More information

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes Model Paper Statistics Objective Intermediate Part I (11 th Class) Examination Session 2012-2013 and onward Total marks: 17 Paper Code Time Allowed: 20 minutes Note:- You have four choices for each objective

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

x is a random variable which is a numerical description of the outcome of an experiment.

x is a random variable which is a numerical description of the outcome of an experiment. Chapter 5 Discrete Probability Distributions Random Variables is a random variable which is a numerical description of the outcome of an eperiment. Discrete: If the possible values change by steps or jumps.

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

DESCRIBING DATA: MESURES OF LOCATION

DESCRIBING DATA: MESURES OF LOCATION DESCRIBING DATA: MESURES OF LOCATION A. Measures of Central Tendency Measures of Central Tendency are used to pinpoint the center or average of a data set which can then be used to represent the typical

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Chapter 3 Random Variables and Probability Distributions Chapter Three Random Variables and Probability Distributions 3. Introduction An event is defined as the possible outcome of an experiment. In engineering

More information

Chapter 6 Simple Correlation and

Chapter 6 Simple Correlation and Contents Chapter 1 Introduction to Statistics Meaning of Statistics... 1 Definition of Statistics... 2 Importance and Scope of Statistics... 2 Application of Statistics... 3 Characteristics of Statistics...

More information

PROBABILITY. Wiley. With Applications and R ROBERT P. DOBROW. Department of Mathematics. Carleton College Northfield, MN

PROBABILITY. Wiley. With Applications and R ROBERT P. DOBROW. Department of Mathematics. Carleton College Northfield, MN PROBABILITY With Applications and R ROBERT P. DOBROW Department of Mathematics Carleton College Northfield, MN Wiley CONTENTS Preface Acknowledgments Introduction xi xiv xv 1 First Principles 1 1.1 Random

More information

Probability and Statistics

Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be CHAPTER 3: PARAMETRIC FAMILIES OF UNIVARIATE DISTRIBUTIONS 1 Why do we need distributions?

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 2 Discrete Distributions The binomial distribution 1 Chapter 2 Discrete Distributions Bernoulli trials and the

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

Epidemiology Principle of Biostatistics Chapter 7: Sampling Distributions (continued) John Koval

Epidemiology Principle of Biostatistics Chapter 7: Sampling Distributions (continued) John Koval Principle of Biostatistics Chapter 7: Sampling Distributions (continued) John Koval Department of Epidemiology and Biostatistics University of Western Ontario Next want to look at histogram of sample statistics

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

CSC Advanced Scientific Programming, Spring Descriptive Statistics

CSC Advanced Scientific Programming, Spring Descriptive Statistics CSC 223 - Advanced Scientific Programming, Spring 2018 Descriptive Statistics Overview Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.

More information

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE)

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) Normal and Binomial Distribution Applied to Construction Management Sampling and Confidence Intervals Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile:

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii)

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii) Contents (ix) Contents Preface... (vii) CHAPTER 1 An Overview of Statistical Applications 1.1 Introduction... 1 1. Probability Functions and Statistics... 1..1 Discrete versus Continuous Functions... 1..

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

Probability and Statistics for Engineers

Probability and Statistics for Engineers Probability and Statistics for Engineers Chapter 4 Probability Distributions ruochen Liu ruochenliu@xidian.edu.cn Institute of Intelligent Information Processing, Xidian University Outline Random variables

More information

Fundamentals of Statistics

Fundamentals of Statistics CHAPTER 4 Fundamentals of Statistics Expected Outcomes Know the difference between a variable and an attribute. Perform mathematical calculations to the correct number of significant figures. Construct

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

value BE.104 Spring Biostatistics: Distribution and the Mean J. L. Sherley

value BE.104 Spring Biostatistics: Distribution and the Mean J. L. Sherley BE.104 Spring Biostatistics: Distribution and the Mean J. L. Sherley Outline: 1) Review of Variation & Error 2) Binomial Distributions 3) The Normal Distribution 4) Defining the Mean of a population Goals:

More information

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018 ` Subject CS1 Actuarial Statistics 1 Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who are the sole distributors.

More information

Numerical Descriptions of Data

Numerical Descriptions of Data Numerical Descriptions of Data Measures of Center Mean x = x i n Excel: = average ( ) Weighted mean x = (x i w i ) w i x = data values x i = i th data value w i = weight of the i th data value Median =

More information

Monte Carlo Simulation (Random Number Generation)

Monte Carlo Simulation (Random Number Generation) Monte Carlo Simulation (Random Number Generation) Revised: 10/11/2017 Summary... 1 Data Input... 1 Analysis Options... 6 Summary Statistics... 6 Box-and-Whisker Plots... 7 Percentiles... 9 Quantile Plots...

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

Statistical Modeling Techniques for Reserve Ranges: A Simulation Approach

Statistical Modeling Techniques for Reserve Ranges: A Simulation Approach Statistical Modeling Techniques for Reserve Ranges: A Simulation Approach by Chandu C. Patel, FCAS, MAAA KPMG Peat Marwick LLP Alfred Raws III, ACAS, FSA, MAAA KPMG Peat Marwick LLP STATISTICAL MODELING

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

Continuous Distributions

Continuous Distributions Quantitative Methods 2013 Continuous Distributions 1 The most important probability distribution in statistics is the normal distribution. Carl Friedrich Gauss (1777 1855) Normal curve A normal distribution

More information

Using Monte Carlo Analysis in Ecological Risk Assessments

Using Monte Carlo Analysis in Ecological Risk Assessments 10/27/00 Page 1 of 15 Using Monte Carlo Analysis in Ecological Risk Assessments Argonne National Laboratory Abstract Monte Carlo analysis is a statistical technique for risk assessors to evaluate the uncertainty

More information

Class 11. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 11. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 11 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 5.3 continued Lecture 6.1-6.2 Go over Eam 2. 2 5: Probability

More information

Probability and Sampling Distributions Random variables. Section 4.3 (Continued)

Probability and Sampling Distributions Random variables. Section 4.3 (Continued) Probability and Sampling Distributions Random variables Section 4.3 (Continued) The mean of a random variable The mean (or expected value) of a random variable, X, is an idealization of the mean,, of quantitative

More information

Lecture 2. Probability Distributions Theophanis Tsandilas

Lecture 2. Probability Distributions Theophanis Tsandilas Lecture 2 Probability Distributions Theophanis Tsandilas Comment on measures of dispersion Why do common measures of dispersion (variance and standard deviation) use sums of squares: nx (x i ˆµ) 2 i=1

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc COUNSELLING PSYCHOLOGY (2011 Admission Onwards) II Semester Complementary Course PSYCHOLOGICAL STATISTICS QUESTION BANK 1. The process of grouping

More information

Lecture 2 Describing Data

Lecture 2 Describing Data Lecture 2 Describing Data Thais Paiva STA 111 - Summer 2013 Term II July 2, 2013 Lecture Plan 1 Types of data 2 Describing the data with plots 3 Summary statistics for central tendency and spread 4 Histograms

More information

1/2 2. Mean & variance. Mean & standard deviation

1/2 2. Mean & variance. Mean & standard deviation Question # 1 of 10 ( Start time: 09:46:03 PM ) Total Marks: 1 The probability distribution of X is given below. x: 0 1 2 3 4 p(x): 0.73? 0.06 0.04 0.01 What is the value of missing probability? 0.54 0.16

More information

Chapter 3. Discrete Probability Distributions

Chapter 3. Discrete Probability Distributions Chapter 3 Discrete Probability Distributions 1 Chapter 3 Overview Introduction 3-1 The Binomial Distribution 3-2 Other Types of Distributions 2 Chapter 3 Objectives Find the exact probability for X successes

More information

MidTerm 1) Find the following (round off to one decimal place):

MidTerm 1) Find the following (round off to one decimal place): MidTerm 1) 68 49 21 55 57 61 70 42 59 50 66 99 Find the following (round off to one decimal place): Mean = 58:083, round off to 58.1 Median = 58 Range = max min = 99 21 = 78 St. Deviation = s = 8:535,

More information

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19)

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x

More information

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Correlated to: Minnesota K-12 Academic Standards in Mathematics, 9/2008 (Grade 7)

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Correlated to: Minnesota K-12 Academic Standards in Mathematics, 9/2008 (Grade 7) 7.1.1.1 Know that every rational number can be written as the ratio of two integers or as a terminating or repeating decimal. Recognize that π is not rational, but that it can be approximated by rational

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

Acritical aspect of any capital budgeting decision. Using Excel to Perform Monte Carlo Simulations TECHNOLOGY

Acritical aspect of any capital budgeting decision. Using Excel to Perform Monte Carlo Simulations TECHNOLOGY Using Excel to Perform Monte Carlo Simulations By Thomas E. McKee, CMA, CPA, and Linda J.B. McKee, CPA Acritical aspect of any capital budgeting decision is evaluating the risk surrounding key variables

More information

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient Statistics & Flood Frequency Chapter 3 Dr. Philip B. Bedient Predicting FLOODS Flood Frequency Analysis n Statistical Methods to evaluate probability exceeding a particular outcome - P (X >20,000 cfs)

More information

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem 1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 Fall 216 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / Fall 216 1

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

2018 CFA Exam Prep. IFT High-Yield Notes. Quantitative Methods (Sample) Level I. Table of Contents

2018 CFA Exam Prep. IFT High-Yield Notes. Quantitative Methods (Sample) Level I. Table of Contents 2018 CFA Exam Prep IFT High-Yield Notes Quantitative Methods (Sample) Level I This document should be read in conjunction with the corresponding readings in the 2018 Level I CFA Program curriculum. Some

More information

STATISTICS and PROBABILITY

STATISTICS and PROBABILITY Introduction to Statistics Atatürk University STATISTICS and PROBABILITY LECTURE: PROBABILITY DISTRIBUTIONS Prof. Dr. İrfan KAYMAZ Atatürk University Engineering Faculty Department of Mechanical Engineering

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Prob and Stats, Nov 7

Prob and Stats, Nov 7 Prob and Stats, Nov 7 The Standard Normal Distribution Book Sections: 7.1, 7.2 Essential Questions: What is the standard normal distribution, how is it related to all other normal distributions, and how

More information