The EM algorithm for HMMs

Size: px
Start display at page:

Download "The EM algorithm for HMMs"

Transcription

1 The EM algorithm for HMMs Michael Collins February 22, 2012

2 Maximum-Likelihood Estimation for Fully Observed Data (Recap from earlier) We have fully observed data, x i,1... x i,m, s i,1... s i,m for i = 1... n. The likelihood function is n L(θ) = log p(x i,1... x i,m, s i,1... s i,m ; θ) i=1 Maximum-likelihood estimates of transition probabilities are n t(s i=1 s) = count(i, s s ) n i=1 s count(i, s s ) Maximum-likelihood estimates of emission probabilities are e(x s) = n i=1 count(i, s x) n i=1 x count(i, s x)

3 Maximum-Likelihood Estimation for Partially Observed Data We have partially observed data, x i,1... x i,m for i = 1... n. Note we do not have state sequences. The likelihood function is n L(θ) = log p(x i,1... x i,m, s 1... s m ; θ) s 1...s m i=1 We can maximize this function using EM... (the algorithm will converge to a local maximum of the likelihood function)

4 An Example Suppose we have an HMM with two states (k = 2) and 4 possible emissions (a, b, x, y) and our (partially observed) training data consists of the following counts of 4 different sequences (no other sequences are seen): a x (100 times) a y (100 times) b x (100 times) b y (100 times) What are the maximum-likelihood estimates for the HMM?

5 Forward and Backward Probabilities Define α[j, s] to be the sum of probabilities of all paths ending in state s at position j in the sequence, for j = 1... m and s {1... k}. More formally: α[j, s] = s 1...s j 1 [ t(s 1 )e(x 1 s 1 ) ( j 1 k=2 t(s k s k 1 )e(x k s k ) ) t(s s j 1 )e(x j s) Define β[j, s] for s {1... k} and j {1... (m 1)} to be the sum of probabilities of all paths starting with state s at position j and going to the end of the sequence. More formally: β[j, s] = s j+1...s m t(s j+1 s)e(x j+1 s j+1 ) m k=j+2 t(s k s k 1 )e(x k s k ) ]

6 Recursive Definitions of the Forward Probabilities Initialization: for s = 1... k α[1, s] = t(s)e(x 1 s) For j = 2... m: α[j, s] = (α[j 1, s ] t(s s ) e(x j s)) s {1...k}

7 Recursive Definitions of the Backward Probabilities Initialization: for s = 1... k β[m, s] = 1 For j = m : β[j, s] = (β[j + 1, s ] t(s s) e(x j+1 s )) s {1...k}

8 The Forward-Backward Algorithm Given these definitions: p(x 1... x m, S j = s; θ) = s 1...s m:s j =s p(x 1... x m, s 1... s m ; θ) = α[j, s] β[j, s] Note: we ll assume the special definition that β[m, s] = 1 for all s

9 The Forward-Backward Algorithm Given these definitions: p(x 1... x m, S j = s, S j+1 = s ; θ) = s 1...s m:s j =s,s j+1 =s p(x 1... x m, s 1... s m ; θ) = α[j, s] t(s s) e(x j+1 s ) β[j + 1, s ] Note: we ll assume the special definition that β[m, s] = 1 for all s

10 Things we can Compute Using Forward-Backward Probabilities The probability of any sequence: p(x 1... x m ; θ) = = s s 1...s m p(x 1... x m, s 1... s m ; θ) α[m, s] The probability of any state transition: p(x 1... x m, S j = s, S j+1 = s ; θ) = p(x 1... x m, s 1... s m ; θ) s 1...s m:s j =s,s j+1 =s = α[j, s] t(s s) e(x j+1 s ) β[j + 1, s ]

11 Things we can Compute Using Forward-Backward Probabilities (continued) The conditional probability of any state transition: p(s j = s, S j+1 = s x 1... x m ; θ) = α[j, s] t(s s) e(x j+1 s ) β[j + 1, s ] α[m, s] s The conditional probability of any state at any position: p(s j = s x 1... x m ; θ) = α[j, s] β[j, s] α[m, s] s

12 Things we can Compute Using Forward-Backward Probabilities (continued) Define count(i, s s ; θ) to be the expected number of times the transition s s is seen in the training example x i,1, x i,2,..., x i,m, for parameters θ. Then count(i, s s ; θ) = m 1 j=1 p(s j = s, S j+1 = s x i,1... x i,m ; θ) (We can compute p(s j = s, S j+1 = s x i,1... x i,m ; θ) using the forward-backward probabilities, see previous slide)

13 Things we can Compute Using Forward-Backward Probabilities (continued) For completeness, a formal definition of count(i, s s ; θ): count(i, s s ; θ) = s 1...s m p(s 1... s m x i,1... x i,m ; θ)count(s s, s 1... s m ) where count(s s, s 1... s m ) is the number of times the transition s s is seen in the sequence s 1... s m

14 Things we can Compute Using Forward-Backward Probabilities (continued) Define count(i, s z; θ) to be the expected number of times the state s is paired with the emission z in the training sequence x i,1, x i,2,..., x i,m, for parameters θ. Then count(i, s z; θ) = m p(s j = s x i,1... x i,m ; θ)[[x i,j = z]] j=1 (We can compute p(s j = s x i,1... x i,m ; θ) using the forward-backward probabilities, see previous slides)

15 The EM Algorithm for HMMs Initialization: set initial parameters θ 0 to some value For t = 1... T : Use the forward-backward algorithm to compute all expected counts of the form count(i, s s ; θ t 1 ) or count(i, s z; θ t 1 ) Update the parameters based on the expected counts: n t t (s i=1 s) = count(i, s s ; θ t 1 ) n i=1 s count(i, s s ; θ t 1 ) n e t i=1 (x s) = count(i, s x; θt 1 ) n i=1 x count(i, s x; θt 1 )

16 The Initial State Probabilities For simplicity I ve omitted the estimates for the initial state parameters t(s), but these are simple to derive in a similar way to the transition and the emission parameters For completeness, the expected counts are: count(i, s; θ t 1 ) = α[1, s] β[1, s] α[m, s] s (the expected number of times state s is seen as the initial state) The parameter updates are then t t (s) = n i=1 count(i, s; θt 1 ) n

Notes on the EM Algorithm Michael Collins, September 24th 2005

Notes on the EM Algorithm Michael Collins, September 24th 2005 Notes on the EM Algorithm Michael Collins, September 24th 2005 1 Hidden Markov Models A hidden Markov model (N, Σ, Θ) consists of the following elements: N is a positive integer specifying the number of

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data Group Prof. Daniel Cremers 7. Sequential Data Bayes Filter (Rep.) We can describe the overall process using a Dynamic Bayes Network: This incorporates the following Markov assumptions: (measurement) (state)!2

More information

Exact Inference (9/30/13) 2 A brief review of Forward-Backward and EM for HMMs

Exact Inference (9/30/13) 2 A brief review of Forward-Backward and EM for HMMs STA561: Probabilistic machine learning Exact Inference (9/30/13) Lecturer: Barbara Engelhardt Scribes: Jiawei Liang, He Jiang, Brittany Cohen 1 Validation for Clustering If we have two centroids, η 1 and

More information

Estimation of the Markov-switching GARCH model by a Monte Carlo EM algorithm

Estimation of the Markov-switching GARCH model by a Monte Carlo EM algorithm Estimation of the Markov-switching GARCH model by a Monte Carlo EM algorithm Maciej Augustyniak Fields Institute February 3, 0 Stylized facts of financial data GARCH Regime-switching MS-GARCH Agenda Available

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions Frequentist Methods: 7.5 Maximum Likelihood Estimators

More information

Decision Theory: Value Iteration

Decision Theory: Value Iteration Decision Theory: Value Iteration CPSC 322 Decision Theory 4 Textbook 9.5 Decision Theory: Value Iteration CPSC 322 Decision Theory 4, Slide 1 Lecture Overview 1 Recap 2 Policies 3 Value Iteration Decision

More information

Hidden Markov Models. Selecting model parameters or training

Hidden Markov Models. Selecting model parameters or training idden Markov Models Selecting model parameters or training idden Markov Models Motivation: The n'th observation in a chain of observations is influenced by a corresponding latent variable... Observations

More information

a 13 Notes on Hidden Markov Models Michael I. Jordan University of California at Berkeley Hidden Markov Models The model

a 13 Notes on Hidden Markov Models Michael I. Jordan University of California at Berkeley Hidden Markov Models The model Notes on Hidden Markov Models Michael I. Jordan University of California at Berkeley Hidden Markov Models This is a lightly edited version of a chapter in a book being written by Jordan. Since this is

More information

BCJR Algorithm. Veterbi Algorithm (revisted) Consider covolutional encoder with. And information sequences of length h = 5

BCJR Algorithm. Veterbi Algorithm (revisted) Consider covolutional encoder with. And information sequences of length h = 5 Chapter 2 BCJR Algorithm Ammar Abh-Hhdrohss Islamic University -Gaza ١ Veterbi Algorithm (revisted) Consider covolutional encoder with And information sequences of length h = 5 The trellis diagram has

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Probability Distributions: Discrete

Probability Distributions: Discrete Probability Distributions: Discrete Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul SEPTEMBER 27, 2016 Introduction to Data Science Algorithms Boyd-Graber and Paul Probability

More information

Lecture Notes: November 29, 2012 TIME AND UNCERTAINTY: FUTURES MARKETS

Lecture Notes: November 29, 2012 TIME AND UNCERTAINTY: FUTURES MARKETS Lecture Notes: November 29, 2012 TIME AND UNCERTAINTY: FUTURES MARKETS Gerard says: theory's in the math. The rest is interpretation. (See Debreu quote in textbook, p. 204) make the markets for goods over

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Estimating Mixed Logit Models with Large Choice Sets. Roger H. von Haefen, NC State & NBER Adam Domanski, NOAA July 2013

Estimating Mixed Logit Models with Large Choice Sets. Roger H. von Haefen, NC State & NBER Adam Domanski, NOAA July 2013 Estimating Mixed Logit Models with Large Choice Sets Roger H. von Haefen, NC State & NBER Adam Domanski, NOAA July 2013 Motivation Bayer et al. (JPE, 2007) Sorting modeling / housing choice 250,000 individuals

More information

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week CS 473: Artificial Intelligence Markov Decision Processes Dan Weld University of Washington [Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

Notes on Syllabus Section VI: TIME AND UNCERTAINTY, FUTURES MARKETS

Notes on Syllabus Section VI: TIME AND UNCERTAINTY, FUTURES MARKETS Economics 200B UCSD; Prof. R. Starr, Ms. Kaitlyn Lewis, Winter 2017; Syllabus Section VI Notes1 Notes on Syllabus Section VI: TIME AND UNCERTAINTY, FUTURES MARKETS Overview: The mathematical abstraction

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Spring 2009 Main question: How much are patents worth? Answering this question is important, because it helps

More information

Hidden Markov Model for High Frequency Data

Hidden Markov Model for High Frequency Data Hidden Markov Model for High Frequency Data Department of Mathematics, Florida State University Joint Math Meeting, Baltimore, MD, January 15 What are HMMs? A Hidden Markov model (HMM) is a stochastic

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Markov Decision Models Manfred Huber 2015 1 Markov Decision Process Models Markov models represent the behavior of a random process, including its internal state and the externally

More information

Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs. SS223B-Empirical IO

Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs. SS223B-Empirical IO Estimating a Dynamic Oligopolistic Game with Serially Correlated Unobserved Production Costs SS223B-Empirical IO Motivation There have been substantial recent developments in the empirical literature on

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

6. Genetics examples: Hardy-Weinberg Equilibrium

6. Genetics examples: Hardy-Weinberg Equilibrium PBCB 206 (Fall 2006) Instructor: Fei Zou email: fzou@bios.unc.edu office: 3107D McGavran-Greenberg Hall Lecture 4 Topics for Lecture 4 1. Parametric models and estimating parameters from data 2. Method

More information

Algorithms and Networking for Computer Games

Algorithms and Networking for Computer Games Algorithms and Networking for Computer Games Chapter 4: Game Trees http://www.wiley.com/go/smed Game types perfect information games no hidden information two-player, perfect information games Noughts

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Unobserved Heterogeneity Revisited

Unobserved Heterogeneity Revisited Unobserved Heterogeneity Revisited Robert A. Miller Dynamic Discrete Choice March 2018 Miller (Dynamic Discrete Choice) cemmap 7 March 2018 1 / 24 Distributional Assumptions about the Unobserved Variables

More information

CS340 Machine learning Bayesian model selection

CS340 Machine learning Bayesian model selection CS340 Machine learning Bayesian model selection Bayesian model selection Suppose we have several models, each with potentially different numbers of parameters. Example: M0 = constant, M1 = straight line,

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the reward function Must (learn to) act so as to maximize expected rewards Grid World The agent

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Statistical estimation

Statistical estimation Statistical estimation Statistical modelling: theory and practice Gilles Guillot gigu@dtu.dk September 3, 2013 Gilles Guillot (gigu@dtu.dk) Estimation September 3, 2013 1 / 27 1 Introductory example 2

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Some Discrete Distribution Families

Some Discrete Distribution Families Some Discrete Distribution Families ST 370 Many families of discrete distributions have been studied; we shall discuss the ones that are most commonly found in applications. In each family, we need a formula

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532l Lecture 10 Stochastic Games and Bayesian Games CPSC 532l Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games 4 Analyzing Bayesian

More information

The change of correlation structure across industries: an analysis in the regime-switching framework

The change of correlation structure across industries: an analysis in the regime-switching framework Kyoto University, Graduate School of Economics Research Project Center Discussion Paper Series The change of correlation structure across industries: an analysis in the regime-switching framework Masahiko

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non Deterministic Search Example: Grid World A maze like problem The agent lives in

More information

Hidden Markov Models for Financial Market Predictions

Hidden Markov Models for Financial Market Predictions Hidden Markov Models for Financial Market Predictions Department of Mathematics and Statistics Youngstown State University Central Spring Sectional Meeting, Michigan State University, March 15 1 Introduction

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

STAT 111 Recitation 2

STAT 111 Recitation 2 STAT 111 Recitation 2 Linjun Zhang October 10, 2017 Misc. Please collect homework 1 (graded). 1 Misc. Please collect homework 1 (graded). Office hours: 4:30-5:30pm every Monday, JMHH F86. 1 Misc. Please

More information

Occasional Paper. Dynamic Methods for Analyzing Hedge-Fund Performance: A Note Using Texas Energy-Related Funds. Jiaqi Chen and Michael L.

Occasional Paper. Dynamic Methods for Analyzing Hedge-Fund Performance: A Note Using Texas Energy-Related Funds. Jiaqi Chen and Michael L. DALLASFED Occasional Paper Dynamic Methods for Analyzing Hedge-Fund Performance: A Note Using Texas Energy-Related Funds Jiaqi Chen and Michael L. Tindall Federal Reserve Bank of Dallas Financial Industry

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Dynamic programming Christos Dimitrakakis Intelligent Autonomous Systems, IvI, University of Amsterdam, The Netherlands March 18, 2008 Introduction Some examples Dynamic programming

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Fall, 2010

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Fall, 2010 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Fall, 2010 Section 1. (Suggested Time: 45 Minutes) For 3 of the following 6 statements, state

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Gittins Index: Discounted, Bayesian (hence Markov arms). Reduces to stopping problem for each arm. Interpretation as (scaled)

More information

IEOR E4004: Introduction to OR: Deterministic Models

IEOR E4004: Introduction to OR: Deterministic Models IEOR E4004: Introduction to OR: Deterministic Models 1 Dynamic Programming Following is a summary of the problems we discussed in class. (We do not include the discussion on the container problem or the

More information

Political Lobbying in a Recurring Environment

Political Lobbying in a Recurring Environment Political Lobbying in a Recurring Environment Avihai Lifschitz Tel Aviv University This Draft: October 2015 Abstract This paper develops a dynamic model of the labor market, in which the employed workers,

More information

Modelling financial data with stochastic processes

Modelling financial data with stochastic processes Modelling financial data with stochastic processes Vlad Ardelean, Fabian Tinkl 01.08.2012 Chair of statistics and econometrics FAU Erlangen-Nuremberg Outline Introduction Stochastic processes Volatility

More information

Course information FN3142 Quantitative finance

Course information FN3142 Quantitative finance Course information 015 16 FN314 Quantitative finance This course is aimed at students interested in obtaining a thorough grounding in market finance and related empirical methods. Prerequisite If taken

More information

To earn the extra credit, one of the following has to hold true. Please circle and sign.

To earn the extra credit, one of the following has to hold true. Please circle and sign. CS 188 Fall 2018 Introduction to rtificial Intelligence Practice Midterm 2 To earn the extra credit, one of the following has to hold true. Please circle and sign. I spent 2 or more hours on the practice

More information

Introduction to Political Economy Problem Set 3

Introduction to Political Economy Problem Set 3 Introduction to Political Economy 14.770 Problem Set 3 Due date: Question 1: Consider an alternative model of lobbying (compared to the Grossman and Helpman model with enforceable contracts), where lobbies

More information

Double Chain Ladder and Bornhutter-Ferguson

Double Chain Ladder and Bornhutter-Ferguson Double Chain Ladder and Bornhutter-Ferguson María Dolores Martínez Miranda University of Granada, Spain mmiranda@ugr.es Jens Perch Nielsen Cass Business School, City University, London, U.K. Jens.Nielsen.1@city.ac.uk,

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 All single-node marginals If we need the

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani All single-node marginals If we need the full set of marginals, repeating

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

Bayesian course - problem set 3 (lecture 4)

Bayesian course - problem set 3 (lecture 4) Bayesian course - problem set 3 (lecture 4) Ben Lambert November 14, 2016 1 Ticked off Imagine once again that you are investigating the occurrence of Lyme disease in the UK. This is a vector-borne disease

More information

Hidden Markov Models. Slides by Carl Kingsford. Based on Chapter 11 of Jones & Pevzner, An Introduction to Bioinformatics Algorithms

Hidden Markov Models. Slides by Carl Kingsford. Based on Chapter 11 of Jones & Pevzner, An Introduction to Bioinformatics Algorithms Hidden Markov Models Slides by Carl Kingsford Based on Chapter 11 of Jones & Pevzner, An Introduction to Bioinformatics Algorithms Eukaryotic Genes & Exon Splicing Prokaryotic (bacterial) genes look like

More information

BMI/CS 776 Lecture #15: Multiple Alignment - ProbCons. Colin Dewey

BMI/CS 776 Lecture #15: Multiple Alignment - ProbCons. Colin Dewey BMI/CS 776 Lecture #15: Multiple Alignment - ProbCons Colin Dewey 2007.03.13 1 Probabilistic multiple alignment Like Needleman-Wunsch, pair HMMs can be generalized to n > 2 sequences Unfortunately, the

More information

For every job, the start time on machine j+1 is greater than or equal to the completion time on machine j.

For every job, the start time on machine j+1 is greater than or equal to the completion time on machine j. Flow Shop Scheduling - makespan A flow shop is one where all the jobs visit all the machine for processing in the given order. If we consider a flow shop with n jobs and two machines (M1 and M2), all the

More information

Predicting Electricity Pool Prices Using Hidden Markov Models

Predicting Electricity Pool Prices Using Hidden Markov Models Preprints of the 9th International Symposium on Advanced Control of Chemical Processes The International Federation of Automatic Control June 7-1, 215, Whistler, British Columbia, Canada MoPoster2.7 Predicting

More information

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS November 17, 2016. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question.

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532L Lecture 10 Stochastic Games and Bayesian Games CPSC 532L Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games Stochastic Games

More information

Project exam for STK Computational statistics

Project exam for STK Computational statistics Project exam for STK4051 - Computational statistics Fall 2017 Part 1 (of 2) This is the first part of the exam project set for STK4051/9051, fall semester 2017. It is made available on the course website

More information

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Simerjot Kaur (sk3391) Stanford University Abstract This work presents a novel algorithmic trading system based on reinforcement

More information

Capital Allocation Principles

Capital Allocation Principles Capital Allocation Principles Maochao Xu Department of Mathematics Illinois State University mxu2@ilstu.edu Capital Dhaene, et al., 2011, Journal of Risk and Insurance The level of the capital held by

More information

A start of Variational Methods for ERGM Ranran Wang, UW

A start of Variational Methods for ERGM Ranran Wang, UW A start of Variational Methods for ERGM Ranran Wang, UW MURI-UCI April 24, 2009 Outline A start of Variational Methods for ERGM [1] Introduction to ERGM Current methods of parameter estimation: MCMCMLE:

More information

1 A tax on capital income in a neoclassical growth model

1 A tax on capital income in a neoclassical growth model 1 A tax on capital income in a neoclassical growth model We look at a standard neoclassical growth model. The representative consumer maximizes U = β t u(c t ) (1) t=0 where c t is consumption in period

More information

Arrow Debreu Equilibrium. October 31, 2015

Arrow Debreu Equilibrium. October 31, 2015 Arrow Debreu Equilibrium October 31, 2015 Θ 0 = {s 1,...s S } - the set of (unknown) states of the world assuming there are S unknown states. information is complete but imperfect n - number of consumers

More information

6.825 Homework 3: Solutions

6.825 Homework 3: Solutions 6.825 Homework 3: Solutions 1 Easy EM You are given the network structure shown in Figure 1 and the data in the following table, with actual observed values for A, B, and C, and expected counts for D.

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Lecture 10: Point Estimation

Lecture 10: Point Estimation Lecture 10: Point Estimation MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 31 Basic Concepts of Point Estimation A point estimate of a parameter θ,

More information

Academic Research Review. Classifying Market Conditions Using Hidden Markov Model

Academic Research Review. Classifying Market Conditions Using Hidden Markov Model Academic Research Review Classifying Market Conditions Using Hidden Markov Model INTRODUCTION Best known for their applications in speech recognition, Hidden Markov Models (HMMs) are able to discern and

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

A Production-Based Model for the Term Structure

A Production-Based Model for the Term Structure A Production-Based Model for the Term Structure U Wharton School of the University of Pennsylvania U Term Structure Wharton School of the University 1 / 19 Production-based asset pricing in the literature

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

Decision Theory: Sequential Decisions

Decision Theory: Sequential Decisions Decision Theory: CPSC 322 Decision Theory 2 Textbook 9.3 Decision Theory: CPSC 322 Decision Theory 2, Slide 1 Lecture Overview 1 Recap 2 Decision Theory: CPSC 322 Decision Theory 2, Slide 2 Decision Variables

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline C 188: Artificial Intelligence Markov Decision Processes (MDPs) Pieter Abbeel UC Berkeley ome slides adapted from Dan Klein 1 Outline Markov Decision Processes (MDPs) Formalism Value iteration In essence

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

A note on the nested Logit model

A note on the nested Logit model Erik Biørn Version of September 17 2008 ECON5115 - ECONOMETRICS: MICROECONOMETRICS AND DISCRETE CHOICE AUTUMN 2008 A note on the nested Logit model In this note we present the basic idea of the nested

More information

STP Problem Set 3 Solutions

STP Problem Set 3 Solutions STP 425 - Problem Set 3 Solutions 4.4) Consider the separable sequential allocation problem introduced in Sections 3.3.3 and 4.6.3, where the goal is to maximize the sum subject to the constraints f(x

More information

David A. Robalino (World Bank) Eduardo Zylberstajn (Fundacao Getulio Vargas, Brazil) Extended Abstract

David A. Robalino (World Bank) Eduardo Zylberstajn (Fundacao Getulio Vargas, Brazil) Extended Abstract Incentive Effects of Risk Pooling, Redistributive and Savings Arrangements in Unemployment Benefit Systems: Evidence from a Structural Model for Brazil David A. Robalino (World Bank) Eduardo Zylberstajn

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Fall, 2016

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Fall, 2016 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Fall, 2016 Section 1. (Suggested Time: 45 Minutes) For 3 of the following 6 statements, state

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

Modelling, Estimation and Hedging of Longevity Risk

Modelling, Estimation and Hedging of Longevity Risk IA BE Summer School 2016, K. Antonio, UvA 1 / 50 Modelling, Estimation and Hedging of Longevity Risk Katrien Antonio KU Leuven and University of Amsterdam IA BE Summer School 2016, Leuven Module II: Fitting

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

CSE 473: Ar+ficial Intelligence

CSE 473: Ar+ficial Intelligence CSE 473: Ar+ficial Intelligence Hidden Markov Models Luke Ze@lemoyer - University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Wednesday, October 4, 27 Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

On the Minimum Description Length Complexity of Multinomial Processing Tree Models

On the Minimum Description Length Complexity of Multinomial Processing Tree Models On the Minimum Description Length Complexity of Multinomial Processing Tree Models Hao Wu and Jay I. Myung The Ohio State University William H. Batchelder University of California, Irvine Abstract Multinomial

More information

Betting Against Beta: A State-Space Approach

Betting Against Beta: A State-Space Approach Betting Against Beta: A State-Space Approach An Alternative to Frazzini and Pederson (2014) David Puelz and Long Zhao UT McCombs April 20, 2015 Overview Background Frazzini and Pederson (2014) A State-Space

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Stochastic domains Image: Berkeley CS188 course notes (downloaded Summer

More information

PhD Qualifier Examination

PhD Qualifier Examination PhD Qualifier Examination Department of Agricultural Economics May 29, 2015 Instructions This exam consists of six questions. You must answer all questions. If you need an assumption to complete a question,

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Valuing American Options by Simulation

Valuing American Options by Simulation Valuing American Options by Simulation Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2008 Valuing American Options Course material Slides Longstaff, F. A. and Schwartz,

More information

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008 (presentation follows Thomas Ferguson s and Applications) November 6, 2008 1 / 35 Contents: Introduction Problems Markov Models Monotone Stopping Problems Summary 2 / 35 The Secretary problem You have

More information

Calibration of Interest Rates

Calibration of Interest Rates WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,

More information

2D penalized spline (continuous-by-continuous interaction)

2D penalized spline (continuous-by-continuous interaction) 2D penalized spline (continuous-by-continuous interaction) Two examples (RWC, Section 13.1): Number of scallops caught off Long Island Counts are made at specific coordinates. Incidence of AIDS in Italian

More information

SUPPLEMENT TO EQUILIBRIA IN HEALTH EXCHANGES: ADVERSE SELECTION VERSUS RECLASSIFICATION RISK (Econometrica, Vol. 83, No. 4, July 2015, )

SUPPLEMENT TO EQUILIBRIA IN HEALTH EXCHANGES: ADVERSE SELECTION VERSUS RECLASSIFICATION RISK (Econometrica, Vol. 83, No. 4, July 2015, ) Econometrica Supplementary Material SUPPLEMENT TO EQUILIBRIA IN HEALTH EXCHANGES: ADVERSE SELECTION VERSUS RECLASSIFICATION RISK (Econometrica, Vol. 83, No. 4, July 2015, 1261 1313) BY BEN HANDEL, IGAL

More information