Marquette University MATH 1700 Class 8 Copyright 2018 by D.B. Rowe

Size: px
Start display at page:

Download "Marquette University MATH 1700 Class 8 Copyright 2018 by D.B. Rowe"

Transcription

1 Class 8 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 208 by D.B. Rowe

2 Agenda: Recap Chapter Lecture Chapter

3 Recap Chapter

4 4: Probability 4.3 Rules of Probability Eample: Pick Card, A=Heart, B=Ace P( A) P( A) P( A or B) P( A) P( B) P( A and B) P( A and B) P( A) P( B A) P( A B) P( A and B) P( B) Figure from Johnson & Kuby,

5 4: Probability 4.4 Mutually Eclusive Events Mutually eclusive events: Events that share no common elements In algebra: P( A and B) 0 (no overlap) In words:. If one event has occurred, the other cannot. 2. None of the elements in one is in other. 3. In Venn diagrams, no intersection. 4. Intersection of events has a probability of zero. 5

6 4: Probability 4.5 Independent Events Independent events: the occurrence or nonoccurence of one gives no information about occurrence for the other. P( A) P( A B) P( A not B) Dependent events: occurrence of one event does have an effect on the probability of occurrence of the other event. P( A) P( A B) Special multiplication rule: Let A and B independent events in a sample space S. P( A and B) P( A) P( B) 6

7 4: Probability Questions? Homework: Chapter 4 # 59, 63, 65, 69, 85, 89, 9, 97, 05, 07, 3 Read Chapter

8 Lecture Chapter

9 Chapter 5: Probability Distributions (Discrete Variables) Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science 9

10 5. Random Variables At beginning of course we talked about types of data. Data Qualitative Quantitative Nominal Ordinal Discrete Continuous (names) (ordered) (gap) (continuum) Binomial Distribution 0

11 5. Random Variables Random Variables: A variable that assumes a unique numerical value for each of the outcomes in the sample space of a probability eperiment. Eample: Let = the number of heads when we flip a coin twice. ={0,,2} {TT,TH,HT,HH} numerical values for outcomes in sample space

12 5. Random Variables Discrete Random Variables: A quantitative random variable that can assume a countable number of values. Continuous Random Variable: A quantitative random variable that can assume an uncountable number of values. Continuum of values. Eamples: Discrete: Number of heads when we flip a coin ten times. Continuous: Distance from earth center to sun center. 2

13 5.2 Probability Distributions of a Discrete Random Variable Probability Distribution: A distribution of the probabilities associated with each of the values of a random variable. The probability distribution is a theoretical distribution; it is used to represent populations. Flipping a Coin = # H Rolling a Die face = value Figures from Johnson & Kuby, 202. Recall:. each prob between 0 & and 2. sum of prob s = 3

14 5.2 Probability Distributions of a Discrete Random Variable Probability Function: A rule P() that assigns probabilities to the values of the random variables,. Eample: Let = # of heads when we flip a coin twice. ={0,,2} 2! P ( )!(2 )! P( ) Note:. 0 P() 2. ΣP()= 4

15 P() P() 5.2 Probability Distributions of a Discrete Random Variable Eample: Let = # of H when flip a coin twice. P ( ) 2 2!!(2 )! 2 2 0,,2 0 2 P( )

16 Marquette University Recall this slide MATH 700 : Statistics.2 What is Statistics? Data: The set of values collected from the variable from each of the elements that belong to the sample. Eperiment: A planned activity whose results yield a set of data. Sample: Subset of the population. Parameter: A numerical value summarizing all the data of an entire population. Statistic: A numerical value summarizing the sample data. 6

17 5.2 Mean and Variance of a Discrete Random Variable If we calculate a numerical summary from the sample of 2 data, it is called a statistic. i.e. and. s sample mean sample variance If we calculate a numerical summary from the population of 2 data, it is called a parameter. i.e. and. population mean population variance μ is the Greek letter lower case mu. σ is the Greek letter lower case sigma. 7

18 5.2 Mean and Variance of a Discrete Random Variable Mean of a discrete random variable (epected value): The mean, μ, of a discrete random variable is found by multiplying each possible value of by its own probability, P(), and then adding all of the products together: mean of : mu = sum of (each multiplied by its own probability) n [ ip( i)] i (5.) 8

19 5.2 Mean and Variance of a Discrete Random Variable n [ i P( i )] P( ) 2P( 2)... np( n) i For the # of H when we flip a coin twice discrete distribution: μ = ( ) P( ) + ( 2 ) P( 2 ) + ( 3 ) P( 3 ) 0 2 P( )

20 5.2 Mean and Variance of a Discrete Random Variable Variance of a discrete random variable: The variance, σ 2, of a discrete random variable is found by multiplying each possible value of the squared deviation, ( μ) 2, by its own probability, P(), and then adding all of the products together: variance of : sigma squared = sum of (squared deviation times probability) n 2 2 i i equivalent formula [( ) P( )] i n [ i P( i)] i (5.2) (5.3b) 2

21 5.2 Mean and Variance of a Discrete Random Variable n i P i P 2 P 2 n P n i [( ) ( )] ( ) ( ) ( ) ( )... ( ) ( ) For the # of H when we flip a coin twice discrete distribution: σ 2 = ( -μ) 2 P( ) + ( 2 -μ) 2 P( 2 ) + ( 3 -μ) 2 μ = P( 3 ) P( ) P ( ) P ( 2) P ( 3) 22

22 5.2 Mean and Variance of a Discrete Random Variable Standard deviation of a discrete variable: The positive square root of the variance. 2 (5.4) σ 2 = σ = n 2 [( i ) P( i)] i 24

23 5.3 The Binomial Probability Distribution Let s assume we have two independent events E and E 2. We know that P( E and E ) P( E ) P( E ). Page More generally, if we have n independent events E,,E n. We know that P( E and E and E ) P( E ) P( E ) P( E ). 2 n 2 n 26

24 5.3 The Binomial Probability Distribution Let s assume we are flipping a coin twice. E =Head on first flip, E 2 =Tail on second flip. The probability of heads on any given flip is p = P(H). The probability of tails (not heads) on any given flip is q = (-p). Then P(HT)=P(H)P(T) Similarly P(TH) = P(T)P(H) =p(-p). = (-p)p. Let = # of heads in two flips of a coin. P(=) = P(HT)+P(TH) = p(-p)+(-p)p = 2p(-p). 2 ways to get one H and one T 2 ways to get = heads 27

25 5.3 The Binomial Probability Distribution An eperiment with only two outcomes is called a Binomial ep. Call one outcome Success and the other Failure. Each performance of ept. is called a trial and are independent. Prob of eactly successes n! P( ) p ( p)!( n )! n = number of trials or times we repeat the eperiment. = the number of successes out of n trials. p = the probability of success on an individual trial. n num( successes) P( successes and n- failures) Bi means two like bicycle 0,..., n (5.5) n n!!( n )! 28

26 5.3 The Binomial Probability Distribution Flip coin once. num flips num succ. prob succ O H T n= = p=/2 P( O) / 2 / 2 P(0) = # of Heads n()= ways to get Heads P( ) n( ) 0 / 2 0 / 2 n! P( ) p ( p)!( n )! P() n 29

27 5.3 The Binomial Probability Distribution Flip coin twice. O HH HT TH TT num flips num succ. prob succ P( O) / 4 / 4 / 4 / 4 = # of Heads n()= ways to get Heads n=2 = p=/2 P( ) 0 / 4 2 / 4 2 / 4 n( ) n! P( ) p ( p)!( n )! P() n 3

28 5.3 The Binomial Probability Distribution Flip coin three times. O P( O) HHH / 8 HHT / 8 HTH / 8 HTT / 8 THH / 8 THT / 8 TTH / 8 TTT / 8 = # of Heads n=3 = p=/2 P( ) 0 / 8 3 / / 8 3 / 8 n()= ways to get Heads n( ) n! P( ) p ( p)!( n )! P() n 33

29 5.3 The Binomial Probability Distribution Flip coin ten times. = # of Heads n()= ways to get Heads n ( ) P ( ) n=0 =0,,0 p=/2 n ( ) n!!( n )! n p ( p) /024 n! P( ) p ( p)!( n )! n Note:. 0 P() 2. ΣP()= 35

30 5.3 The Binomial Probability Distribution Flip coin once. O H T p=2/3 P( O) 2 / 3 / 3 = # of Heads n()= ways to get Heads P( ) n( ) 0 / / 3 num flips num succ. prob succ n= = p=2/3 n! P( ) p ( p)!( n )! n! P() 2 / 3 ( 2 / 3)!( )! 37

31 5.3 The Binomial Probability Distribution Flip coin twice. O HH HT TH TT num flips num succ. prob succ p=2/3 P( O) 4 / 9 2 / 9 2 / 9 / 9 n=2 = p=2/3 = # of Heads P( ) 0 / 9 4 / / 9 n()= ways to get Heads n( ) n! P( ) p ( p)!( n )! n 2! P() 2 / 3 ( 2 / 3)!(2 )! 2 39

32 5.3 The Binomial Probability Distribution Flip coin three times. O P( O) HHH HHT HTH HTT THH THT TTH TTT 8 / 27 4 / 27 4 / 27 2 / 27 4 / 27 2 / 27 2 / 27 / 27 p=2/3 = # of Heads n=3 = p=2/3 P( ) 0 / 27 6 / / / 27 n()= ways to get Heads n( ) n! P( ) p ( p)!( n )! n 3! P() 2 / 3 ( 2 / 3)!(3 )! 3 4

33 Questions? Homework: Chapter 5 # 5, 7, 9, 29, 3, 43 Read Chapter

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 13 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 017 by D.B. Rowe 1 Agenda: Recap Chapter 6.3 6.5 Lecture Chapter 7.1 7. Review Chapter 5 for Eam 3.

More information

Class 11. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 11. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 11 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 5.3 continued Lecture 6.1-6.2 Go over Eam 2. 2 5: Probability

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

The Binomial distribution

The Binomial distribution The Binomial distribution Examples and Definition Binomial Model (an experiment ) 1 A series of n independent trials is conducted. 2 Each trial results in a binary outcome (one is labeled success the other

More information

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 16 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 7. - 7.3 Lecture Chapter 8.1-8. Review Chapter 6. Problem Solving

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

The binomial distribution

The binomial distribution The binomial distribution The coin toss - three coins The coin toss - four coins The binomial probability distribution Rolling dice Using the TI nspire Graph of binomial distribution Mean & standard deviation

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Chapter 5 Basic Probability

Chapter 5 Basic Probability Chapter 5 Basic Probability Probability is determining the probability that a particular event will occur. Probability of occurrence = / T where = the number of ways in which a particular event occurs

More information

Statistical Methods for NLP LT 2202

Statistical Methods for NLP LT 2202 LT 2202 Lecture 3 Random variables January 26, 2012 Recap of lecture 2 Basic laws of probability: 0 P(A) 1 for every event A. P(Ω) = 1 P(A B) = P(A) + P(B) if A and B disjoint Conditional probability:

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

Statistics for Business and Economics: Random Variables (1)

Statistics for Business and Economics: Random Variables (1) Statistics for Business and Economics: Random Variables (1) STT 315: Section 201 Instructor: Abdhi Sarkar Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides.

More information

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions Chapter 4: Probability s 4. Probability s 4. Binomial s Section 4. Objectives Distinguish between discrete random variables and continuous random variables Construct a discrete probability distribution

More information

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1 6.1 Discrete and Continuous Random Variables Random Variables A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types

More information

Math 14 Lecture Notes Ch Mean

Math 14 Lecture Notes Ch Mean 4. Mean, Expected Value, and Standard Deviation Mean Recall the formula from section. for find the population mean of a data set of elements µ = x 1 + x + x +!+ x = x i i=1 We can find the mean of the

More information

Probability mass function; cumulative distribution function

Probability mass function; cumulative distribution function PHP 2510 Random variables; some discrete distributions Random variables - what are they? Probability mass function; cumulative distribution function Some discrete random variable models: Bernoulli Binomial

More information

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable 6.1 Discrete and Continuous Random Variables 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable Random variable Takes numerical values that describe the outcomes of some

More information

Binomial population distribution X ~ B(

Binomial population distribution X ~ B( Chapter 9 Binomial population distribution 9.1 Definition of a Binomial distributio If the random variable has a Binomial population distributio i.e., then its probability function is given by p n n (

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 5 Discrete Probability Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap 5-1 Learning

More information

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin 3 times where P(H) = / (b) THUS, find the probability

More information

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI 08-0- Lesson 9 - Binomial Distributions IBHL - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin times where P(H) = / (b) THUS, find the probability

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

Sec$on 6.1: Discrete and Con.nuous Random Variables. Tuesday, November 14 th, 2017

Sec$on 6.1: Discrete and Con.nuous Random Variables. Tuesday, November 14 th, 2017 Sec$on 6.1: Discrete and Con.nuous Random Variables Tuesday, November 14 th, 2017 Discrete and Continuous Random Variables Learning Objectives After this section, you should be able to: ü COMPUTE probabilities

More information

x is a random variable which is a numerical description of the outcome of an experiment.

x is a random variable which is a numerical description of the outcome of an experiment. Chapter 5 Discrete Probability Distributions Random Variables is a random variable which is a numerical description of the outcome of an eperiment. Discrete: If the possible values change by steps or jumps.

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 2 Discrete Distributions The binomial distribution 1 Chapter 2 Discrete Distributions Bernoulli trials and the

More information

Binomial Random Variables

Binomial Random Variables Models for Counts Solutions COR1-GB.1305 Statistics and Data Analysis Binomial Random Variables 1. A certain coin has a 25% of landing heads, and a 75% chance of landing tails. (a) If you flip the coin

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Physical Principles in Biology Biology 3550 Fall 2018 Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Monday, 10 September 2018 c David P. Goldenberg University

More information

CIVL Learning Objectives. Definitions. Discrete Distributions

CIVL Learning Objectives. Definitions. Discrete Distributions CIVL 3103 Discrete Distributions Learning Objectives Define discrete distributions, and identify common distributions applicable to engineering problems. Identify the appropriate distribution (i.e. binomial,

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 3-4: BASIC PROBABILITY THEORY

INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 3-4: BASIC PROBABILITY THEORY 9 January 2004 revised 18 January 2004 INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 3-4: BASIC PROBABILITY THEORY Project in Geometry and Physics, Department of Mathematics University of California/San

More information

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution.

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution. MA 5 Lecture - Mean and Standard Deviation for the Binomial Distribution Friday, September 9, 07 Objectives: Mean and standard deviation for the binomial distribution.. Mean and Standard Deviation of the

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Discrete Probability Distribution

Discrete Probability Distribution 1 Discrete Probability Distribution Key Definitions Discrete Random Variable: Has a countable number of values. This means that each data point is distinct and separate. Continuous Random Variable: Has

More information

Probability Distributions

Probability Distributions Chapter 6 Discrete Probability Distributions Section 6-2 Probability Distributions Definitions Let S be the sample space of a probability experiment. A random variable X is a function from the set S into

More information

Statistics for IT Managers

Statistics for IT Managers Statistics for IT Managers 95-796, Fall 212 Course Overview Instructor: Daniel B. Neill (neill@cs.cmu.edu) TAs: Eli (Han) Liu, Kats Sasanuma, Sriram Somanchi, Skyler Speakman, Quan Wang, Yiye Zhang (see

More information

Stat 211 Week Five. The Binomial Distribution

Stat 211 Week Five. The Binomial Distribution Stat 211 Week Five The Binomial Distribution Last Week E x E x = x p(x) = n p σ x = x μ x 2 p(x) We will see this again soon!! Binomial Experiment We have an experiment with the following qualities : 1.

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 13, 2009 Stochastic differential equations deal with continuous random processes. They are idealization of discrete stochastic

More information

Lean Six Sigma: Training/Certification Books and Resources

Lean Six Sigma: Training/Certification Books and Resources Lean Si Sigma Training/Certification Books and Resources Samples from MINITAB BOOK Quality and Si Sigma Tools using MINITAB Statistical Software A complete Guide to Si Sigma DMAIC Tools using MINITAB Prof.

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables In this chapter, we introduce a new concept that of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can

More information

We use probability distributions to represent the distribution of a discrete random variable.

We use probability distributions to represent the distribution of a discrete random variable. Now we focus on discrete random variables. We will look at these in general, including calculating the mean and standard deviation. Then we will look more in depth at binomial random variables which are

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

MATH 446/546 Homework 1:

MATH 446/546 Homework 1: MATH 446/546 Homework 1: Due September 28th, 216 Please answer the following questions. Students should type there work. 1. At time t, a company has I units of inventory in stock. Customers demand the

More information

EDO UNIVERSITY, IYAMHO EDO STATE, NIGERIA

EDO UNIVERSITY, IYAMHO EDO STATE, NIGERIA EDO UNIVERSITY, IYAMHO EDO STATE, NIGERIA MTH 122 :ELEMENTARY STATISTICS INTRODUCTION OF LECTURER Alhassan Charity Jumai is Lecturer of Mathematics at the Faculty of Physical Sciences, Edo University Iyamho,

More information

Binomal and Geometric Distributions

Binomal and Geometric Distributions Binomal and Geometric Distributions Sections 3.2 & 3.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 7-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Keeping Your Options Open: An Introduction to Pricing Options

Keeping Your Options Open: An Introduction to Pricing Options The College of Wooster Libraries Open Works Senior Independent Study Theses 2014 Keeping Your Options Open: An Introduction to Pricing Options Ryan F. Snyder The College of Wooster, rsnyder14@wooster.edu

More information

Learning Objec0ves. Statistics for Business and Economics. Discrete Probability Distribu0ons

Learning Objec0ves. Statistics for Business and Economics. Discrete Probability Distribu0ons Statistics for Business and Economics Discrete Probability Distribu0ons Learning Objec0ves In this lecture, you learn: The proper0es of a probability distribu0on To compute the expected value and variance

More information

CHAPTER 10: Introducing Probability

CHAPTER 10: Introducing Probability CHAPTER 10: Introducing Probability The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 10 Concepts 2 The Idea of Probability Probability Models Probability

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Chapter 7: Random Variables

Chapter 7: Random Variables Chapter 7: Random Variables 7.1 Discrete and Continuous Random Variables 7.2 Means and Variances of Random Variables 1 Introduction A random variable is a function that associates a unique numerical value

More information

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006 Chapter 7 Random Variables and Discrete Probability Distributions 7.1 Random Variables A random variable is a function or rule that assigns a number to each outcome of an experiment. Alternatively, the

More information

STAT 111 Recitation 2

STAT 111 Recitation 2 STAT 111 Recitation 2 Linjun Zhang October 10, 2017 Misc. Please collect homework 1 (graded). 1 Misc. Please collect homework 1 (graded). Office hours: 4:30-5:30pm every Monday, JMHH F86. 1 Misc. Please

More information

Chapter 8 Solutions Page 1 of 15 CHAPTER 8 EXERCISE SOLUTIONS

Chapter 8 Solutions Page 1 of 15 CHAPTER 8 EXERCISE SOLUTIONS Chapter 8 Solutions Page of 5 8. a. Continuous. b. Discrete. c. Continuous. d. Discrete. e. Discrete. 8. a. Discrete. b. Continuous. c. Discrete. d. Discrete. CHAPTER 8 EXERCISE SOLUTIONS 8.3 a. 3/6 =

More information

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations II - Probability Counting Techniques three rules of counting 1multiplication rules 2permutations 3combinations Section 2 - Probability (1) II - Probability Counting Techniques 1multiplication rules In

More information

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice Section 8.5: Expected Value and Variance Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice between a million

More information

Probability Distribution

Probability Distribution Probability Distribution CK-12 Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

Conditional Probability. Expected Value.

Conditional Probability. Expected Value. Conditional Probability. Expected Value. CSE21 Winter 2017, Day 22 (B00), Day 14-15 (A00) March 8, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Random Variables A random variable assigns a real number

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

HHH HHT HTH THH HTT THT TTH TTT

HHH HHT HTH THH HTT THT TTH TTT AP Statistics Name Unit 04 Probability Period Day 05 Notes Discrete & Continuous Random Variables Random Variable: Probability Distribution: Example: A probability model describes the possible outcomes

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

The following content is provided under a Creative Commons license. Your support

The following content is provided under a Creative Commons license. Your support MITOCW Recitation 6 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make

More information

Elementary Statistics Blue Book. The Normal Curve

Elementary Statistics Blue Book. The Normal Curve Elementary Statistics Blue Book How to work smarter not harder The Normal Curve 68.2% 95.4% 99.7 % -4-3 -2-1 0 1 2 3 4 Z Scores John G. Blom May 2011 01 02 TI 30XA Key Strokes 03 07 TI 83/84 Key Strokes

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Distribution Distribute in anyway but normal

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Distribution Distribute in anyway but normal Distribution Distribute in anyway but normal VI. DISTRIBUTION A probability distribution is a mathematical function that provides the probabilities of occurrence of all distinct outcomes in the sample

More information

STAT 111 Recitation 3

STAT 111 Recitation 3 STAT 111 Recitation 3 Linjun Zhang stat.wharton.upenn.edu/~linjunz/ September 23, 2017 Misc. The unpicked-up homeworks will be put in the STAT 111 box in the Stats Department lobby (It s on the 4th floor

More information

CSC Advanced Scientific Programming, Spring Descriptive Statistics

CSC Advanced Scientific Programming, Spring Descriptive Statistics CSC 223 - Advanced Scientific Programming, Spring 2018 Descriptive Statistics Overview Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.

More information

Stat511 Additional Materials

Stat511 Additional Materials Binomial Random Variable Stat511 Additional Materials The first discrete RV that we will discuss is the binomial random variable. The binomial random variable is a result of observing the outcomes from

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

The Central Limit Theorem

The Central Limit Theorem Section 6-5 The Central Limit Theorem I. Sampling Distribution of Sample Mean ( ) Eample 1: Population Distribution Table 2 4 6 8 P() 1/4 1/4 1/4 1/4 μ (a) Find the population mean and population standard

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Lecture 6 Probability

Lecture 6 Probability Faculty of Medicine Epidemiology and Biostatistics الوبائيات واإلحصاء الحيوي (31505204) Lecture 6 Probability By Hatim Jaber MD MPH JBCM PhD 3+4-7-2018 1 Presentation outline 3+4-7-2018 Time Introduction-

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Discrete Random Variables In this section, we introduce the concept of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can be thought

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

Probability Distributions: Discrete

Probability Distributions: Discrete Probability Distributions: Discrete INFO-2301: Quantitative Reasoning 2 Michael Paul and Jordan Boyd-Graber FEBRUARY 19, 2017 INFO-2301: Quantitative Reasoning 2 Paul and Boyd-Graber Probability Distributions:

More information

30 Wyner Statistics Fall 2013

30 Wyner Statistics Fall 2013 30 Wyner Statistics Fall 2013 CHAPTER FIVE: DISCRETE PROBABILITY DISTRIBUTIONS Summary, Terms, and Objectives A probability distribution shows the likelihood of each possible outcome. This chapter deals

More information

Chapter 4 Probability Distributions

Chapter 4 Probability Distributions Slide 1 Chapter 4 Probability Distributions Slide 2 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

5.1 Personal Probability

5.1 Personal Probability 5. Probability Value Page 1 5.1 Personal Probability Although we think probability is something that is confined to math class, in the form of personal probability it is something we use to make decisions

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Probability distributions

Probability distributions Probability distributions Introduction What is a probability? If I perform n eperiments and a particular event occurs on r occasions, the relative frequency of this event is simply r n. his is an eperimental

More information

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management BA 386T Tom Shively PROBABILITY CONCEPTS AND NORMAL DISTRIBUTIONS The fundamental idea underlying any statistical

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Chapter 8: The Binomial and Geometric Distributions 8.1 Binomial Distributions 8.2 Geometric Distributions 1 Let me begin with an example My best friends from Kent School had three daughters. What is the

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information